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We study endomorphism algebras of 2-term silting complexes 
in derived categories of hereditary finite dimensional algebras, 
or more generally of Ext-finite hereditary abelian categories. 
Module categories of such endomorphism algebras are known 
to occur as hearts of certain bounded t-structures in such 
derived categories. We show that the algebras occurring 
are exactly the algebras of small homological dimension, 
which are algebras characterized by the property that each 
indecomposable module either has injective dimension at most 
one, or it has projective dimension at most one.
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Introduction

Happel and Ringel [11] introduced tilted algebras in the early eighties. These are the 
finite dimensional algebras which occur as endomorphism algebras of tilting modules 
over hereditary finite dimensional algebras.

The notion was generalized by Happel, Reiten and Smalø [12], who introduced quasi-
tilted algebras, which are the algebras occurring as endomorphism algebras of tilting 

✩ This work was supported by FRINAT grant number 231000, from the Norwegian Research Council. 
Support by the Institut Mittag-Leffler (Djursholm, Sweden) is gratefully acknowledged.
* Corresponding author.

E-mail addresses: aslakb@math.ntnu.no (A.B. Buan), yu.zhou@math.ntnu.no (Y. Zhou).
http://dx.doi.org/10.1016/j.aim.2016.07.004
0001-8708/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://core.ac.uk/display/82559627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.aim.2016.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:aslakb@math.ntnu.no
mailto:yu.zhou@math.ntnu.no
http://dx.doi.org/10.1016/j.aim.2016.07.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2016.07.004&domain=pdf


860 A.B. Buan, Y. Zhou / Advances in Mathematics 303 (2016) 859–887
objects in hereditary abelian categories with finiteness conditions. Quasi-tilted algebras 
were shown to have a natural homological characterization. Consider the following prop-
erty on the category modA, of finite dimensional right A-modules, for a finite dimensional 
algebra A: for each indecomposable module X, we have either pdX ≤ 1 or idX ≤ 1
(that is: the projective or the injective dimension is at most one). Let us call this the 
shod-property (=small homological dimension).

In [12], they showed that the quasi-tilted algebras are exactly the algebras of global 
dimension at most two with the shod-property. They also showed that algebras with the 
shod-property have global dimension at most three.

Then, Coelho and Lanzilotta [8] defined shod algebras, as the algebras with the shod-
property. Shod algebras of global dimension three, they called strictly shod. Later Reiten 
and Skowroński [17] gave a characterization of the strictly shod algebras, in terms of a 
property of the AR-quiver QA of A: namely the existence of what they called a faithful 
double section in QA.

Our aim is to show that shod algebras admit a very natural characterization, using 
the notion of silting complexes, as introduced by Keller and Vossieck [15]. Let P be a 
complex in the bounded homotopy category of finitely generated projective A-modules 
Kb(projA). Then P is called silting if HomKb(proj A)(P, P[i]) = 0 for i > 0, and if P
generates Kb(projA) as a triangulated category. Furthermore, we say that P is 2-term if 
P only has non-zero terms in degree 0 and −1. In Section 4, we generalize the notion to 
bounded derived categories of abelian categories. Note that Kb(projA) can be considered 
as a full subcategory of the bounded derived category Db(A), and as equal to Db(A) if 
A has finite global dimension.

Definition 0.1. Let B be a finite dimensional algebra over a field k. We call B silted if there 
is a finite dimensional hereditary algebra H and a 2-term silting complex P ∈ Kb(projH)
such that B ∼= EndDb(H)(P). Furthermore, the algebra B is called quasi-silted if B ∼=
EndDb(H)(P) for a 2-term silting complex P in the derived category of an Ext-finite 
hereditary abelian category H.

In [6], we studied torsion theories induced by 2-term silting complexes, and generalized 
classical results of Brenner–Butler [4] and Happel–Ringel [11]. Here we apply these results 
to prove the following main result.

Theorem 0.2. Let A be a connected finite dimensional algebra over an algebraically closed 
field k. Then

(a) A is a strictly shod or a tilted algebra if and only if it is a silted algebra.
(b) A is a shod algebra if and only it is a quasi-silted algebra.

