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String Adjunct Grammars: II. Equational Representation, 
Null Symbols, and Linguistic Relevance* 

A. K. JOSHI, t S. R. KOSARAJU,* AND H. M. YAMADA ~ 

The Moore School of Electrical Engineering, University of Pennsylvania, 
Philadelphia, Pennsylvania 19104 

In this paper, we continue the study of String Adjunct Grammars (AG) 
introduced in Joshi et al. (1972). In particular, equational representations of 
LAG's,  LAG's  with null symbols, and some special cases of LAG's  are studied. 
Linguistic relevance of these grammars is also discussed in some detail. 

1. INTRODUCTION 

String Adjunct Grammars (AG) were introduced in Joshi et al. (1972). We 
continue the study of these grammars in this paper. In Section 2 we will 
study an equational representation of the local adjunct grammars (LAG). 
In Section 3 we will discuss a generalization of AG's by allowing certain very 
restricted kinds of nonterminals in the sense of Phrase Structure Grammars 
(PSG). A few additional points of comparison with PSG's are stated in 
Section 4. Several special cases of AG's  motivated by linguistic considerations 
are discussed in Section 5. Finally, in Section 6 we will discuss in some detail 
the linguistic relevance of AG's  and other related grammars. 

2. EQUATIONAL REPRESENTATION OF LAG 

2.1. Graph of LAG 

Let G = (Zc, J) be an LAG. We shall define the graph F(G) of G as 
follows. ZI~ is the set of all basic host strings, Za is the set of all adjunct 
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strings, and Z = 27, L) 27h U 27,. Then  F(G)  ~ (Z, J )  is the labeled directed 
graph such that 27 is the node set, and J is the set of labeled directed branches. 
Each (a i ,  a j ,  ~ )  E J has arrow from a~ to a i with ~:~ as its label. Finally, the 
nodes of a i ~ ~'~ are double circled. 

EXAMPLE 2.1.1. Let  G be defined by Ze = {ab, abc), and J = {ul = 
(ab, ae, rl), .~  = (ab, a, r~), .~ = (ac, be, ll), - ,  = (bc, ae, ~ ) ,  "5 = (be, a, l~), 
u 6 = (a, bbcc, rl) , u 7 ~ (a, ac, rl) , us = (ca, ac, ll) , u9 -~ (bc, bc, rl) }. Then  
I"(G) = (Z, J )  is given by Z ~ {a, ab, abc, ae, bbce, bc, ca} and J as shown 
in Fig. 1, where u's in branch designations are for identification purposes. 

Denote adjunction rule (ah, , a,~, sei) E J by u i .  Define a relation " > "  on J 
by ui > u~ <:> ah~ : a a j  • 

( ) b b c c  

U6: r I 

bc ' uT:r l  " ~ b  
u9:r I 

/ 

FIG. 1. 

abc 

© 

U8:-~ I 

~co 
Graph F(G) = (Z, J) of grammar in Example 2.1.1. 

EXAMPLE 2.1.2. The  relation " > "  on J in the above example is as shown 
in Fig. 2, where a double circle indicates that the host string is also a center 
string. 

A cycle of J, if any, is defined by a sequence u i l u l ' " u i ,  ~ J*,  s ~ l ,  
such that (a) if s = 1, uil > uil , otherwise (b) Uij ~ Uij+l , 1 <~ j < s, and 
ui~ > u i l .  We call s the length of cycle. Note that if u 1 "" us is a cycle, then 
u 1 ... u~u 1 ".. u s is also a cycle. I f  the host strings of adjunction rules in a cycle 
are all distinct, then we call the cycle simple, otherwise complex. I f  J does not 
contain any cycles, the J and the L A G  is said to be cyclefree, otherwise 
cycled. 
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C 

U 5 U6 U 2 

U 4 Ul U8 
FIG. 2. Relation ">"  on J. 

EXAMPLE 2.1.3. In  the above example, u, = (bc, bc, rl) is a simple cycle 
of length 1, usuau 7 is a simple cycle of length 3, and usuau4u,UaU7 is a complex 
cycle of length 6. Since J contains cycles, G is cycled. 

Let  relation ">~*" on J be the reflexive and transitive closure of > .  Then  
J is cyclefree if and only if ~>* is also antisymmetric and there is no rule 
ui ~ J such that u~ > ui • 

Define a relation " R "  on J by u i R u j < > u i  ~ *  us&uj ~ *  u~. Then  R 
is an equivalence relation of strong connectedness. Denote by [ui] the 
equivalence class containing ui.  We note that (1) a cycle is contained in an 
equivalence class; (2) an equivalence class [ui] such that #[ui] = 1 contains 
a cycle if and only if ate, = %~ in ui; (3) given an equivalence class [ui], 
#[u~] > 1 if and only if it contains a simple cycle such that its length s 
satisfies 1 < s ~< #[ui];  and (4) if an equivalence class contains a cycle, then 
there exists a cycle which contains all elements of the equivalence class. 

A relation " > "  is defined on the set of equivalence classes of J by 
[ui] > [us] ~> (3ui'~ [ui])(~u/~ [us])(ui' > us' ). This  relation is extended to 
">~*" which is the reflexive and transitive closure of > .  I t  is easily seen that 
the relation >~* over the equivalence classes of J is a partial ordering. 

In  Example 2.1.1 we have a partial ordering among the equivalence classes 
of jr as in Fig. 3, where ( ) indicates that the host string is in Z' c . Note that 
u s is ineffective and by eliminating it the grammar  becomes effective. 

We defined the relation > on jr. For later use, we define a similar relation 
> o  on Z = Z'~ t3 2~ u Z'~ by ai >~ ~ ~ (~u ~ jr)(u = (~s, ~i ,  ~:)). I t  is clear 
then that F(G) ~- (2;, jr) is the graph of the relation >~  on Z' except that 
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parallel branches of the same directivity be considered as one branch. Thus  
the relation ~ o  on 27 of the previous example can be represented by the same 
graph as in Fig. 1, if we ignore the branch labels. Cycles, relations ~ *  and R,  
can similarly be defined for Z' as in the case for J, and similar propositions 
hold here as before. 

{u6} 
1 

o,, uT, o9} 

{(u,)} 
FIGUI~E 3 

2.2. Equational Representation o f  L A G  

Let x and y denote, in some well-defined manner, sets of finite strings on A. 
We define, in the usual manner, three operations on x and y;  (1) concatenation 
" ' " ,  (2) disjunction "v",  and (3) Kleene closure " . " .  

