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A b s t r a c t - - W e  present an analysis of the equilibrium diffusive interfaces in a model for the inter- 
action of layers of pure polymers. The discussion focuses on the important qualitative features of the 
solutions of the nonlinear singular Cahn-Hilliard equation with degenerate mobility for the Flory- 
Huggins-de Gennes free energy model. The spatial structure of possible equilibrium phase separated 
solutions are found. Using phase plane analysis, we obtain heteroclinic and homoclinic degenerate 
weak compact-support solutions that are relevant to finite domain boundary value problems and 
localized impurities in infinite layers. ~) 1998 Elsevier Science Ltd. All rights reserved. 
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1.  I N T R O D U C T I O N  

We s tudy the s t ructure  of a class of equilibrium solutions for problems involving phase-separated 

polymer mixtures. The  behavior in such systems can be described by the Cahn-Hilliard equa- 
tion, originally proposed to describe binary alloy mixtures. Under appropriate  thermodynamic  
conditions, a mixture of two components,  A and B, will spontaneously separate  into nearly-pure 
"pockets" of  each component.  We address the related problem of describing the spatial s t ructure 
of solutions formed by interdiffusion of two initially pure phases brought into contact. Following 
a brief review of Cahn-Hilliard theory, we specialize our s tudy to a model for polymer mixtures 
and analyze its equilibrium interface solutions using phase plane techniques. 

The dynamics of an incompressible, isothermal mixture can be described in terms of the local 
volume fraction ¢(x, t) of one of the components, say A. Conservation of mass for component A 
is then given by 

a¢ 
+ V .  J = O, J = - A ( ¢ ) V # ,  (1) 

where 0 < ¢ <_ 1 and the flux J is defined as the product  of the mobility A(¢) and the gradient of 
the chemical potential  #. The  chemical potential  is related back to the volume fraction ¢ through 

the Cahn-Hilliard energy functional, 

y= f £dx= f f(¢)+ 2, (C)lV¢12dx, (2) 
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where f(¢) is the free energy of mixing for a spatially-homogeneous system and the second term in 
the integrand gives the weighted contribution due to composition gradients. For systems subject 
to Dirichlet or Neumann boundary conditions on ¢, the chemical potential is the functional 
derivative of the free energy density, 

/z -- ~ = f ' (¢)  -- V / - ~ V  • V¢ . (3) 

Combining (1) and (3), we obtain the Cahn-Hilliard equation, 

o¢ (4) 

If f ' (¢)  is a strictly increasing function, then the mixture is completely miscible and (4) yields 
diffusion dominated behavior. If f ' (¢) is a nonmonotone function, then the mixture exhibits 
phase separation; the formation of sharp interfaces in the solution is connected to a range of 
negative values for the diffusion coefficient D(¢) = A(¢)f"(¢) (see [1]). In this case, the higher- 
order gradient term in (4) is crucial in insuring the regularity of solutions and the existence of 
equilibrium profiles. There has been extensive research done on the analysis of solutions of the 
Cahn-Hilliard equation. Most classical studies have considered models in the sharp interface limit, 
][toil --* 0, with f ' (¢)  given as a cubic, and mobility A and a are held constant [1-4]. Recently, 
Elliott and Garcke [5,6] have considered effects due to degenerate mobility functions A(¢). In 
this article, we consider the influence of a singular gradient energy weight function a(¢); such 
models have been proposed for polymer mixtures [7,8]. 

2. P O L Y M E R  M I X T U R E S  

There is considerable interest in the study of interdiffusion in mixtures of polymer materi- 
als [9]. Some of the numerous industrial applications of this research include polymer coating 
and adhesion processes. We study the structure of equilibrium interfaces that are formed when 
two initially pure layers (¢ -- 1 and ¢ -- 0) of different polymers are brought into contact. 

