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SUMMARY

DREADDs are chemogenetic tools widely used to
remotely control cellular signaling, neuronal activity,
and behavior. Here we used a structure-based
approach to develop a new Gi-coupled DREADD us-
ing the kappa-opioid receptor as a template (KORD)
that is activated by the pharmacologically inert
ligand salvinorin B (SALB). Activation of virally ex-
pressed KORD in several neuronal contexts robustly
attenuated neuronal activity and modified behaviors.
Additionally, co-expression of the KORD and the
Gq-coupled M3-DREADD within the same neuronal
population facilitated the sequential and bidirec-
tional remote control of behavior. The availability of
DREADDs activated by different ligands provides
enhanced opportunities for investigating diverse
physiological systems using multiplexed chemoge-
netic actuators.

INTRODUCTION

Over the past several years, optogenetic and chemogenetic

(Armbruster et al., 2007; Boyden et al., 2005) approaches have

transformed neuroscience and other disciplines by facilitating

the reversible, cell type-specific control of cellular signaling

and electrical activity. As complementary technologies, opto-

and chemogenetics have demonstrated robust utility for decon-

structing the neuronal codes responsible for both simple and

complex behaviors (Deisseroth, 2011; Sternson and Roth,

2014). The chemogenetic platform known as DREADDs

(designer receptors exclusively activated by designer drugs)

has proven to be extremely useful for interrogating cellular
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signaling in cell types as diverse as glia (Agulhon et al., 2013),

pancreatic b-cells (Guettier et al., 2009; Jain et al., 2013), hepa-

tocytes (Li et al., 2013), triple-negative breast cancer cells (Yagi

et al., 2011), transformed fibroblasts (Vaqué et al., 2013), and

induced pluripotent stem (iPS) cells (Dell’Anno et al., 2014).

Current DREADDs, activated by the inert clozapine metabolite

clozapine-N-oxide (CNO), can silence (Armbruster et al., 2007)

or enhance (Alexander et al., 2009) neuronal firing, and can

modulate cellular signaling via Gi, Gq, Gs, or b-arrestin cascades

(Guettier et al., 2009; Nakajima and Wess, 2012). However, the

dependence of DREADD technology on the same inert ligand

CNO limits its effectiveness for bidirectional and multiplexed

chemogenetic control of neuronal and non-neuronal activity.

Thus, the development of a new DREADD that can be activated

by a distinct chemotype would represent a powerful new tool for

neuroscientists and biologists in general.

The first chemogenetic tool based on a G protein-coupled

receptor (GPCR) was developed by Strader and colleagues in

1991 (Strader et al., 1991). Since then, many orthologous recep-

tor-ligand pairs have been developed (e.g., RASSLs, TRECs,

neoceptors, and so on; Conklin et al., 2008), though with occa-

sionally limited utility. Common problems associated with these

first-generation chemogenetic tools included the following:

(1) Many of the synthetic compounds that activate the modi-

fied receptors exhibit appreciable affinities and potencies

for the native receptors. This nonselective activity limits

their efficacy in vivo because of the need to employ

knockout animals in order to avoid activation of endoge-

nous receptors.

(2) In some cases, ligand potency was too low to be useful for

studies in vivo.

(3) The selectivity profile of the ligands was typically unspec-

ified (e.g., they may have activities at other unidentified

cellular targets).
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(4) Many of the previously reported modified receptors had

high basal signaling in vivo that obscures ligand-induced

phenotypes (Rogan and Roth, 2011).

The recent development of engineered ligand-gated ion chan-

nels (PSAMs and PSEMs) overcomesmany of these deficiencies

(Magnus et al., 2011), although because PSAMs and PSEMs are

ion channels, they have limited value in non-excitable cells.

Here we reveal the development of a new DREADD using the

k-opioid receptor (KOR) as a template that is activated by salvi-

norin B (SALB). Since SALB is an inactive, drug-likemetabolite of

the KOR-selective agonist salvinorin A (SALA) (Ansonoff et al.,

2006; Roth et al., 2002), and because SALB has excellent CNS

penetrability and pharmacokinetic properties in both rodents

and non-human primates (Hooker et al., 2009), the SALB/

KORD combination will be exceptionally suited for a variety of

contexts. Additionally, the SALB/KORD pairing facilitates the

multiplexed chemogenetic interrogation of GPCR signaling and

behavior.
RESULTS

SALB Is Inert In Vivo
Previous preliminary studies showed that SALB is pharmaco-

logically inert in vitro and in vivo (Ansonoff et al., 2006). To verify

and extend these findings, we profiled SALB against a large

number of CNS molecular targets using the resources of the Na-

tional Institute of Mental Health Psychoactive Drug Screening

Program as described in Besnard et al. (2012) and Keiser

et al. (2009). SALB failed to show any activity except the previ-

ously reported low KOR [3H]-diprenorphine radioligand binding

affinity (Ki = 2.95 mM; Figure 1H). Importantly, SALB was also

inactive at muscarinic receptor-based DREADDs (Gq, Gi, and

Gs DREADDs; Figure S1). We found that SALB is a weak KOR

agonist with an EC50 of 248 nM (Figure 1D; Table 1). Importantly,

the potency of SALB is so weak that even after i.c.v. administra-

tion SALB failed to produce KOR-mediated anti-nociception,

while SALA (its active precursor) was potently analgesic (Anson-

off et al., 2006).

Given both the weak potency of SALB at wild-type (WT) KOR

and its inactivity when administered i.c.v., we reasoned that

SALB will be inactive in vivo. To test this hypothesis, we used

several behavioral assays to determine whether SALB can

induce behavioral effects commonly associated with KOR

agonists: analgesia, impairment of motor performance, and the

production of anhedonic-like states. First, we measured the

analgesic and ataxic effects of SALB and compared its activity

with a metabolically stable SALA analog, MOM-ether SALB

(MOM-B), using hot plate and rotarod assays, respectively.