Given an L A G  (Z~, J), obtain the graph ; ' (G)  = (27, J) of G. Associate a 
grammar G ( a i )  = ({at}, J)  to each node ai ,  and let ~(qi) denote the language 
generated by ({ai}, J)- I t  is immediate that G(ai) generates the set )t(ai) of 
strings which are either (1) generated by J of G using last in their derivation 
a rule u 6 J such that u = (ai ,  a j ,  ~ )  for some aj and ~k, if a i ~ I h ,  or (2) 
a i ~ l h and G(tyi) generates a unit set {ai}, either tr i ~ 27~ - -  l h  or a i ~ l ~  - -  X~,  
or in both. In  general, G(cri) is no longer effective even if G is. Then  the 
language L(G)  of G is denoted by 

L(G)  = V ~(~,)- 

Given a node a i ,  a node a j  is said to be a predecessor of ai if ak i >~ a i . 
Suppose a node ~i of F(G) ,  labeled with )t(al) has predecessors el i, a2i,..., a~ i, 
m >/0 ,  respectively, labeled with )t(aa0, h(a~ i) ..... h(cr~), and the branches 
incident upon ai from each ar i, 1 ~< r ~ m, are labeled with ~1 ,  ~:,z ,.-., ~:,~ • 
Let X = {~:1~ ,.--, ~a%, ~1 ,..., ~2% ,..., ~ 1  ,..., ~%,} be the set of all those 
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labels. Order  X such that  ~:s < ~:, either if s < t, or if s = t, ~s =- l s ,  and 
~t = re • There  may be a set of branch designations which are identical, and 
if  such is the case, they should be represented as one but  separately accounted 
for. Le t  the ordering of X be (~1, ~2 ,.-., ~:n), where only distinct elements 

are shown, i.e., n ~< nl @ n2 + ' " +  n ~ .  Take  (~i and factor it  into 

(~i = (~il(Xi 2 " ' "  O'in+ 1 such that  for all k, 1 ~ h ~ n, if  ~:~ = l% then 
Ig(ai aq "" ai~) = ne - -  1, but  if se~ = r% then lg(ai crq "" ai~) = ne ,  where 
lg denotes length. Note that  some of ai~ may be null, i.e., ai~ -~ e. T h e  
defining equation of A(ai) associated with node (r i is now 

where 

h ( ( Y i )  = (~ i l f f i l (~ i2 f f i 2  " ' "  G i n ~ i n ( Y i n + l  , 

~i~ = ( A ( ~ i ) ) , ,  

if there is only one branch which has ~ as its label, 1 ~ k ~ n, and 

n ~  = [, ' ,( ,4) ,' x ( 'G )  v ... v ,~(~;~)]*, 

if  there are r incident  branches with the same ~k and i i A(akl),... , h(%~) are the 
labels of nodes from which branches with ~:7~ are incident upon node a i .  
Now if ai ~ (Z'~ ~3 Z'~) - -  Xh, then A(ai) = a i .  In general, the r ight-hand 
side of the defining equation of h(ai), ai ~ Xl~, may involve any of A(ae) such 
that  ak ~ Z a ,  but  not others. We shall denote the defining equation of h(~i) 

for ai E Zt~ by 

A(~,) = f i(~(%), ,X~),...,  ;~(,,,), ~), 

where s = # Z ~ ,  and asr e Z a ,  1 ~< r ~< s. In  summary,  we have 

THEOREM 2.2.1. The language L ( G )  o f  G is defined by the fo l lowing set o f  
simultaneous equations: 

,~(~) = A(,~(o~l), , ~ ( o G . . . ,  ,~( ,~) ,  ~i), ~ ~ & ,  ~ ,  ~ & ,  s = # & ,  

r(e) = V ;~('~). 

EXAMPLE 2.2.1. Let  G = (Z'~, J),  where X~ = {ab, abc), and J = {u 1 = 
(ab, ac, rl) , u 2 = (ab, a, rl) , u a - (ac, bc, ll) , u 4 = (ac, bc, r2) , u 5 = (bc, a, 12) , 

u 6 = (a, bbcc, rl) , u7 = (a, ac, rl), u s ~ (ca, ac, 11) , u9 = (bc, bc, rl)}. Then  we 
can write (1) h(a) = a(A(bbcc) v A(ac))*; (2) h(ab) = a(h(a) v h(ac))*b; (3) 
h(ac) = (A(bc))*ac(h(bc))*; (4) A(bc) = b(h(bc))*(h(a))*c; (5) h(ca) = (h(ac)) *ca; 
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(6) h(abc) ---- abc; (7) h(bbcc) = bbcc; and (8)L(G) = h(ab) v h(abc). Since h(ca) 
does not contribute to L(G) at all, Eqs. (1)-(8) except (5) will define L(G). 

From the construction, it follows that if a node ai of T'(G) has incoming 
branches with ~: ----- l~ such that n > 1, and there are no incoming branches 
with ~ = rn-1, then all such In can be replaced by r~_ 1 without changing the 
language. Similarly, if ai has incoming branches with ~: = r~ such that 
n < lg(a,), and there are no incoming branches with ~ = l~+1, then all 
such rn can be replaced b y  ln+l without changing the laguage. Such changes 
of branch labels can be incorporated in the rules of J of G. I f  all such possible 
changes are made, we call the grammar right normalized for the former, 
and left normalized for the latter. 

EXAMPLE 2.2.2. In  the previous example, the grammar is already right 
normalized. Note that u 5 cannot be changed to (be, a, rl) because of the 
conflict with u 9 . The  left normalization of G changes u 1 to u 1' = (ab, ae, 12) , 
u 2 to u 2' -~ (ab, a, 12). % cannot be changed to (be, be, 12) because of the 
conflict with % .  

2.3. Set of Simultaneous Equations Defining L A G  

We now show that a certain set of simultaneous equations defines an 
LAG. Let A be a finite alphabet and A* be the free monoid on .4. Let  
W = {x 1 , x 2 ,..., x~) be a finite set of variables to denote languages defined 
on A, and P ( W )  be the power set of W. We shall use three operators on the 
elements of A t3 W, namely, concatenation, disjunction, and Kleene closure. 
For each 

let 

W i --~ (Xi l  , Xi2 , . . . ,  Xini}  ~ P ( W ) ,  

V W i ~ X i l  V Xi2 V "'" V Xin i • 

For o-ij E A * ,  define a set of m simultaneous equations by 

xi = ( v  w . ) *  ~ .  (v  wi~)* ~¢2 "'" ~in, ( v  w,(n,+l))*, 

1 ~ i ~ m ,  such that for l ~ i , j ~ m ,  i f i v  ~ j , t h e n  

qi l (Yi2  " "  (Yin i 5 ~ O'jlffJ2 . . .  O-in j , 

and for any 1 ~ i ~ m and any 1 ~ j ~ n i - -  2 ,  ¢rii and ai(~.+l ) are not 
simultaneously equal to e [i.e., not more than two (V w)* are directly 
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concatenated], and a,1 and f f in  i a r e  not E, i.e., there is no more than one 
(V w)* at each end. Note that, since 2~ ~ P ( W )  and V N = 25 * = E, (V wi~)* 

may be e for r = 1 or r = ni -~- 1. Without  loss of generality we assume that  
(V wi, ) ~ E for 1 ~ r ~ hi; otherwise we can simply rename ¢i(r_l)(rir as 

p 
el(r-l) • 

THEOREM 2.3.1. The set o f  simultaneous equations 

X i - - -  ( V  Wil)  $ (Yil ( V  wi2)*  (Yi2 " ' "  (lini ( V  ffdi(ni+l))* , 1 ~ i ~ m,  

defined above, together with L = V wk for  some k, determines an LAG.  

Proof. For  each i, 1 ~< i ~< m, let a(xi) = q i  = qil(Yi2 " ' "  (Yin i , and let a s 
be the node associated with xi • Let  Z' = {el} be the node set of a graph to be 
constructed, and let X c C Z' be the set of those nodes which are associated with 
xi  ~ wk of L = V wk, therefore, the nodes in the set are double circled. Fo r  

each x i ,  examine each V wit ° in the equation for xi and, if x~ ~ win,  then draw 
a branch from node a(xj) to node a(xi), and label it with ~nj, which is found 
as follows. First ,  i f j  = 1, i.e., V wi~ = V w a ,  then ~:j = / 1 .  I f j  va 1, then 

examine the equation for xi and see ai(~- 1) = e. (Note ~il v a e and ain ~ =~ e by 
definition.) I f  it  is, then let ~:~ = l ~ ,  where nj = lg(cracri~ "'" ai(j_l) ) -t- 1. 