The appropriate free energy of mixing for this problem is given by Flory-Huggins theory [7,8] 
as 

~A 1 -- ¢ In (1 -- ¢) + X¢(1 - ¢), (5) f(¢) = In ¢ + 

where NA and NB are the lengths of the monomer chains in polymers A and B. The parameter X 
is called the Flory interaction parameter and gives a measure of the attractive or repulsive 
interaction between the two polymers. A typical form for the mutual mobility [10] in polymer 
blends is 

A(¢) = A0¢(1 - ¢), (6) 

where A0 > 0 is a constant. These functional forms are also mentioned in [5]. De Gennes notes 
that the gradient energy contribution for polymer mixtures should be weighted by 

2a 2 
~(¢) = 36¢(1 - ¢)'  (7) 

where a is a characteristic monomer length scale. The energy functional (2) with constitutive 
relations (5) and (7) is called the Flory-Huggins-de Gennes (FHdG) model in polymer physics. 

We now study equilibrium solutions of this model under some simplifying conditions. For spa- 
tially homogeneous polymer layers of finite or semi-infinite thickness, we will seek one-dimensional 
diffusive interface profiles in the direction normal to the layers. In general, equilibrium is reached 
in equation (1) when the flux is a spatially uniform constant J = J0. One class of problems of 
physical interest is the case of no flux boundary conditions, J0 = 0. Zero flux may be achieved by 
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requiring that  the chemical potential take a spatially uniform constant value, # -- ju0. Specifically, 
#0 = 0 describes symmetric mixtures with NA = NB. For systems that  form localized interfaces, 
the value of #0 is selected by a tangent line construction [5] (see Figure 1) or an equivalent equal 
area rule [4]; this choice of lz0 has a particular influence on the structure of the phase plane. In 
the following sections, we consider the solutions of p(¢) = p0 in the phase plane. Later,  we will 
return to make use of the degenerate mobility (6) to construct weak "isolated impurity" solutions 
in conjunction with our phase plane results. 

um 

I I I 

0 ¢0 Cm ¢1 1 

Figure 1. The t~gent - l ine  construction for the chemical potential. 

3. E Q U I L I B R I U M  S O L U T I O N S  

To simplify the parameter  dependence of the FHdG model, we introduce the following changes 
of variables: 

1 N s  ~o v ~  
e = N = NB, r = ~0 = n ,  ~ = x, (8) 

xN' NA ' X 

~(¢) = k t(¢) ] ' z(¢) = 6 v ~ -  ¢), (9) 

? ( ¢ )  = 1 - ~0 - 2¢ + e ( r l n ¢  - In (1 - ¢) + r - 1), (10) 

where for symmetric mixtures the polymer length ratio is r = 1. Note that  we have incorporated 
the chemical potential ~0 into ] ' (¢ ) .  Consequently, equation (3), in one dimension, can be writ ten 
as 

1 
l(¢) d~ ~(¢) 

This second-order nonlinear differential equation can be expressed as the autonomous phase plane 
system 

de = / ( ¢ ) ¢ ,  - -  = / ( ¢ ) ? ( ¢ ) .  (12) 
d~ d~ 

Using this form, it is clear tha t  the integral curves for the system are given by the Hamiltonian 

= 2 ¢2 - ](¢) ,  (13) H 

where 
] (¢ )  = ¢(1 - ~0 - ¢) + e(r¢ In ¢ + (1 - ¢) In (1 - ¢)) ,  (14) 
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and ¢2 = IV¢fl(¢)l 2 corresponds to the gradient energy contribution in (2). Equation (13) shows 
that the phase plane is symmetric with respect to the line ¢ = 0 (only the upper half is shown in 
Figure 2); monotone decreasing solutions ¢(~) in the lower half of the phase plane have the same 
form as the corresponding increasing solutions, since (11) is invariant under reflections ~ --, -~ .  

, 

0 

i~\l,YlI:" \\ \ I " 1 1 " "  -- - -~ - -  ---- -- "~ ""~"".-- I l l l  l//llj 

~l~,\ .-"" .- I ~ . . . . . . .  - - .  " - ~  separatrix / / / ~  

'~,i\,, .- / .-'" "'-. \ ". , '/I~' I1'i~'1 \ \ ~ / /  / T \ ",,. . /  I I I / ," "', \ -- ll~i ',,,. / .," .._-_. -, \ / ,,~ 
'.~ \ / / ,'" "\ ',. \ I T,~i e-l- / / ~ -  \ \ I \ /  / / , , "  ,, ',, ", 
I ~i "Y ~ ; I' , ! ' ] ' V i i l  

¢0 ¢~ Cz 
¢ 

Figure 2. Upper half of the ~-¢ phase plane. 