While 2.0 mg/kg MOM-B produced effects in both the hot

plate and rotarod tests, administration of 10.0 mg/kg SALB did

not alter performance relative to controls (Figures 1A and 1B).

Subsequently, we used the curve-shift method of intracranial

self-stimulation (ICSS) to detect reward-devaluing effects of

SALB. While SALA (0.1–1.0 mg/kg) significantly elevated brain

stimulation reward thresholds in C57BL/6J mice at all doses

tested (F3, 18 = 14.5, p < 0.001; Figures 1C and S4), SALB (3.0–

17.0 mg/kg) failed to significantly elevate thresholds up to
17.0 mg/kg s.c. Given that SALB is apparently inert in vivo,

and because of its outstanding pharmacokinetic and CNS pene-

trability properties (Hooker et al., 2009), we predicted that SALB

would represent a suitable ligand for a new DREADD.

Structure-Based Design of KORD
In order to develop a new DREADD, we initially hoped to evolve

the human KOR (hKOR) to be responsive to SALB using our

yeast-based directed molecular evolution approach (Armbruster

et al., 2007; Dong et al., 2010). For these studies, hKOR was

cloned into the yeast expression plasmid p416 and functionally

expressed in a genetically modified strain of S. cerevisiae, which

enables ligand-induced activation of heterologously expressed

mammalian Gi-coupled GPCRs to engage the pheromone-sig-

naling pathway, thereby promoting growth on selective media

(Dong et al., 2010; Erlenbach et al., 2001; Noble et al., 2003).

We created a library of mutant hKOR receptors by randommuta-

genesis, and screened them for activation by SALB. We were

able to identify multiple mutants activated by SALB, although

they all displayed high levels of constitutive activity, rendering

them relatively useless for the studies we envisioned.

Therefore, we employed a rational approach to designing the

KOR DREADD based on our recent crystallographic, mutagen-

esis, and molecular modeling studies of hKOR (Vardy et al.,

2013; Wu et al., 2012). These studies showed that an alanine

mutation at E297 at the extracellular end of TM6 (an important

residue in KOR specificity determinant, in the so-called ‘‘address

domain’’; Larson et al., 2000) causes a 10-fold decrease in the

affinity and potency of the endogenous peptide ligand dynorphin

A (DYNA) without altering the affinity or potency of SALA (Vardy

et al., 2013). Another residue, D138 in TM3, which belongs to the

general opioid activation determinant, was also examined. This

residue resides in the ‘‘message domain’’ of KOR (Portoghese,

1989; Vardy et al., 2013), and D138A mutations have been re-

ported to nearly abolish the binding of all known KOR agonists

without affecting the affinity or potency of SALA (Kane et al.,

2006; Vardy et al., 2013). Furthermore, recent high-resolution

crystal structures of related opioid receptors (Fenalti et al.,

2014, 2015) implied that this residue is also essential for the inter-

action of other classes of opioids including opioid peptides and

opioid antagonists. We reasoned, therefore, that changing the

negative charge to a polar residue via a D138N mutation would

further decrease the potency of endogenous peptide ligands

and enhance the potency of SALB and SALA.

Indeed, the D138N mutation apparently abolished DYNA

(1–13) agonist efficacy and potency and diminished peptide

binding affinity while enhancing SALA and SALB affinities and

potencies 10- to 30-fold (see Figures 1D and 1F–1H; Table 1).

As a key requisite of DREADDs is the failure to be activated by

endogenous neurotransmitters, we combined these two KOR

mutants (e.g., D138N/E297A) and evaluated the resulting

construct. Both the double D138N/E297A mutant and the single

D138N mutant responded to SALB and SALA with greatly

enhanced potencies compared to WT, while the E297A mutant

alone had no effect on SALB agonist potency (Figure 1D). Criti-

cally, the single D138N mutant was not activated by any

tested synthetic or endogenous peptide KOR ligands (Figure 1G;

Table 1). Thus, in a screen of 21 endogenous opioids performed
Neuron 86, 936–946, May 20, 2015 ª2015 Elsevier Inc. 937



Figure 1. Rational Design and In Vitro Characterization of KORD

(A and B) SALB was initially validated as a DREADD ligand by demonstrating its apparent pharmacologic inertness in vivo using behavioral tests by comparing

with MOM-SALB via (A) hot plate test and (B) impairment of motor performance using the rotarod test. In both tests SALB effects (red) were compared to vehicle

(white) and a stabilized variant of SALA (MOM-SALB, black).

(C) The lack of production of a KOR-like anhedonic state was tested using ICSS and compared to the effects of SALA. Data represent mean ± SEM of indicated

number of separate experiments.

(D) We characterized the KORD comparing the Gi-mediated response of different KOR mutants and demonstrate an increased potency of SALB at D138N-

containing mutants.

(E) The effect of receptor expression levels on SALB potency of WT KOR (gray) and KORD (red). As can be seen, DNA concentration is directly related in bothWT-

KOR and KORD to agonist potency yielding a right shift in potency of 1–2 orders of magnitude.

(F and G) Average Gi response ofWT-KOR (F) and KORD (G) to classic KOR ligands dynorphin A (DYNA, black), SALA (green), and the inert compound SALB (red)

is shown.

(H–J) (H) Competition binding isotherms ofWT and KORD for DYNA (1–13) (pKi values, 8.50 ± 0.12 and 5.79 ± 0.06, respectively) and SALB (pKi values, 5.53 ± 0.08

and 6.98 ± 0.13, respectively). An examination of a model of KORD docked with SALB (I) suggests that the DREADD mutation (D138N) eliminates unfavorable

interactions between D138 and SALB. In WT KOR, D138 is turned away from the ligand-binding site (cyan), while N138 in KORD (white) is interacting directly with

the ligand. E297 in both models assumes the same conformation reflecting the fact that it has no effect on DREADD activity. Deacetylation at position 2 of SALA

results in SALB (J). Asterisk indicates p < 0.05, and all values reported as mean ± S.E.M.
at WT and the D138N mutants, no opioid peptide was found to

have detectible agonist activity at the D138N mutant (Table 1;

Figure 1G). As the D138N mutant is potently activated by the

inactive drug SALB and apparently not activated by any tested

endogenous peptide agonist, we chose it as our candidate

DREADD and have dubbed it KORD (k-opioid DREADD).