Otherwise let ~:j = r~j ,  where nj = lg(aiVri2 "'" aiO_l) ). From the construc- 
tion, it  is obvious that  the resulting graph is unique for a given set of simul- 
taneous equations, and can be interpreted as the graph of an L A G .  
Fur thermore ,  from the graph, if we construct the set of simultaneous equations 
for the grammar  of the graph, we recover the set of simultaneous equations we 
started out from, except the renaming of variables. | 

In  the above construction, 27 a is the set of node labels which correspond to 
those variables which appear on the r ight-hand side of the equations; Z'a is 
the set of node labels which correspond to those variables whose defining 
equation has some variables appearing also on the r ight-hand side of the 
equation; and 27 c is the set of  node labels which correspond to those variables 
which are in w~ such that  L = V wk • 

EXAMPLE 2.3.1. Let  _d = {a, b, c, d}, and let W = {x , y ,  z, u, v, w}. Let  
x ab(x v z )*  u ' a ;  y = ca(u v w)* bdu*; z = z*cdcby*(g v u)* ab; u = u 'b;  

v = ax*by*z*eu*v*dw*;  w = ( x v  w)* adau*; and L = y  v v. Then  
a(x) = aba; a ( y )  = cabd; ~(z) = cdcbab; a(u) = b; a(v) = abcd; and 
a(w) = ada, which are all distinct, and form X h . 27 c = {cabd, abcd}. Since 
all elements of W appear  on the right side of some equations for x through w, 
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27a ~- 27. Furthermore, since each of equations for x through w has some 
variable appearing on the right side, 27n = 27. We will not write explicitly the 
set J of right normalized adjunction rules (20 rules in this case). They  can be 
read from the graph P(G) in Fig. 4. 

I" 2 

FIG. 4. Graph F(G) of Example 2.3.1. 

The  restrictions assumed on the form of the set of simultaneous equations 
are sufficient conditions for the set to define an LAG. However, they are not 
necessary conditions. I t  can be shown that the condition that all and ein, 
[where ni = lg(cri), and ai = u~lcri2 "'" ai~] are not null is not a necessary 
condition. Also it is easy to see that, if the set of L A L ' s  is closed under 
homomorphism (or even under union) which we do not know, the restriction 
crilei2 ... cri~ ~ =/= cr~1~2 "" crj,~ is not required, and if the set is closed even 
under e homomorphism, which we also do not know, then no restrictions are 
required at all. (See Section 3.2 and Fig. 5 for some closure properties.) 

2.4. Regularity of  Cyclefree L A G  

Let G = (27~, J) be an effective and cyclefree LAG, and let I ' (G) -~ (Z, J)  
be its graph. We shall show by construction that the language L(G) of G is 
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regular. Since G is cyclefree, the equivalence classes [ui] (defined previously 
by R such that ui R uj . ~  ui >~* uj & u~ >~* ui) are all of unit set. Hence, if 
G is cyclefree, then ~>* on J is a partial ordering. 

EXAMPLE 2.4.1. Let  G : (Ze, J)  be determined by Ec = {ab, abc} and 
y : {u 1 = (ab, ac, rl) , u 2 = (ab, a, rl) , u a = (ac, bc,/1), ua = (ac, bc, r~), 
u 5 ~ (bc, a, l~), u 6 = (a, bbcc, rl) }. 

Clearly G is effective and cyclefree, a n d / ' ( G )  is a partial ordering on jr. 
Its minimal elements are {ab, abc}, and its maximal elements are {bbcc, abc}. 
View T'(G) as the relation graph of ~>~* on Z'. Then  ai ~ Xh u Z' a is a minimal 
element under/>~* if and only if ~: is the host string of some minimal element 
uj ~ ] under >~*; and a t ~ Zt, u Z a is a maximal element under />¢* if and 
only if at is the adjunct string of some maximal element uj ~ ] under ) * .  
It  is possible to define inductively the regular expression O(cri) associated with 
a note cr i of  I ' (G)  in a manner similar to that of Section 2.2. 

(1) I f  ~i is a maximal node, then p ( a i )  = a i . 

(2) For a node ai ,  assume that each node a i in {a~il(~ J >,~ai} , 
i.e., a predecessor, has its associated regular expression p(a~ i) defined. Order 
all branch designations X = {~e [ (al ,  a~ i, ~k)~.[}  such that so, ~ ~:t if 
either s % t, or s = t and {~ = l~ and ~:t = r~. There may be a set of branch 
designations which are identical, and if such is the case, they should be 
represented as one but be separately accounted for. Let  the ordering of X be 
(s~l, ~:2 .... , ~ ) ,  where only distinct elements are shown. Take a i and factor it 
into a i = f f i l a i ~  " "  o-in+l such that for all k, 1 ~< k ~< n, if ~:k = 1% then 
lg(¢i ~i~ ..- ai~) = nk - -  1, but if ~e = r% then lg(¢i ¢q ... ai~) = n~, where 
lg denotes the length. Note that some of aik may be null, i.e., %: = e. The  
associated regular expression p(ai) of at is now defined by 

p ( ( T i )  = (~ilff iz(Ti2ffi2 "'" f f i  (Tin+z , 

where/~ik = ( p ( q k i ) )  $ if there is only one branch which has ~:k as its label, 
and txi~ = [p(a~.l) v "" v.p(a~)]* if there are r incident branches with the 
same ~:k and p(a~l),..., p(a~) are the associated regular expressions of the nodes 
from which branches with ~ are incident upon node ~i. 

Note that if ~i is a maximal node, then there are no predecessors to a i ,  
and case (1) above is a special case of case (2). 

(3) Since I"(G) is partially ordered, there always exists a set of maximal 
nodes, and (1) above can be applied. Furthermore, it is easy to see that, unless 
all nodes are labeled wi th  associated regular expressions, there is at least 
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one node to which (2) above can be applied. Hence the procedure will associate 
regular expressions to all nodes of /~(G),  and terminate. Given an effective 
(but not necessarily cyclefree) L A G  G = (Zc,  J )  and ~i e Z ~- Z~ U Zh LJ Z~, 
define G(~,) = ({cri}, J). 

LEMMA 2.4.1. Regular expression p(cri) associated with node cr i o f  cyclefree 
IP(G) denotes the language generated by G(ai). 

Proof. I f  a i is a maximal element of_F'(G), be it in 27 a - -  Z~,  or in Z~ - -  Zh,  
the assertion is obviously true. 

Assume the assertion is true for all predecessors at i, a21,..., an i. Since F(G) 
is partially ordered, p(aiO , p(a2*),..., p(an i) are the only possible adjunctions to 
a , .  I f  the adjunction point ~ has a unique rule (ai, ~j ,  ~) to apply, then the 
adjunction string (p(a~O)* is inserted at ~. If, on the other hand, there is 
more than one rule which applies at ~, then (p(a~l) v P(a~2) v "" v p(a~))* 
is adjoined, because this allows the adjunction in any order. I 

Given an effective (but not necessarily cyclefree) L A G  G = (Zc, J) and 
a i e Z = Ze U Z~ t j  Za ' define G(ai) = ({at}, J )  as in Section 2.2. Then  we 
have 

THEOREM 2.4.1. A regular expression p(ai) associated with node ai of 
cyclefree F( G) denotes the language generated by G(a~). The language of effective 
and cyclefree L A G  (Z~ , J) is a regular language which is denoted by the regular 
expression 

t,(Zo, J) -- V P(')" 

EXAMPLE 2.4.2. In  Example 2.4.1, p(Z~, J) = p(abc) v p(ab), which can 
be shown to be equal to 

abc v a((b(a(bbcc)*)* c)* ac(b(a(bbcc)*)* c)* v a(bbcc)*)* b. 