Setting the right-hand sides of (12) equal to zero yields the critical points of the system. Since 
] (¢)  plays the role of the potential function in this problem, for ¢ = 0 the extrema of ] (¢)  are 
critical points; the minima, ¢0 and ¢1, are hyperbolic saddle points and the maximum, era, is a 
center point. From the tangent line construction described earlier (see Figure 1), it is clear that 
the chemical potential is determined by r and e, #0 = #0 (r, e). This definition of #0 guarantees 
that ¢0 and ¢1 occur at the same value of the Hamiltonian and consequently that a separatrix, 
representing an interface connecting them, exists. For other applications, such as nucleation, 
other values of/20 yield perturbed forms of this phase plane with some qualitative differences in 
the classes of solutions. The nonconvex structure of ] that yields phase separation and distinct 
critical points exists for the range of parameters 

•f• 1 
0 < r < l + 2 - 2 - e  ' 0 < e < ~ .  (15) 

While ¢0, ¢1, and Cm depend on r and e, within this parameter range, the qualitative structure of 
the phase plane does not change. The separatrix divides the plane into four classes of solutions: 

(I) periodic oscillations around era, 
(IT) homoclinlc-type isolated impurity pockets for 0 < ¢ < ¢o, 

(III) similar impurity solutions for ¢1 _< ¢ <_ 1, and 
(IV) heteroclinic-type interface solutions connecting the pure states ¢ = 0 and ¢ = 1. 

It should be noted that the / (¢)  factors in (12) suggest that the lines ¢ = 0 and ¢ = 1 (for 
all ¢) are also continuous families of critical points; this result is due to the degenerate structure 
of (12). Trajectories in classes II, III, and IV start and end at ¢ = 0 or ¢ = 1; admissible solutions 
cannot extend outside of this range. Unlike ¢0, ¢1, and era, the uniform constants ¢ = 0 and 
¢ = 1 are not solutions of equation (11); the logarithmic singularities of ](¢)  at 0 and 1 must be 
balanced by nonzero gradient contributions. Moreover, unlike linear critical points, trajectories 
reach ¢ = 0 and ¢ = 1 in finite rather than infinite distance. From the first equation in (12), it 
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is clear tha t  the leading order behavior of a t rajectory starting at point ¢ = 0, ¢ = ~b0 > 0 is 

¢ ~ 9¢~(~ - ~0) 2, as ~ --* x0, (16) 

where x0 is some finite touchdown position; the behavior for ¢ --~ 1 is analogous. Following a brief 
review of the properties of the separatrix, we will explore the implications of (16) for boundary 
value problems on finite domains and compact support weak solutions. 

4 .  I N T E R F A C E  A N D  I M P U R I T Y  S O L U T I O N S  

Many studies [9,10] of interface solutions of the Cahn-Hilliard equation focus on the separatrix 
of (12) in the limit tha t  e --* 0. Physically, this limit corresponds to the s tudy of very long 
polymer molecules, N --. oo. As e ~ 0, the critical points approach the pure states, 

¢0 ~" e - ¢ - l ( 1 - f ~ ° + e ( r - 1 ) ) / r  --~ O, ¢1 ~ 1 -- e -¢-l(l+5°-e(r-1)) --* 1, (i7) 

and the center point approaches the symmetric solution, independent of r, 

1 
Cm "~ 5 (1 - /20 + e ( r  - 1)(1 - In2)) --* 1, /~0 --* 0. (18) 

In the phase plane, regions II and III vanish for e = 0 with the separatrix, 

e6v~  
¢8(~) = 1 + e 6 v ~ '  (19) 

forming the interface solution from ¢ = 0 to ¢ = 1 on the fully infinite domain, - c ~  < ~ < oc. 
We will now consider the broader classes of solutions that  are possible for problems with finite 
e > 0 and finite domains with no-flux boundary conditions. 