GPCR overexpression typically results in a large degree of

receptor reserve thereby enhancing agonist potency. Thus,

because a high level of receptor reserve can be easily achieved
938 Neuron 86, 936–946, May 20, 2015 ª2015 Elsevier Inc.
for DREADDs via virally mediated transduction, receptor reserve

could further enhance the apparent affinity, selectivity, and

potency of SALB for the KORD. To test this notion, we trans-

fected HEK293T cells with increasing concentrations of plas-

mids expressing either WT hKOR or the KORD (D138N hKOR),

which resulted in varying levels of receptor expression. As pre-

dicted, increased receptor expression levels correlated with an

increase in the apparent potency of SALB (Figure 1E). Signifi-

cantly, the potency differences between cells expressing levels



Table 1. KORD Is Insensitive to Endogenous Opioid Peptides and Is Potently Activated by SALB

hKOR KORD

EC50 (nM) pEC50 ± SEM Emax (%) EC50 (nM) pEC50 ± SEM Emax (%)

b-Endorphin (1–27) (b-Endor1–27)

YGGFMTSEKSQTPLVLFKNAIIKNAY

700

6.15 ± 0.22

100 NA NA

b-Endorphin (1–31) (b-Endor1–31)

YGGFMTSEKSQTPLVLFKNAIIKNAYKKGE

706

6.15 ± 0.17

100 NA NA

Leu-enkephalin (Leu-Enk) YGGFL NA NA NA NA

Met-enkephalin (Met-Enk) YGGFM 2,099

5.68 ± 0.12

79 NA NA

Met-enkephalin-Arg-Phe (MERF) YGGFMRF 1,344

5.87 ± 0.14

99 NA NA

Metorphamide YGGFMRRV-NH2 108

6.99 ± 0.07

97 NA NA

BAM 12 YGGFMRRVGRPE 101

6.99 ± 0.07

99 NA NA

BAM 18 YGGFMRRVGRPEWWMDYQ 85

7.07 ± 0.09

97 NA NA

BAM 22 YGGFMRRVGRPEWWMDYQRYG 93

7.03 ± 0.07

95 NA NA

Peptide E YGGFMRRVGRPEWWMDYQRYGGFL 65

7.18 ± 0.07

95 NA NA

Dynorphin A(1–6) (DynA1–6) YGGFLR 227

6.64 ± 0.24

86 NA NA

Dynorphin A(1–7) (DynA1–7) YGGFLRR 107

6.97 ± 0.04

97 NA NA

Dynorphin A(1–8) (DynA1–8) YGGFLRRI 122

6.91 ± 0.06

94 NA NA

Dynorphin A(1–9) (DynA1–9) TGGFLRRIR 127

6.89 ± 0.07

93 NA NA

Dynorphin A(1–13) (DynA1–13) YGGFLRRIRPKLK 19

7.71 ± 0.06

94 NA NA

Dynorphin A(1–17) (DynA1–17) YGGFLRRIRPKLKWDNQ 13

7.87 ± 0.09

100 NA NA

Dynorphin B(1–13) (DynB1–13) YGGFLRRQFKVVT 120

6.91 ± 0.08

100 NA NA

Leumorphin YGGFLRRQFKVVTRSQEDPNAYYEELFDV 21

97.68 ± 0.06

92 NA NA

a-Neoendrophin (a-neo-End) YGGFLRKYPK 64

7.19 ± 0.07

95 NA NA

Endomorphin-1 YPWF NA NA NA NA

Endomorphin-2 YPFF NA NA NA NA

Nociceptin FGGFTGARKSARKLANQ 1,007

5.99 ± 0.07

81 NA NA

U69593 3.16

8.5 ± 0.1

100 > 10,000 NA

Salvinorin B (low expression) 2,045

5.68 ± 0.18

80 160

6.79 ± 0.13

94

Salvinorin B (high expression) 248

6.6 ± 0.1

100 11.8

7.98 ± 0.09

100

Salvinorin A (low expression) 19.8

7.71 ± 0.08

100 0.12

9.91 ± 0.08

100

Salvinorin A (high expression) 1.05

8.96 ± 0.08

100 0.04

10.35 ± 0.08

100

NA, no activation at 10 mM. Data represent mean EC50 andmean pEC50 ± SEM of n = 3 separate 16-point dose-response experiments each performed

in triplicate. hKOR, human k-opioid receptor; KORD, k-opioid receptor DREADD.

Neuron 86, 936–946, May 20, 2015 ª2015 Elsevier Inc. 939



of WT receptor (achieved using 1 mg DNA), which is at a level

similar to endogenous brain expression, versus cells expressing

high levels of the mutant receptor (achieved using 15 mg DNA), is

close to 1,000-fold (Figure 1E). Thus, our rationally designed

KORD greatly enhances hKOR sensitivity to SALB and simulta-

neously abolishes the agonist activity of a variety of endogenous

and exogenous KOR agonists (Figure 1G; Table 1).

As constitutive activity is a potential confounding issue

with respect to overexpressed chemogenetic and optogenetic

tools, we next examined the constitutive activity of KORD

compared to both a WT and a constitutively active KOR mutant

(V108L). We found that the basal activity of KORD (137 ± 3.7 3

105 lumens/min; n = 44; p > 0.05 versus WT) was equivalent to

WT (134 ± 3.2 3 105 lumens/min; n = 48) and less than the

V108L constitutively active mutant (94 ± 3.7 3 105 lumens/min;

n = 50; p < 0.001 versus WT), indicating that the KORD does

not represent an apparently constitutively active mutant.