3. STRING ADJUNCT GRAMMARS WITH NULL SYMBOLS 

3.1. String Adjunct Grammars with Null Symbols (AGN) 

We will now introduce a somewhat modified form of AG ' s  ( L A G ' s  or 
DAG's )  called string adjuncts grammars with null symbols (AGN).  T h e  
modification consists of allowing in the alphabet a very special type of 
"nonterminal"  symbols called null symbols. The  main idea is to use the null 
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symbols to tag the strings in 27. The  null symbols have no points of adjunction 
associated with them and they do not receive any adjuncts. The  null symbols 
are ultimately erased (i.e, rewritten as a null string e). [For linguistic relevance 
see Section 6 and for some recent results concerning L A G N ' s  see Levy (1972) 
and Har t  (1972).] 

DEFINITION 3.1.1. An L A G N  (or D A G N )  G is a 7-tuple (A, N, X, X~, 
Z~, Xa, J), where A is a finite alphabet, N is a finite set (possibly empty) of 
null symbols, X is a finite set of basic strings, X c C Z is the set of basic center 
strings, 27h is the set of basic host strings and 27~, is the set of basic adjunct 
strings, 27 = X~ U Z~ u Xa and J is a finite set of adjunction rules. Further, 

(a) A n N =  ~; 

(b) I f  a E Z t h e n  ~ ( A  u N)(A • N)*;  

(c) There  is no rule in J which adjoints adjuncts to the left or right of a 
null symbol, i.e., null symbols have no points of adjunction. Thus  for a 
ai ~ Z the adjunction vectors are the same as those that can be defined for the 
same ai without the null symbols, i.e., as far as adjunctions are concerned we 
ignore the null symbols. 

We will use Greek letters for the null symbols, and unless otherwise necessary, 
we will write an L A G N  (or D A G N )  G as just the pair (Ze, J). Clearly, an 
L A G N  (or D A G N )  G is an L A G  (or DAG)  if N = ~ .  

3.2. String Adjunct Languages with Null Symbols (LALN) 

~', and ~(Zc) can be defined in exactly the same manner  as for L A L  (or 
DAL)  (Joshi et al., 1972). We now define the language corresponding to an 
L A G N  (or DAGN) .  

DEFINITION 3.2.1. Let  G ~ (Z , ,  J )  be an L A G N  (or DAGN).  Then  
the corresponding language L A L N  (or D A L N )  L(G) is 

L ( G )  = h(H(2(&))), 

where H is the homomorphism defined in Sections 2.2 and 3.2 of Joshi et al. 
(1972) and h is the homomorphism,  h(~i) = e, ~i e N, h(ai) ~ ai, ai e A, 
and h is extended to strings on N U A, i.e., h erases the null symbols. 

Remarks. 1. An L A L  is an L A L N  and a D A L  is a D A L N .  Thus,  clearly, 
the class of L A L ' s  is contained in the class of LALN' s ,  and the class of DAL ' s  
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is contained in the class of DALN's .  Recently, Levy (1972) has shown that 
the class of LAL's  is properly contained in the class of LALN's.  

2. Let G = (Zc, J)  be an LAGN (or DAGN) such that for every a i ,  
a~-e Z, (ai v a at), h(cri) @ h(aj). There is an LAG (or DAG) G' such that 
L(G) = L(G'). 

3. Let G = (Zc, J)  be an LAGN (or DAGN). G is a normal L A G N  
(DAGN) if for every ai e Z, either ai does not contain any null symbols or it 
contains exactly one null symbol and it is in the initial position of a i , i.e., at 
most one null symbol is used as a prefix. 

4. For every LAGN (or DAGN) G there is a normal LAGN (or 
DAGN) G' such that L(G) = L(G'). 

EXAMPLE 3.2.1. Le tL  = (a(ab)* b) +. Let G ~ (Zc, J)  where Ze = {c~ab}, 
and J = {u 1 = (~ab, aab, r2); u~ = (aab, flab, rl) }. Here A = {a, b}, N = {~, fi}, 
Z = {c~ab, fiab}, Z~ = {c~ab}, and Z a - ~  {~ab, fiab}. Then L ( G ) =  L. Note 
that in u 1 , r2 is the point of adjunction to the second symbol in aab, ignoring 
the null symbol a. Similarly, in u2, rl is the point of adjunction to the right 
of the first symbol in aab, again ignoring the null symbol ~. 

There is an equivalent LAG for this L [see Example 2.2.4 in (Joshi et al. 
(1972)] which is somewhat more complicated as compared to the LAGN 
above. This is because in an LAG (or DAG) we cannot use the same string to 
play two different "roles." 

EXAMPLE 3.2.2. Let L = a(pq)* bc v a(rs)* bc. Let a = (Z~, J), where 
Zc = {aabc, fiabc}, J = {u 1 = (aabc, pq, rl); uz--([3abc, rs, rl) }. Then 
L(G) = L. Here also there is an equivalent LAG for this L [see Example 5.1.1 
in (Joshi et al. (1972)]. 

All the results concerning LAL's  (or DAL's) can be easily extended to 
LALN's  (or DALN's).  We have, however, the following additional results. 

LEMMA 3.2.1. For every LAGN (or DAGN) G there is an equivalent 
LAGN (or DAGN) G' such that ~c', the set of basic center strings of G', and 
Za' , the set of basic adjunct strings of G', are disjoint. (We will call a grammar 
such as G' a center-adjunct disjoint grammar.) 

The following example will illustrate the main idea in the proof of 
Lemma 3.2.1. 

EXAMPLE 3.2.3. Let G ~ (Z~, J) be the LAGN in Example 3.2.1. 
G is not center-adjunct disjoint. Let G ' ~  (Zc', J ' )  be an L A G N  where 
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% '  = {yah}, and J '  {u 1 = (Tab, 8ab, r2) , u2 = (3ab, Fab, rl) , u a ~- (yab, 
tmb, rl)}. Here _/I' = {a, b} = A,  N '  = {7, ~, ~}, X '  - {Tab, 3ab, Fab}, 
& '  = {~,ab, 3ab}, and Z~' = {3ab, txab}. G' is center-adjunct disjoint 
and L(G') = L(G). 

THEOREM 3.2.l. The class of LALN's  (or DALN's) is closed under the 
operations u ,  ", and , .  (Closure properties of some subclasses of AL's are 
summarized in Fig. 5.) 

Proof. Since identical strings on the alphabet A playing different "roles" 
can be tagged by different null symbols, the interactions among rules can be 
avoided. Closure under u ,  and • can then be easily established. Using 
Lemma 3.2.1, closure u n d e r ,  can also be easily established. (e must be added 
to Z'e, if necessary.) | 

THEOREM 3.2.2. Every regular language (regular set) is an LAGN. 

LAL 

LALN 

DAL 

OALN 

Un ion  

u 

Yes 

Yes 

Fm. 