We examine solutions that  connect to one or both of the pure states ¢ = 0 and ¢ = 1. The 
interface solutions in region IV are heteroclinic connectors while the localized impuri ty solutions 
in regions II and III are of homoclinic type. Both classes of solutions have the same local '%ouch- 
down" behavior tha t  balance singularities in the gradient and potential terms in (11) as they 
approach the pure states, 

(1  ) 
¢ ~ 9~b2(~ - ~0) 2 1 + ~er(~ - ~0) 2 In le - ~01 

¢ ~ 1 - 2 1 +  -  1) 1n1  - 11 

as  ¢ 0, (20)  

as x --* x l ,  ¢ --~ 1; (21) 

these solutions, derived from (11) to leading order, can be seen to be extensions of (16). The 
global s tructure of these solutions depends on the value of ¢0 (or ~bi) relative to the value for the 
separatrix Cs; ¢0 < Cs are region II solutions, !b0 > ¢8 are region IV solutions. 

Every solution in region IV represents an interface from ¢ = 0 to ¢ = 1. Each trajectory, 
however, has a different width L corresponding to its region of support between the touchdown 
points, Xo < x < x l ,  

L -- d~ = , (22) 

o 6 1 2 ¢  (1 _ ¢ ) (H  _ ] (¢ )  ) 

where from (13), H = ¢o~/2. Solving equation (22) for ~b0 yields the appropriate interface solution 
for a finite domain of length L. This relation shows that  decreasing the gradient ¢o increases 
the domain size L. This point can also be argued from (2) by minimizing the gradient energy 
contribution for a fixed domain-size. Solutions with higher gradients may be relevant for some 
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Figure 3. The eeparatrix and tinite-domain interface solutions with L = Ll, L2. 
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Figure 4. Type II and III impurity solutions. 

problems, but they are likely to be unstable since they are energetically unfavorable. As $0 

decreases to v, L becomes very large as the interface approaches the separatrix (see Figure 3). 

The solutions develop long plateaus at 40 and +i like the separatrix, and have finite tails given 

by (20),(21) at the edges of the domain that connect them to the pure states (see Figure 3). 

The limit L + 00 ($0 \ $J~) appears to be a singular problem, since for e > 0 the separatrix 

connects 40 and ~$1, not 0 and 1. 
We conclude with a brief discussion motivating the existence of isolated impurity solutions (see 

Figure 4). These homoclinic type solutions in regions II and III have a finite region of support, 

of width L, and a finite msss, given by (for a region II solution), 

(23) 

where again H = $:/2 and the maximum value q5+ < q5e satisfies H = j(qS.). These solutions 

CMI exist aa isolated impurities in otherwise pure layers of polymers for systems with degenerate 
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mobil i ty  funct ions like (6). As a specific example, let us consider a region II  impur i ty  solution in 

an infinite layer of  polymer  B (¢ = 0). Over  the region of  suppor t  of  the  impurity,  the  chemical 

potent ia l  of  the  polymer  mixture  will be ~ = IS0, a finite constant .  Outs ide of  this region, there  

is no mixture  and ¢ is a uniform constant ,  so the  chemical potent ial  reduces to  equa t ion  (10), 

/5 = ]~(¢).  To obta in  the  pure s ta te  ¢ = 0, let ¢ = ~ yielding the  potent ial  ]5 ~ r e l n ~  in the  
limit t h a t  ~ -+ 0. Consequently,  the chemical potential  is a piecewise constant  function,  and its 

gradient  is the  dis t r ibut ion 

V ~  ~ ( r e l n 3  - #0) (5(x - x0 - L) - 5(~ - ~0)), as ~ ~ 0, (24) 

where 5(x) is the  Dirac del ta  function. To demons t ra te  t ha t  this impur i ty  solution is a no- 

flux equil ibrium state,  we show tha t  J ~ 0 everywhere. This claim crucially depends  on the  

degenera te  form of the  mobil i ty (6), A(¢) --* 0 as ¢ --, 0, to  regularize (24). As ¢ = ~ -~ 0, the  
flux is 

J = - A ( ¢ ) V ~  ~ O(• In e)  ~ 0, (25) 

and converges to  zero pointwise everywhere as/~ --+ 0. This a rgument  is not  a r igorous proof  of  

existence, bu t  it is s t rongly suggestive and consistent with weak convergence to  compac t  suppor t  

solutions in o ther  degenerate  diffusion equat ions like the  porous medium equat ion [11]. 
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