Although the atomic mechanisms responsible for the increased

affinity and potency for SALB are unknown, our modeling results

suggest that it is likely due to the removal of an unfavorable des-

olvation cost associated with non-basic ligand binding to a

charged aspartate (Asp) (Vardy et al., 2013). Indeed, our docking

studies suggest that changing the Asp at this position to aspar-

agine (Asn) results in an improved conformation for the Asn,

decreases the energetic cost for desolvation, and thus increases

affinity (see Figure 1I).

In Vivo Neuronal Validation of KORD
KORD Activation Induces Neuronal Hyperpolarization

To test the activity of the KORD in vivo, we used a standard Cre-

recombinase-dependent adeno-associated virus (AAV), which

enabled the targeting of KORD to specific neuronal populations

in different Cre-driver mouse lines (Figure 2A). We verified effec-

tive transduction of KORD in a Cre-dependent manner in a vari-

ety of neurons, including the substantia nigra (SN) and the

ventral tegmental area (VTA) of vesicular GABA transporter

(VGAT)-ires-Cre mice (Figures 2B and 2C), the paraventricular

hypothalamus (PVH) of single-minded1 (SIM1)-Cre mice (Balth-

asar et al., 2005), and the arcuate nucleus (ARC) of agouti-

related peptide (AGRP)-ires-Cre mice (Tong et al., 2008) (Figures

3A, 3B, 3E, and 3F).

We next performed whole-cell patch clamp recordings in

acutely prepared slices to test the ability of KORD to generate

a SALB-induced hyperpolarization. Results were calculated

as a shift from baseline resting membrane potential (RMP). In

VTA/SN-VGAT-expressing (VTA/SNVGAT) neurons transduced

with KORD, bath application of SALB led to a robust and signif-

icant membrane potential hyperpolarization, while SALB had

no effect on control (mCherry-transduced) neurons (t9 = 2.97,

p < 0.05; Figure 2D). To determine the generalizability of

KORD-mediated hyperpolarization, we also evaluated SIM1-ex-

pressing neurons in the PVH (PVHSIM1) and AgRP-expressing

neurons in the ARC (ARCAgRP). Upon bath application of

SALB, both PVHSIM1 and ARCAgRP neurons expressing KORD

exhibited robust hyperpolarization, shifting �6.2 ± 2.1 mV and

�10.1 ± 1.7 mV, respectively (PVHSIM1, t5 = 2.99, p < 0.05;

ARCAgRP, t4 = 5.94, p < 0.05; Figures 3D and 3H). Next, we

sought to determine if the KORD can act presynaptically to
940 Neuron 86, 936–946, May 20, 2015 ª2015 Elsevier Inc.
inhibit neurotransmission by recording miniature inhibitory post-

synaptic currents (mIPSCs) in VTA/SN neurons in the presence

of SALB. In VGAT-ires-Cre mice with AAV-hSyn-DIO-KORD

injected into the VTA/SN, SALB significantly reduced mIPSC

frequency (t2 = 24.7, p < 0.001; Figure 2E), but not amplitude

(t2 = 2.45, p > 0.05) compared to baseline, consistent with a

presynaptic effect. SALB had no effect on mIPSCs in naive

mice (frequency, t2 = 0.92, p > 0.05; amplitude, t2 = 4.1, p >

0.05). No differences in baseline mIPSC frequency were

observed between AAV-hSyn-DIO-KORD-injected mice and

naive mice (Figure 2E).

Peripheral SALB Administration Produces Robust

Behavioral Responses

Given that SALB induced KORD-mediated hyperpolarization,

we next tested whether the SALB-induced activation of KORD

had functional consequences on three distinct neuronal

populations: (1) VTA/SNVGAT, (2) hypothalamic PVHSIM1, and (3)

hypothalamic ARCAgRP (using VGAT-ires-Cre, SIM1-Cre, and

AGRP-ires-Cre mice, respectively). Since previous studies

have demonstrated that optogenetic modulation of VTA/SNVGAT

neurons can modify locomotion (van Zessen et al., 2012), we

predicted that chemogenetic silencing via KORD of VTA/SNVGAT

neurons (Figures 2B and 2C) would increase locomotion. As ex-

pected, SALB produced a dose-dependent increase in locomo-

tor activity (F3, 21 = 19.1, p < 0.001) (Figure 2F), while vehicle was

without effect; post hoc testing revealed that the 1.0-, 3.0-, and

10.0-mg/kg SALB doses significantly enhanced locomotion.

Importantly, mice expressing mCherry in the same neuronal

population were unresponsive to SALB (Figure 4B).

Next, we evaluated KORD activity in a neural circuit known to

be involved in feeding behavior. PVHSIM1 neurons (Figures 3A

and 3B), which make up the vast majority of PVH cells, have

been previously demonstrated to increase food intake when

chemogenetically inhibited (Atasoy et al., 2012; Stachniak et al.,

2014). Consistent with prior results obtained using hM4Di,

SALB activation of KORD in PVHSIM1 neurons significantly

increased feeding behavior compared to baseline (0.61 ±

0.04 g versus 0.06 ± 0.01 g; t6 = 11.8, p < 0.05; Figure 3C),

whereas WT control mice (t5 = 0.30, p < 0.05) injected with the

Cre-dependent KORD virus had no feeding effects in response

to the administration of SALB.

As a final test, we evaluated the orexigenic ARCAgRP neurons

(Figures 3E and 3F), which have been shown to send inhibitory

projections to the PVH and synapse onto a subpopulation

of PVHSIM1 neurons (Krashes et al., 2014; Atasoy et al., 2012).

Having established that activation of KORD hyperpolarizes

PVHSIM1 neurons in vitro and increases food intake in vivo, we

next tested KORD activation with SALB on the upstream inhibi-

tory ARCAgRP neurons (Figures 3G and S2). Following light cycle

food restriction, food consumption was monitored during the

first 60 min of the dark cycle, when mice normally eat

and ARCAgRP neural activity is high (Krashes et al., 2011).