Set  
p roduc t  

o 

Yes 

Yes 

Kleene 
closure 

Yes 

Yes 

Inlersection Comp[ernentolion 

N 9 

No 

No No 

No No 

No No 

5. Closure propemes .  

3.3. Cyclefree L_dGN's and Regular Sets 

LEMMA 3.3.1. I f  G is a cyclefree LAGN thenL(G) is regular. 
(A trivial modification of the proof of Theorem 2.4.1 establishes this lemma.) 

Let G1 and G 2 be two cyclefree LAGN's .  It  is easy to see that cyclefree 
LAGN's ,  G and G can be constructed such that L(G) = L(G1) ~3 L(G2) and 
L(G) = L(G1) "L(G2). Now let G = (Z~, ] )  be a cyclefree LAGN and we 
can assume that G is a center-adjunct disjoint grammar without any loss of 
generality. Let G ' ~ - ( Z ' j ,  J '), where Z ' c ' =  Z c u {E}, and f ' =  f u f~,  
where J~ = { ( a i , c r j , r j ~ l  ) ) a i , a t ~ Z e , a i v  ae ,  a t @~}. Then L(G') -= 
(L(G))*. G' is not a cyclefree LAGN. However, it has a very special type of 
cycles. Every cycle in G'  consists of a sequence of rules such that each rule is 
right-concatenative [a rule (ai,  a j ,  ~ )  is right-concatenative if sek = r t~l ,  

643/21/3-5 
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where [ ai[  is the length of ai]; further, for every rule u i E J~ either u i is a 
cycle (of length one) or there is a uj E Je such that uiu ~ is a cycle (of length 
two). Note also that since G is center-adjunct disjoint, none of the strings 
in the rules in Jc appear as adjunct strings in the rules in J. Now, it is possible 
to construct a cyclefree L A G N  equivalent to a grammar  such as G'  above. 
Rather than proving this in detail, we will give an example to illustrate the 
main idea of the proof, which essentially consists of using the technique 
described in Example 5.1.1 in Joshi et al. (1972). 

EXAMPLE 3.3.1. Let  G be the L A G N  in Example 3.2.3. Zc = {yab}, 
J = {ul = (Tab, 8ab, r~), ue = (Sab, ixab, rl) , ua = (yab, ixab, q)}. G is 
center-adjunct disjoint and also cyclefree. Let  G ' =  (Z, ' ,  J ' ) .  where 
Zs'  = {7ab} vo {E} and y '  ~- J u Js , where J~ = {(7ab, yab, r=)}. Then  
L(G ' )  = (L(G))*.  Now a cyclefree L A G N  equivalent to G'  can be constructed 
by using the technique referred to above and introducing new null symbols if 
necessary. Let  G" = (Z~', J") be a L A G N ,  where 

and 

Z~' : -  Z~' • {,rabab} -~ {Tab, ~abab, c}, 

j "  = j tA {(~abab, yab, r4), (zrabab, izab, rl) , (zrabab, i~ab, ra) }. 

Here  A"  = {a, b}, N "  = {y, 3, iz, zr}, Z~ = {Tab, 8ab, ~rabab}, Z~ 
{3ab, tzab, yab}, and Z "  = {Tab, 3ab, zrabab, izab, E}. G" is cyelefree and it can 
be easily seen that L(G ' )  = L(G") .  

Hence, we have the following exact characterization of  regular sets in terms 
of  the class of  eyclefree L A  G N '  s. 

THEOREM 3.3.1. L C A *  is a regular set i f  and only i f  there is a cyclefree 
L A G N  G such that L (G)  = L.  

3.4. Bounded Semilinear Sets, D A G N ' s  and D A G ' s  

Linear and semilinear sets were considered by Parikh (1961). His results 
can be easily extended to DAL's ,  i.e., i fL is a D A L  then ¢(L), the commutative 
immage of L, is a semilinear set. We will now establish some results concerning 
bounded semilinear sets. 

DEFINITION 3.4.1. A linear set L(c; Pl ,  P2 ,..-, P~) is said to be a constant 
dominated linear set if and only if for every i and j, if t he j - t h  component  ofp~ 
is nonzero then the j - th  component  of c is nonzero. 



STRING ADJUNCT GRAMMARS. I I  249 

DEFINITION 3.4.2. A set L is said to be a constant dominated semilinear 

set if it is a finite union of constant dominated linear sets. 

LEMMA 3.4.1. For every semilinear set an equivalent constant dominated 

semiIinear set can be effectively found. 

Proof. I t  is sufficient to consider the reduction of a linear set to an 

equivalent constant dominated semilinear set. Let L = L(c; Pi , P2 ,..., P~)  be 
a linear set. Define 

Li l@. . im  : L(c  -~ i l p  1 + i2p 2 - /  "" 4:- z'~p~ ; i l p  1 , z2p 2 ,..., i,,~p,~), 

where each i s can take the values 0 or 1. Clearly, 

i : U i i l i~ . . . i  m I 
i l , i  2 ..... in=O,1 

THEOREM 3.4.1. For every bounded semilinear language L a D A G N  G 

such that L ( G )  = L,  and Z n ~ Z~ = ~ ,  i.e., the hosts and adjuncts are disjoint, 

can be effectively found. [L is bounded semilinear language i f  L is a bounded 

language (Ginsburg, 1966) and ¢(L) is a semilinear set. A semilinear set is 

bounded i f  it is the commutative image of  a bounded language.] 

Proof. I t  is sufficient to consider a constant dominated language L. Since 

L is bounded, L C wl* "-" w~* for some w 1 , w 2 .... , w ~ ,  w i ~ A*, i = 1, 2 , . ,  n. 
Now consider the constant dominated linear set 

L 1 = L ( ( q , c 2  .... ,c~); 

( P 1 1 ,  P12 , ' " ,  Pln) ,  ( P 2 1 ,  P22 , ' " ,  P2n) , '" ,  (P ro1 ,  Pro2 .... , Pmn)) 

and let L = ¢-I(L1). Let G = (Z'~, J) be a D A G N  such that 

~ c  cl ¢2 . . .  = {~w~ ~ w~) ,  

and 

] = {(~w~ 01% ~ - - .  w 5 (~w~11)(w~ , ~  ) ... ( w ~ ) ,  , 

rfwlirlwl]+lw2 ] . .. rlwl]+]w2l+..dw~l) ' (aWl, Clw2,c2 ... wne~' 

2021 5022 ( ~ 2 w l ) ( %  ) -.. ( w ~ ) ,  rj~llrl~lj+j~l ... rI~IE+L~,+.. J~#), 

c 1 c 2 @w 1 w 2 ... w c~ (R w~l~(w~,~2~ ... (w~,~q 

r iwlirlwg+lw21 ... r lwll+lwui+...+lw,~])}. 



250 JOSHI, KOSARAJU, AND YAMADA 

The  case when some ci's are 0 can be handled in an obvious way. The  hosts 
and adjuncts are obviously disjoint. I t  is easily seen that L(G) = L. Since 
D A L N ' s  are closed under finite union, the above construction can be 
extended to constant dominated semilinear sets. | 

EXAMPLE 3.4.2. Let  L 1 = L((1, 1, 1); (1, 1, 2), (0, 1, 1)), L C (ab)* a*, 
and L = $-1(L1). Let  G = (L'~, J) be a D A G N  such that Zo = {o~abab} and 
J = {(~abab, (fllab)(a)(b), r2rzr4) , (~abab, ([32ab)(a)(b), r2rar,) }. 

I t  is also possible to show that in Theorem 3.4.1 we can replace the D A G N  
by a DAG, i.e., by a grammar without the null symbols (we will omit the 
proof here). 

4. COMPARISON OF AG's  WITH PSG's  

In  the earlier sections we have seen several results connecting AG' s  with 
PSG's .  We will now state a few additional points of c0mparison3 

4.1. Terminal and Nonterminal Symbols 

In  an AG the alphabet A corresponds to the terminal alphabet V r of a PSG. 
In  an AG we do not have nonterminals in the sense of the nonterminal alphabet 
of a PSG. We have, however, auxiliary symbols used implicitly such as the 
~k's corresponding to the points of adjunctions. But these auxiliary symbols 
are used purely as position markers and do not have the same interpretation 
as the nonterminals in a PSG (i.e., the auxiliary symbols {:~'s do not correspond 
to phrase types). I f  we consider the marking symbol, ^, used in the recursive 
definition of 2) also as an auxiliary symbol, then one can possibly consider 
di (ai E A)  as a nonterminal which can be interpreted as a phrase type but with 
the added interpretation that a phrase type 3 i has a i as the "head" (or "center") 
of the phrase. A phrase type in a PSG does not necessarily have such an 
interpretation. Further the notion of the "head" of a phrase type cannot be 
naturally formulated in a PSG. 

In  an L A G N  (or D A G N )  the null symbols are, however, like the non- 
terminals in a PSG although highly restricted. The  null symbols are used to 

1 Recently, many subclasses of PSG's have been studied, e.g., Matthews (1964), 
Aho (1967), Rosenkrantz (1967), Greibach and Hopcroft (1968), etc. Some of these 
are motivated by linguistic considerations and others by structures in programming 
languages. There does not seem to be a simple relationship between AG's and these 
classes. 
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tag basic strings and therefore they are not used as position markers; in fact, 
they have no positional interpretation. The null symbols as nonterminals are 
highly restricted because they are never "rewritten" (in the sense of a PSG) 
into any other string except the null string. Recently, Levy (1972) has shown 
that the class of LALN's  properly contains the class of LAL's.  All the examples 
of LALN's  in this paper are such that equivalent LAG's  can be constructed 
for them. However, Levy's result shows that the null symbols, in general, 
cannot be eliminated. 

4.2. Mixed Styles 

LAGN's  (DAGN's)  can be considered as grammars of a mixed style as 
they have both adjunction rules and a very special type of "rewrite rule," i.e., 
these grammars have rules of different formal character (or styles). These are, 
of course, very simple and rather trivial examples of mixed grammars. More 
interesting classes of mixed grammars have been studied by Joshi (1969). In 
particular, consider a mixed grammar, G = (27c, jr, R), where 27c is the 
finite set of basic center strings; 27 and Z~ are strings in (A w {S})*, A is the 
alphabet as before and S is a single "nonterminal" in the sense of a PSG, jr 
is a finite set of adjunetion rules (local or distributed), and R is a finite set of 
"rewrite rules" of the form @i ,  %}, ei ~ 27, and ei contains at least one S. The 
meaning of a rule, @i,  aJ} is that from ai one can derive a string by replacing 
some occurrence of S in ei by ~j (hence these rules will be called "replacement 
rules" for convenience). A study of the properties of such grammars (and 
their generalizations) and their use in the construction of transformational 
grammars has been carried out by Joshi (1969, 1972) and Levy (1970) (see 
also Section 6). 

4.3. Basic Center Strings and the Initial Symbol 

I t  follows from Section 4.1 that in an AG we do not have a symbol corre- 
sponding to the initial symbol S in a PSG. The basic center strings can be 
considered somewhat analogous to the symbol S. But there is an important 
distinction. In generating a string, say w, in an AG we do not start from a 
certain center string but rather start from the "innermost" adjunct string 
(strings) and generate the string w from "inside out", and finally use the 
center string. Thus a generation in an AG can be considered as "inside out". 
The "inside out" generation turns out to be a decided advantage in con- 
structing transformational grammars based on these grammars (Joshi, 1969, 
1972). 
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4.4. Elementary Sentences (Elementary Sentence Forms) 

In  an AG G the set of strings in Xc can be considered as elementary 
sentences (in the linguistic context symbols in A are category symbols and 
hence strings in X~ are elementary sentence forms and not elementary 
sentences), and for every w EL(G) there is an elementary sentence underlying 
it (for different readings of an ambiguous w the underlying elementary 
sentences may or may not be different). 

4.5. Hierarchies of Languages 

Various results in earlier sections show that the hierarchy due to AG's  
cuts across the hierarchy due to the PSG' s  in many interesting ways (although 
there are many open problems). Figure 6 summarizes the results concerning 

FIG. 6. 
hierarchy. 

CSL 

..... P;0per Inclusion (c) 
Inclusion (C} 

- - - - - -  Conjectured Inc lus ion 

. . . . .  Inclusion with Con jec tu red  Equa l i l y  

Hierarchy of certain subclasses of AL's in relation to the phrase structure 

the hierarchy of certain subclasses of AL ' s  and also its relation to the phrase 
structure hierarchy. The  proper containment of C F L ' s  in D A L N ' s  was 
recently shown by Levy (1971). 
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5. SPECIAL CASES OF A G ' s  

5.1. Repeatable and Nonrepeatable Adjunction Rules 

In  this  section,  we will  po in t  out  some special  cases of A G ' S ,  all of which  are 
l inguis t ical ly  mot iva ted  (see Sect ion 6). 

L e t  G be  an A G .  I f  u~. = (ai ,  (~'), ~:k) is a rule  in J then  u~ can be  app l ied  
to e i ,  or to a e l -de r ived  str ing,  a rb i t ra r i ly  m a n y  t imes  in a der ivat ion  in G. Of  
course,  u~. need  not  be app l i ed  at all. W e  will  say tha t  ur is a repeatable 
ad junc t ion  rule.  I n  this  sense, all the  ad junc t ion  rules cons idered  so far are 
repea tab le  ad junc t ion  rules. 

W e  now cons ider  ad junc t ion  rules which  are nonrepeatable in  the sense tha t  
such a rule,  say, u r wou ld  be  app l ied  no more  than  once (i.e., zero  or  one t ime)  
to each occur rence  of its host  s t r ing in a der iva t ion  in G. I f  ur is a non-  
repea tab le  rule  (nr  rule) we will  wri te  it  as ur = (cri, (crj), ~:k) 1. In  general  
we can cons ider  a k - repea tab le  rule,  k = 1, 2 , . . . .  A k- repea tab le  rule  could  
be  appl ied  no more  than  k t imes  to each occurrence  of  its host  str ing.  A 
nonrepea tab le  rule  is then  a 1- repeatable  rule. 

DEFINITION 5.1.1. A n  A G  G will  be called an n r - A G  if  and only  if J 
contains  at least  one n r  rule. 

W e  will  not  give here  a recurs ive  def ini t ion of £7 or 27(z~c) for an n r - A G .  
T h e  defini t ions in Sect ions  2.2 and 3.2 of Joshi  et al. (1972) can be ex tended  
roughly  as follows. F o r  a a i ~ 27, let  Ao, ~ {uk}, k - 1, 2,..., p be the  set of  
n r  rules  such tha t  ~ is a host  in each rule in _d,~ . N o w  we a t tach  p d i s t inc t  
marke r s  to a i ,  one for  each rule in Ao~ . W e  erase the k - th  marke r  i f  ru le  u s 
is app l ied  in the  der iva t ion  of a cri-derived str ing.  Fu r the r ,  a rule  u s cannot  
be  appl ied  to a ~ri-derived s t r ing if  the  k - th  marke r  has a l ready  been erased.  
T h u s  we can define the  co r respond ing  languages  n r - L A L  or n r - D A L ,  etc. 