Compared to vehicle (0.59 ± 0.07 g), KORD inhibition of the hun-

ger-promoting ARCAgRP neurons resulted in significantly dimin-

ished levels of food intake (0.11 ± 0.03 g; t5 = 11.29, p < 0.05).

Importantly, SALB administration did not impact feeding re-

sponses in WT animals (vehicle, 0.52 ± 0.05 g; SALB, 0.55 ±

0.07 g).



Figure 2. Validation of KORD In Vivo in VTA/SNVGAT Neurons

(A) Schematic showing the AAV8 (hSyn-DIO-hKORD-IRES-mCit-WPRE-PolyA-R-ITR) construct used and its recombination under the control of Cre-

recombinase.

(B) Location for viral infusion of Cre-expressing VTA/SNVGAT neurons.

(C) Representative low-power field of VTA/SNVGAT neurons.

(D) Shift from baseline resting membrane potential (RMP) in VTA/SNVGAT neurons transduced with KORD or mCherry (control) constructs.

(E) Baseline mIPSC frequency in non-KORD-expressing neurons in KORD-infectedmice and control neurons from naivemice controls and the effects of SALB on

miniature IPSC frequency and amplitude in uninfected VTA/SNVGAT and naive control VTA/SN neurons.

(F) Locomotor responses for graded doses of SALB. Asterisk indicates p < 0.05, and all values reported as mean ± S.E.M.

Neuron 86, 936–946, May 20, 2015 ª2015 Elsevier Inc. 941



Figure 3. Validation of KORD In Vivo in

PVHSIM1- and ARCAgRP-Expressing Neurons

(A) Location for viral infusion of PVHSIM1 Cre-

expressing neurons.

(B) Representative immunofluorescent photomi-

crographs demonstrating expression of mCitrine

in virally transduced neurons.

(C) Effects of SALB on food intake in AAV-hSyn-

DIO-KORD-injected SIM1-Cre and WT mice.

(D) Shift from baseline resting membrane potential

(RMP) in KORD-transduced neurons in the

PVHSIM1.

(E and F) Location of viral infusion and expression

of mCitrine (green) and HA-hKORD (red) in

ARCAgRP neurons.

(G) Suppression of food intake by SALB.

(H) Shift from baseline RMP in KORD-transduced

neurons in the ARCAgRP. Asterisk indicates p <

0.05, and all values represent mean ± S.E.M.
KORD Facilitates Chemogenetic Multiplexed Control of
Behavior
One of our main goals for developing the KORD was to enable

multiplexingexperiments for either thesimultaneousor sequential

manipulation of neuronal pathways using a variety of chemo- and

optogenetic platforms. To test whether two distinct DREADDs

can reciprocally modulate neuronal activity and behavior

in vivo, we transduced VTA/SNVGAT neurons or hypothalamic

ARCAgRPneuronswithboth the inhibitory,Gi-coupled,SALB-acti-

vated KORD and the stimulatory, Gq-coupled, CNO-activated

hM3Dq. We then tested for receptor expression and behavioral

effects.

We found that locomotor activity could be bidirectionally

modulated by KORD and hM3Dq in the same mouse. During

different testing sessions, SALB (10.0 mg/kg) enhanced locomo-

tor activity inmice that expressedbothKORDandhM3Dq inVTA/

SNVGAT neurons compared to vehicle (t4 = 2.89, p = 0.04; Fig-

ure 4B), and CNO (3.0 mg/kg) decreased locomotor activity

(t4 = 5.44, p = 0.006). When tested during the same session,

CNO (3.0 mg/kg) produced significant locomotor depression

(t4 = 3.28, p = 0.03), while SALB (17.0 mg/kg) rescued the effects

of CNO and significantly elevated locomotor activity when

compared to vehicle (t4 = 3.44, p = 0.03; Figures 4C and 4D). In

these sessions, the onset of action of both CNOand SALBbegan

influencing locomotor behavior within 10–20 min post-injection.

Importantly, neither SALB (10.0 mg/kg; t5 = 1.93, p > 0.05) nor

CNO (3.0 mg/kg; t5 = 0.95, p > 0.05) had any effect on locomotor

activity in control mice expressing mCherry in VTA/SNVGAT neu-

rons (Figure 4B). Histologic analysis of VTA/SNVGAT neurons

showed that 87.7%±1.7%of transduced neurons co-expressed

both receptors with no significant difference in the transduction

efficiency of either DREADD (t2 = 0.82, p > 0.05; Figure S3). These

results demonstrate for the first time that twodifferent biologically

inert designer ligands can produce robust behavioral changes in

the same mouse, providing the first proof of concept for multi-

plexed chemogenetic control of behavior.

We next investigated the effectiveness of multiplex manipula-

tion of behavior while transducing ARCAgRP neurons with both

the hM3Dq and KORD. As acute opto- and chemogenetic acti-

vation of ARCAgRP neurons drives feeding behavior (Aponte
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et al., 2011; Betley et al., 2013; Krashes et al., 2011), we attemp-

ted to reverse ARCAgRP hM3Dq activation-induced feeding

with simultaneous KORD inhibition. Importantly, for this experi-

ment to work, extensive restraint of ARCAgRP neuron activity is

necessary to overcome the chemogenetically induced feeding

response, given that only �10% of ARCAgRP neurons are

required to drive the full magnitude of food intake (Aponte

et al., 2011; Betley et al., 2013). Consistent with previous studies,

CNO/hM3Dq-induced activation of ARCAgRP neurons increased

light cycle food intake (0.75 ± 0.03 g) significantly compared to

saline baseline (0.04 ± 0.02 g; Time, F6, 108 = 108.4; Treatment,

F1, 18 = 10.6; and Time 3 Treatment, F6, 108 = 4.5; F6, 108 =

62.1, p < 0.001 for all; Figure 4E). However, co-administration

of CNO and SALB significantly blunted feeding behavior (CNO

versus CNO + SalB; Time, F6, 108 = 80.9; Treatment, F1, 18 =

204.3; and Time 3 Treatment, F6, 108 = 62.1; p < 0.001 for all).

Post hoc testing revealed a significant reduction of food intake

similar to that observed during simultaneous optogenetic activa-

tion and hM4Di-mediated inhibition of ARCAgRP neurons (Stach-

niak et al., 2014). Interestingly, these animals elevate their

feeding rate in the next 2 hr (1–3 hr after ligand injection), reflect-

ing both the transient action of SALB/KORD and persistent

action of CNO/hM3Dq (Figure 4E).

DISCUSSION

Here we report the development of a new chemogenetic tool

based on the KOR we have dubbed KORD (k-opioid DREADD).

We demonstrate that KORD can be used alone or in conjunc-

tion with other chemogenetic tools, thereby facilitating the

multiplexed dissection of neural circuitry and behavior. As

KORD is activated by SALB, it can be used in mice also express-

ing CNO-responsive DREADDs, allowing for the first time

bidirectional chemogenetic manipulation of neural circuits.

Although bidirectional control has only been demonstrated in

the hypothalamus and VTA/SN, it is likely that this approach

will work in other brain regions. The KORD could also be used

together with other chemogenetic and optogenetic tools in

order to provide higher-order multiplexed modulation of GPCR

signaling in non-neuronal cells.



Figure 4. Multiplexed Bidirectional Chemo-

genetic Control of Behavior

(A) Representative immunofluorescent confocal

micrographs wherein hM3Dq and KORD were

co-expressed in VTA/SNVGAT neurons with co-

localization data summarized in Figure S3.

(B) Comparison of the effects of CNO and SALB on

spontaneous locomotor activity of dual DREADD-

expressing mice (right panel; mice expressing

both hM3Dq andKORD in VTA/SNVGAT neurons) or

control mice (mCherry; left panel). CNO inhibits

spontaneous locomotor behavior, and SALB

augments locomotor behavior on different testing

days (right panel). CNO and SALB did not affect

behavior in mice that expressed mCherry in the

same brain region.

(C) Bidirectional manipulation of locomotor

behavior: the locomotor activity of dual DREADD-

expressing mice was inhibited by CNO (CNO in-

jection at 60 min). The locomotor depression was

reversed by SALB injection (SALB injection 30 min

after CNO injection).

(D) Summary data of locomotor activity experi-

ments using multiplexed DREADDs.

(E) Demonstration that SALB inhibits food intake induced by CNO-mediated activation of hM3Dq when both are expressed in ARCAgRP neurons; these

effects show transient effects of SALB versus the persistent effects of CNO. Asterisk indicates p < 0.05, and all values represent mean ± S.E.M.
The kinetics of CNO on neuronal activation via hM3Dq have

been demonstrated thoroughly by a large number of indepen-

dent studies, with in vivo DREADD-mediated responses begin-

ning 5–10 min after IP injection, and peak electrophysiological

response occurring 45–50 min after injection (Alexander et al.,

2009; Urban and Roth, 2015). It has also been reported by

many labs that both the behavioral and electrophysiological

effects of CNO-mediated DREADD activation can persist for

several hours following a single injection in a manner predicted

by its pharmacokinetic properties (Urban and Roth, 2015). By

contrast, SALA and SALB concentrations in the rodent and pri-

mate brain increase within a few seconds following parenteral

administration and then rapidly decline (t1/2 = 10–15 min; Hooker

et al., 2009). Likewise, the behavioral effects of SALB in KORD-

expressing mice begin and peak shortly after injection, yielding a

behavioral effect that lasts for approximately 1 hr with the doses

administered here. As a prolonged activation of DREADDs by

CNO may be a problem when studying rapidly modulated,

short-term behaviors, the apparently brisk onset of the effects

of SALB in KORD-expressing mice may prove valuable for

such studies. Indeed, prior studies have demonstrated that

SALB is cleared quickly from the brain, but has a slightly more

prolonged plasma half-life (Hooker et al., 2009), and thus its

pharmacokinetic properties may be better suited for studies in

which relatively acute neuronal silencing is required, while

CNO-based DREADDs (e.g., hM4Di) are useful where prolonged

silencing is desired.

Given that SALB has some modest activity at KOR, it is

possible that neurons with a high degree of receptor reserve

could show responses to high systemically administered doses

of SALB. Even though we have been unable to detect any phar-

macological effect of SALB administration, it will be important to

avoid using excessively high doses (e.g., > 10 mg/kg) and to test

SALB in animals in which KORD has not been expressed. Addi-
tionally, because of the limited solubility of SALB, it will be impor-

tant going forward to develop analogs of SALB which show

improved water solubility.

Optogenetic and chemogenetic tools have revolutionized

neuroscience research by facilitating the region- and cell type-

specific manipulation of neuronal activity. Optogenetics pro-

vides inherent advantages with millisecond temporal resolution,

although the hardware required for precise intracranial light de-

livery is not only invasive, but also cumbersome in comparison

to the minimal requirements for chemogenetic manipulation.

Chemogenetic control via DREADDs provides slower kinetics

due to the systemic administration of CNO or SALB, but has

demonstrated its ability to achieve the same functional mapping

results with less invasive intervention (reviewed by Mahler et al.,

2014; Stachniak et al., 2014; Urban and Roth, 2015). It is also

possible to directly infuse CNO into specific brain structures to

obtain a transient and focal DREADD activation. The newly

developed KORD described here provides potentially greater

temporal resolution compared to existing DREADDs, as SALB

pharmacokinetics are relatively rapid; additionally, the KORD’s

effects are apparently robust. Finally, given the relative simplicity

of multiplexing with bimodal control now easily achievable, the

KORD will prove broadly useful for neuroscientists and other

biologists.
EXPERIMENTAL PROCEDURES

Molecular Methods

Molecular Biology

Mutagenesis, radioligand binding, and functional assays were done exactly as

described in Vardy et al. (2013).