No te  tha t  if  G is an n r - A G  and if  u r = (ai ,  (~j), ~:k) 1 is an n r  rule  then  for  
any  r-I  t ree  represen ta t ion  of  a s t r ing W e L ( G ) ,  each node  labeled a i has no 
more  than  one b ranch  labe led  u~ : ~:k inc ident  on it. 

EXAMPLE 5.1.1. L e t  G = (27e, J) ,  where  

Z~ = {ab}, and J = {u z = (ab, ab, rz)~}. 

T h u s  G is an n r - L A G  because u 1 is an nr  rule. Th i s  is the  same g r a m m a r  as 
in Example  2.2.3 of Joshi  et al. (1972) except  tha t  u~ is now an n r  rule.  I t  is 
easily seen tha t  L(G)  = {a'b ~ I n ~ 1} which  is not  the  same language as in 
Example  2.2.3. No te  t h a t L ( G )  = {a~b ~ I n ~ 1} is a D A L  and not  an L A L .  
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I t  is, however, an nr -LAL.  Thus  the class of L A L ' s  C the class of n r -LAL's .  
L 1 = {a~cb ~n ] m >/ 1}, L~ = {amb~anb ~ [ m >/ 1, n ~ 1} are nr -LAL's .  They  
are not LAL's .  

5.2. A G ' s  with 27 =: Z¢ 

We will now consider AG ' s  wkh the restriction that 27 = Xe, i.e., every 
basic string is also a basic center string; thus every basic adjunct string is also 
a basic center string. Let  L 1 = 1 0* 1. Clearly, L 1 has an L A G  G = (27c, J), 
where 27 c = {1 1}, and J = {Ul = (1 1, 0, rl) }. Here 27 = {1 1, 0} @ 27c- Of 
course, if we add 0 to Zc then we will have an L A G  with the condition that 
27 = Z~. 

The  main interest for considering AG' s  with 27 = 27¢ is as follows. Strings 
in X ,  can be considered as elementary sentences (or sentence forms) in L(G) .  
If27 = 27cthen every string inL(G) can be decomposed into a set of elementary 
sentences (or sentence forms). 

5.3. A G '  s with Z ,  n Z a ~ 

The  condition 27c (3 27e = 25 means that no basic adjunct string is also a 
basic center string. We call an A G  with 27~ c3 27, = 2~, a center-adjunct 

disjoint grammar (see Section 6). Obviously, if we have an A G  with 27 = 27, 
as in Section 5.2 then 27~ n 27a ~ 2~ ; in fact, 27a C 27c. 

I t  is not known whether for every L A L  (or D A L ) L  there is a L A G  (or 
DAG)  G with Z~ c5 Z~ = ~ such that L(G)  = L.  

5.4. L A G '  s with a Uniform Se t  o f  Rules 

DEFINITION 5.4.1. Let  G = (Xc, J) be an LAG. A rule (ai ,  a j ,  ~k) in J, 
c,~ = aila q "" ai~ "'" ai,,; a% ~ A;  p = 1, 2,..., m, is eaUed uniform if and only 
if for every a t = atlas2 "-" at, "'" a t ;  a t  E A; q = 1, 2,..., n; at ~ 27, and ai~ - -  at, 
for some s, there is a rule (at ,  a j ,  ~:t) such that ( ~  = r k <:> ~:t = rt) or 

(~ = l~ ~ ~t  = 13 .  
In  other words, if in a rule aj adjoins to the left (or right) of some symbol 

ag ~ A in the host, then there is, for every occurrence of ao in any string 
at e 27, an adjunction rule which adjoins aj to the left (or right) of a~ (for each 
occurrence of ag in at). That  is, %. adjoins to the left (or right) of ag wherever 
ag occurs in any string in 27. We can, therefore, say that a~ is a left (or right) 
adjunct of ao. 
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EXAMPLE 5.4.1. G = (Z'e, J), where Z' c = {abc, ha}, and 

j ~- {u 1 =(abc ,  pq, rl) , u 2 = (ba, pq, rz), u~ =(abc ,  t, r2) }. 

Here u 1 and u 2 are uniform and pq is an adjunct of a. u 3 is not uniform as 
t adjoins on the right of b only in the host abc and not in the host ba. 

DEFINITION 5.4.2. Let  G = (Z'c, J)  be an LAG. Then  G is a uniform 
L A G  if and only if every rule in J is uniform. 

EXAMPLE 5.4.2. I f  in the set of rules in the L A G  G in Example 5.4.1, we 
add the rule u 4 = (ba, t, rl) then the resulting LAG, say G', is uniform. 

I f  an L A G  G is uniform then we can write G = (Z' c , J)  where the rules 
have the form u ~ [a i , a~ , ~], a¢ ~ ./I, aj ~ Z, ~ = l for a left adjunction rule 
and ( ~ r for a right adjunction rule. Adjunction thus becomes a property 
of a symbol in A independently of its being part of a basic string (strings). 
Thus  G'  in Example 5.4.2 can be written as G = (Z'~, J), where Z' c is as in 
Example 5.4.1 and J = {u 1 = [a, pq, r], u 2 = [b, t, r]}. The above concepts of 
uniform rules and uniform grammars can be obviously extended to L A G N ' s  
but they cannot be naturally extended to DAG's .  

6. LINGUISTIC RELEVANCE 

Here we will discuss very briefly the relevance of AG's  to language 
structure. 

1. In  the linguistic context the alphabet A in an AG G will consist of symbols 
which denote major dictionary classes (lexical classes) such as N (nouns), 
t (tense, auxiliaries), A (adjectives), V (verbs), P (prepositions), wh (who, 
which, whom), D (adverbs), Q (quantifiers), etc. N, t, A, V, etc., are thus 
preterminal symbols. The  basic center strings thus correspond to basic 
(elementary) sentence forms, e.g., N t V (John came), N t V N (Jim bought 
books), N t V P N (people rely on John), etc. (A subcategorization of V's is 
implied here and is not explicitly shown.) Basic adjunct strings are basic 
adjunct forms, e.g., P N (from Philadelphia), A (old), wh N t V (whom John 
saw), wh t V N (who saw Jim), D (quickly), etc. Each derived string inL(G) is 
thus a derived sentence form, e.g., (assuming suitable adjunction rules), 
N P N t V N (a man from Philadelphia bought books), A N t V (an old man 
came), N wh N t V t V D (the man whom Bill saw ran quickly), N wh N wh t 
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V N t V t V D (the books (which) the man who met Jim bought will arrive soon), 
etc. (ignoring articles for simplicity). 