Molecular Modeling

Molecular modeling of SALA and SALB in complex with the WT KOR was per-

formed as previously described (Vardy et al., 2013). Modeling of SALA and

SALB in complex with the KORD was achieved by in silico mutation of D138
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to N in the respective WT KOR-ligand complexes, with subsequent energy

minimization in SYBYL-X 2.1 (Tripos Force Field, Gasteiger-Hückel charges,

distance-dependent dielectric constant = 4.0; non-bonded interaction cutoff =

8 Å; termination criterion = energy gradient < 0.05 kcal/(mol 3 Å) or 100,000

iterations).

Viral Production Methods

Virus Production

KORD (Table S2) in pcDNA 3.0 was cloned into a human synapsin (hSyn)-

driven double-floxed pAAV vector derived from pAAV-HA-M4D-IRES-mCi-

trine. The pAAV-HA-KORD-IRES-mCitrine was then used for AAV9 production

at the UNC Vector Core as described (Zhu et al., 2014).

Viral Infusion In Vivo

Mice were anesthetized with ketamine (120 mg/kg) and xylazine (18 mg/kg)

(Sigma), and viral constructs (AAV-hSyn-DIO-HA-KOR DREADD, AAV-

hSyn-mCherry, or AAV-hSyn-KOR DREADD + AAV-hSyn-hM3D) were

stereotaxically injected bilaterally into the VTA/SN, or hypothalamic PVH or

ARC (coordinates for VTA/SN: AP �3.1, ML ± 0.4, DV �5.0; coordinates for

PVH: AP �0.65, ML ± 0.2, DV �4.7; coordinates for ARC: AP �1.5, ML ±

0.3, DV �5.7) using a 1.0-ml Hamilton Neuros 7001 KH syringe at a volume

of 300 nL/side, at a rate of 100 nL/min for the VTA/SN; 25 nL/side, at a rate

of 50 nL/min for the PVH; and 200 nL/side, at a rate of 50 nL/min for the

ARC. After surgery, mice were returned to their cages for 2–3 weeks of recov-

ery before behavioral or electrophysiological testing.

Slide Preparation and Immunohistochemistry

Animals were deeply anesthetized with an overdose of ketamine (400 mg/kg)

and xylazine (40 mg/kg) and transcardially perfused with PBS (4�C, pH 7.4) fol-

lowed by 4% PFA in 0.1 M phosphate buffer (4�C, pH 7.4). Brains were post-

fixed overnight in 4%PFA, and subsequently cryopreserved in 30% sucrose in

0.1 M phosphate buffer. For confocal image collection, tissue sections con-

taining the VTA/SN were cut into 40-mm sections using a sliding microtome

(Leica SM2010 R) and stored in an ethylene glycol/sucrose-based cryoprotec-

tant. For immunohistochemistry, tissue sections were washed in PBS (pH 7.4)

three times, followed by 30 min of permeabilization in PBS with 0.3% Triton-X.

Tissue sections were blocked in 5% normal donkey serum and PBSwith 0.3%

Triton-X for 1 hr, and incubated with 1:500 rabbit anti-HA (Cell Signaling, cat#

3724S, RRID: AB_1549585) and 1:500 mouse anti-mCherry (Abcam, cat#

ab125096, RRID: AB_11133266) for 48 hr at 4�C. Subsequently, tissues

were washed three times for 5 min in PBS with 0.3% Triton-X, and then incu-

bated with Alexa 568 donkey anti-mouse and Alexa 647 donkey anti-rabbit

secondary antibodies (1:250) for 24 hr at 4�C. Tissue sections were washed

three times for 5 min in PBS with 0.3% Triton-X, followed by two 5-min washes

with PBS (pH 7.4). A DAPI counterstain (300 nM) was applied in the first PBS

wash step. Whole-tissue sections were imaged with an epifluorescent slide

scanner at the UNC translational pathology lab. Confocal images of infected

midbrain GABAergic neurons were taken using a Fluoview FV1000 with a

403 (NA 1.3) oil objective. To show co-expression of mCitrine and the HA-

tagged KORD, the same staining protocol was observed, substituting an

anti-GFP antibody recognizing mCitrine.

Quantification of Co-expression of M3-DREADD and KORDs

A total of three 40-mm sections containing the VTA/SN were taken from brains

of three mice who had received multiplexed DREADD injections. In each sec-

tion, a z stack was collected in the VTA using a 403 oil objective (3003 300 mm

field of view). Co-expression of DREADDs was calculated by counting total

transduced cells (either KOR or M3 positive) and calculating the relative

percentages expressing KOR alone, M3 alone, or KOR/M3. Cell counts were

averaged within each animal, and data were analyzed using a Student’s paired

t test.

Behavioral Studies

SALB Evaluation in Control Mice

The analgesic-like effect of KOR-specific drugs was determined measuring

the heat sensitivity of mice in a hot plate assay as previously described (White

et al., 2015). The effect of such drugs on balance and motor coordination was

assessed by the rotarod test (White et al., 2015). KOR activation has been

strongly related to anhedonia (Todtenkopf et al., 2004); the anhedonic effects
944 Neuron 86, 936–946, May 20, 2015 ª2015 Elsevier Inc.
of KOR agonists were measured by ICSS in mice as previously described

(Robinson et al., 2012). This operant behavioral method measures the value

of electrical stimulation (brain stimulation reward or BSR) applied to the fibers

of the medial forebrain bundle (MFB) at the level of the lateral hypothalamus

and can be used to assess the reward-potentiating or reward-devaluing ef-

fects of drugs.

Animals

Adult (at least post-natal day 50) male and female Slc32a1tm2(cre)Lowl/J (VGAT-

ires-Cre; provided by Dr. Bradford Lowell, Harvard University) littermates were

housed in a temperature- and humidity-controlled environment under a 12-hr

light/dark cycle and had free access to food and water. All procedures were

approved by the Institutional Animal Care and Use Committee (IACUC) of

the University of North Carolina at Chapel Hill, the National Institute of Diabetes

and Digestive and Kidney Diseases, or the National Institute on Drug Abuse,

and were conducted according to the Guide for the Care and Use of Labora-

tory Animals (NIH publication no. 85-23, revised 2011).