2. Lexical insertion is considered a separate activity. The  reasons for this 
separation are well known (Chomsky, 1965). We are not interested here in a 
detailed description or formalization of this activity. However, the following 
is an important consideration. In  an AG, lexical insertion takes place as each 
basic string is brought into the generation of a sentence. Let  

ai = ailai ~ "'" aim ; aij ~ A 

be a basic string. As ai is brought  into the generation of a sentence, for each 
ai ja  lexical item can be inserted immediately. Note that we are not replacing 
ai~ by the lexical item but rather attaching it to ai~ and it will be carried along 
with aij as the derivation continues. The  verification of restrictions (e.g., 
number and person agreement: John sleeps here, the boys sleep here, I work in 
the morning, John works in the morning; some verbs take human subjects: 
try; some verbs may not take abstract subjects: eat, etc.) that hold within the 
domain of a basic string can be immediately carried out as any pair of symbols 
of a i are at a bounded distance at this state. I f  the basic strings are properly 
chosen then most restrictions are brought to bear within the domain of some 
basic string, and indeed it turns out that basic strings (with reasonable 
linguistic interpretations) can be set up in this way. 

There  are some restrictions which hold between a host and an adjunct 
string; e.g., in N wh N t V t V (the man whom John met arrived), wh N t V is 
an adjunct of N t V and the N in N t V is really the "object" of V in wh N t V. 
Some other examples are: Zeroing in conjoined sentences, e.g., everyday, he 
runs a n d  swims ;  he played tennis b u t  she  d i d n ' t ,  etc. Restrictions between 
successive adjuncts at the same point of adjunction of the host (ordering 
restrictions) as in I am looking for a book w i t h  a g r e e n  c o v e r  w h i c h  wa s  
l y ing  h e r e  s o m e w h e r e .  Restrictions between a host and two or more 
adjuncts at different points of adjunction of the host as in boys w h o  c a n  s w i m  
distrust boys w h o  can ' t .  All these can be easily verified. 

The  important point to note is that in an AG, lexical insertion takes place 
each time a new basic string is brought into the generation, i.e., it takes place 
as the generation proceeds string by string. In  a PSG, lexical insertion takes 
place at the very end of generation and the entire process of lexical insertion 
together with the verification of restrictions becomes more complicated. 

3. The  relevance of AG-type grammars is due to the fact that most con- 
stituents (phrases in a PSG) either consist of a single word (of some category) 
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or contain a single word of the characterizing category plus adjunct words or 
strings of words adjoined to it. Such a constituent can be considered as 
"endocentric" (with the characterizing category as the "center" or "head"), 
e.g., in books from the library, books is the center. Books from the library is 
related to books as a constituent expansion. Thus  for any sentence S 1 which 
can be represented as a sequence of immediate constituents each of which is 
endocentric we can obtain a sentence S 2 by replacing each constituent by its 
center. Then  S 2 is the center of S 1 and $1 is a constituent expansion of $2,  
e.g., S 1 = young boys from New York came and S 2 ~- boys came. 

AG's  are well suited for formulating the "endocentric" properties in the 
sense that this aspect of a constituent can be explicitly brought out in the 
structural description. There are, however, constituents which are not 
"endocentric".  These are "exocentric" in the sense that we cannot replace 
them by any word of a characterizing category contained in them such that 
the constituents can be considered as constituent expansions of the charac- 
terizing category; e.g., whether he came in I don't know whether he came, who 
will represent us at the meeting in who will represent us at the meeting is unclear, 
etc. AG's  are not well suited for formulating the exocentric properties. These 
properties are better characterized by the use of "nonterminals" and "rewrite 
rules" in the sense of a PSG. Thus  rules of different formal character bring 
out different aspects of language structure. Sentence adjuncts (e.g., in general, 
probably) can be handled well in an AG;  in particular, that these adjuncts 
can occupy various sentence positions can be easily characterized in an AG. 
This is awkward to characterize in a PSG. However, the property that these 
adjuncts are adjuncts of a sentence is better characterized by the use of a 
nonterminal. This suggests that classes of formal grammars with mixed 
types of rules (mixed grammars) are required to bring out explicitly different 
aspects of language structure (Joshi, 1969, 1972); Levy, 1970) (see 
Section 4.2). 

4. Distributed adjunction rules are required to handle cases such as two and 
three are even and odd numbers, respectively, which is a case of an intercalated 
structure. Such structures are not too frequent. However, if one tries to 
construct an AG-type  grammar as a base for a transformational grammar 
then the need for intercalated structures is not so marginal. This is primarily 
because one tries to relate each adjunct to an elementary sentence [i.e., one 
tries to constitute the adjunct and host strings in such a way that the under- 
lying elementary sentence(s) could be reconstructed from them]. Some 
examples are: t he  man w h o  c a m e  ... (boldface indicates the distributed 
adjunct); J o h n ' s  proof o f  the  t h e o r e m ,  etc. The  kinds of intercalated struc- 
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tures possible in a D A G  apparently are adequate for this purpose (Joshi, 1969, 
1972). 

5. Some adjuncts are nonrepeatable, e.g., Q (quantifier): some, all, T (articles): 
the, a, etc. Hence, the restrictions considered in Section 5.1 are relevant. 

6. Many adjunction rules are almost uniform (see Section 5.4), e.g., left and 
right adjuncts of N, e.g., P N, A, etc., are more or less the same (with a few 
limitations) for every occurrence of N in the set of all basic strings. Hence, 
one can consider these as adjuncts of N without reference to the basic strings 
in which N occurs. Other examples are: adjuncts of V, adjuncts of A, etc. 
However, when one tries to construct an AG as a base for a transformational 
grammar the adjunction rules become far less uniform. 

7. The  restriction Zc c~ Za = ~ in Section 5.3 is relevant because adjuncts 
generally are not strings m Xc, e.g., P N, A, wh N t V, etc. The  similarity of 
N t V (center string): John came and N t V (adjunct string): John met is 
only apparent. N t V (adjunct string) is a variant of wh N t V: whom John met 
as in the man John met. Further the subclasses of V in N t V (center string) 
and N t V (adjunct string) are different. 

8. As we have stated in the introduction, the classes of grammars considered 
in this paper have been motivated by the type of grammar proposed by 
Harris (1962, 1968). 3 Harris was not concerned with the study of formal 
properties of a class of grammars as such; however, if we examine the grammar 
(for English) in Harris (1962) we can observe the following: (1) Restrictions 
in Section 5.3 and 5.4 apply, i.e., Z c n Za ~ ;~ and most rules are uniform. 
Of course, he has not stated these as restrictions on a general class of grammars. 
However, the fact that these conditions hold to a large extent does say some- 
thing about the language structure. (2) The  adjunction rules are almost all 
local. A few very restricted kinds of distributed rules are considered and are 
marginally used (3) Nonrepeatable rules have been considered. (4) Certain 
symbols have been used as nonterminals in the sense of a PSG. 

9. I f  27 ~ 27c (see Section 5.2) then each string w e L ( G )  has a representation 
in terms of elementary "sentences" (or basic center strings), i.e., in the tree 
representation of the derivation of w, every node is either an elementary 
"sentence" or a derived "sentence". To  what extent these are also sentences 
in the language and to what extent these must be considered as infrastructures 
is, of course, an important linguistic problem. In  general, however, 27 -/= Z , .  

A syntactic-analysis program, incorporating a substantial part of English grammar, 
which is based on this type of grammar has been constructed by Sager (1967). 
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I t  is possible to construct a transformational grammar (G, = (G, r)) where 

the base grammar G satisfies the condition ~' = Zc (actually, a mixed grammar 

is needed; see Section 4.2) and r is the transformational component which 
specifies a set of operations on the structures derived G. Strings in L(G,)  
(except for morphophonemic operations) are the strings (sentences) in the 
language. Such a class of transformational grammars has been studied from 

the point of view of its linguistic adequacy and its mathematical properties, 

e.g., conditions under  which L(G,) is recursive (Joshi, 1972). 
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