Locomotor Studies

Locomotor activity was measured before and after treatment with vehicle (s.c.

or i.p.), SALB (1.0–17.0 mg/kg s.c.), or CNO (i.p.) in 28 3 28 cm plexiglass

chambers containing two sets of 16 infrared photobeams (MedAssociates).

Data were collected with software (MED-PC v4.1; MedAssociates) that calcu-

lated the total distance traveled (cm) by measuring the position of the mouse

every 60 ms. During test sessions mice were placed into the center of the

chamber, and locomotion was measured for 60 min. During single-drug expo-

sure sessions, mice were removed from the chambers, injected with drug

(SALB, 1–10.0 mg/kg; CNO, 3.0 mg/kg; or vehicle), and returned to the cham-

ber for 60 min of testing. During two-drug exposure sessions, mice were

removed from the chambers after a 60-min baseline, injected with vehicle or

3.0 mg/kg CNO, returned to apparatus for 30 min, removed, injected with

17.0 mg/kg SALB or vehicle, and returned to the chambers for an additional

30 min of testing. Mice were habituated to vehicle injections for 2 days before

testing. SALB was dissolved in DMSO and injected subcutaneously (s.c.)

through a 27-gauge needle at a volume of 1 mL/g body weight using a Hamilton

GASTIGHT 250-mL syringe. CNO was dissolved in 10% DMSO in saline and

injected i.p. through a 27-gauge needle at a volume of 10 mL/g body weight.

Drugs were administered in counterbalanced order using a within-subjects

design. Drug effects were determined by the total distance traveled during

the 60-min post-injection period or during each 30-min post-injection period.

Dose effects were analyzed with repeated-measures ANOVA with post hoc

Bonferroni t tests when p < 0.05. Individual drug determinations were

compared to vehicle using paired t tests.

Mouse Handling for Feeding Studies

Mice (10- to 12-week-old males) were singly housed for at least 2.5 weeks

following surgery and handled for 10 consecutive days before the assay to

reduce stress response. Feeding studies were performed in home cages

with ad libitum food access. Home cages were changed every day during

food intake measurements to eliminate residual food crumbs in the bedding.

CNO was administered at 1 mg per kg of body weight. Saline was delivered

at the same volume as CNO to maintain consistency in the studies. SALB

was administered at 10 mg/kg, dissolved in DMSO. DMSO was delivered at

the same volume as SALB to maintain consistency. Mice with ‘‘missed’’ viral

injections, incomplete ‘‘hits,’’ or expression outside the area of interest were

excluded from analysis after post hoc examination of mCherry and mCitrine

expression.

Feeding Studies in SIM1-Cre Mice

During the light cycle, animals (SIM1-cre, n = 7; WT, n = 6) were injected with

either DMSO (s.c.) or SALB (10 mg/kg; s.c.), and food intake was measured

1 hr after injection. A full trial consisted of assessing food intake from the study

subjects after they received injections of DMSO on day 1 and SALB on day 2.

Animals received a day ‘‘off’’ between trials before another trial was initiated.

The food intake data from all days following DMSO/SALB injections were

then averaged across four trials and combined for analysis.

Feeding Studies in AGRP-Ires-Cre Mice

Just before the onset of the dark cycle, animals (AGRP-ires-cre, n = 6; WT, n =

6) were injected with either DMSO (s.c.) or SalB (10 mg/kg; s.c.), and food

intake was measured 1 hr after injection. A full trial consisted of assessing

food intake from the study subjects after they received injections of DMSO



on day 1 and SalB on day 2. Animals received a day ‘‘off’’ between trials before

another trial was initiated. The food intake data from all days following DMSO/

SalB injections were then averaged across three trials and combined for

analysis.

Feeding Studies with Multiplexed KOR and hM3Dq DREADD

During the light cycle, animals (AGRP-ires-cre, n = 10) were injected with saline

(i.p.), CNO (1 mg/kg; i.p.), DMSO (s.c.), or CNO + SalB (10 mg/kg; s.c.), and

food intake was monitored every 30 min for 3 hr after s.c. injection. A full trial

consisted of assessing food intake from the study subjects after they received

injections of saline on day 1, CNO on day 2, DMSO on day 3, and CNO + SalB

on day 4. Animals received 3 days ‘‘off’’ between trials before another trial was

initiated. The food intake data from all days were then averaged by condition

across three trials and combined for analysis.

Whole-Cell Electrophysiology Experiments

The ability of KORD to generate a SALB-induced hyperpolarization was tested

using whole-cell electrophysiology. Slices were checked for adequate expres-

sion of the target constructs via the mCitrine fluorescence, and those mice in

which expression of constructs could not be identifiedwere discarded. Using a

potassium gluconate-based internal recording solution, whole-cell electro-

physiological experiments were conducted in current-clamp at the RMP for

each neuron. Following a 5-min stable baseline, 100 nM SALB was bath-

applied for 10 min (VTA/SNVGAT), 6 min (PVHSIM1), or 7 min (ARCAgRP) at a

flow rate of 2 mL per minute. Average RMPs before and after the application

of SALB were calculated, and results were presented as a shift from baseline

RMP. Miniature IPSCs were recorded in the presence of tetrodotoxin (500 nM)

and kynurenic acid (3 mM) to block AMPA and NMDA receptor-dependent

postsynaptic currents. Neurons were held at�70 mV across all voltage-clamp

recordings, and recording electrodes were filled with (in mM) 70 KCl, 65 potas-

sium gluconate, 5 NaCl, 10 HEPES, 2 QX-314, 0.6 EGTA, 4 Na-ATP, 0.4 Na-

GTP (pH 7.25), and 290–295 mOsm. After a 6-min stable baseline, SALB

(100 nM) was bath-applied for 15 min, and recordings were continued during

a 20-min washout period. mIPSCs were detected using ClampFit, and the fre-

quency and amplitude of events were normalized to baseline.
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