The paper is organized as follows. We first recall some notation and facts concerning 
2-term silting complexes and induced torsion pairs. Then in Section 2, we prove part (a) 
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of our main theorem. In Section 3 we provide a link to the classification of shod algebras 
by Reiten and Skowroński. Then we define 2-term silting complexes in bounded derived 
categories of Ext-finite abelian categories, in Section 4, where also part (b) of our main 
theorem is proved. We conclude with providing a small example to illustrate our main 
theorem. See [3] for the definition of torsion pairs and other undefined notions for module 
categories. See [9,12] for the definition of t-structures and other undefined notions for 
derived categories.

We would like to thank Steffen Oppermann and Dong Yang for discussions related to 
this paper.

1. Background and notation

In this section we fix notation and recall facts concerning silting theory for 2-term 
silting complexes. We refer to [6] for details.

In this paper, all modules are right modules. Let A be a finite dimensional algebra 
over a field k. We denote by modA the category of all finitely generated A-modules. 
A composition fg of morphisms f and g means first g and then f . But a composition ab
of arrows a and b means first a then b. Under this setting, we have an equivalence from the 
category of all finite dimensional representations of a quiver Q bounded by an admissible 
ideal J to the category modkQ/J , and a canonical isomorphism A ∼= EndA A. For an 
A-module M , we let addM denote the full subcategory of all direct summands in direct 
sums of copies of M , we let FacM denote the full subcategory of all modules which are 
factors of modules in addM , and we let SubM denote the full subcategory of all modules 
which are submodules of modules in addM . Let radM denote the radical of a module M , 
and let socM denote the socle of M . We let D = Homk(−, k) denote the ordinary 
vector-space duality, we let ν denote the Nakayama functor ν = DHomA(−, A), and 
we let τA denote the Auslander–Reiten translation in modA. Note that the Nakayama 
functor induces an equivalence Kb(projA) → Kb(injA), where projA and injA denote 
the full subcategories of projectives and injectives in modA, respectively. Furthermore, 
we have an isomorphism

HomDb(A)(X, νY) ∼= DHomDb(A)(Y,X)

for X, Y in Kb(projA). Let U , V be full subcategories of a triangulated (or abelian) 
category W. We let U ∗ V denote the full subcategory with objects occurring as middle 
terms of triangles (or short exact sequences) with left end terms in U and right end terms 
in V.

Consider a pair of indecomposable A-modules X, Y . If there exists a sequence of 
non-zero morphisms X = X0

f0−−→ X1
f1−−→ X2

f2−−→ · · · → Xn
fn−−→ Xn+1 = Y with Xi

indecomposable for i = 0, 1, · · · , n + 1, then we call X a predecessor of Y , and Y is called 
a successor of X.
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Let P be a 2-term silting complex in Kb(projA) for a finite dimensional k-algebra 
A and let B = EndDb(A)(P). We always assume P is basic, and that k is algebraically 
closed. Then B is a path algebra modulo an admissible ideal. Consider the subcategories

T (P) = {X ∈ modA | HomDb(A)(P, X[1]) = 0}

and

F(P) = {X ∈ modA | HomDb(A)(P, X) = 0}.

Then (T (P), F(P)) is a torsion pair in modA. Furthermore, the functors HomDb(A)(P, −)
restricted to T (P) and HomDb(A)(P, −[1]) restricted to F(P) are both fully faith-
ful and there is a 2-term silting complex Q in Db(modB), such that X (P) :=
HomDb(A)(P, F(P)[1]) = T (Q) and Y(P) := HomDb(A)(P, T (P)) = F(Q). We will 
refer to this fact, which is the main result of [6], as the silting theorem.

Note that HomDb(A)(P, νP) ∼= DHomDb(A)(P, P) is an injective cogenerator for 
modB.

The following facts from [13] and [6] concerning the torsion pair (T (P), F(P)) are 
useful.

Proposition 1.1. With notation as above, we have:

(a) (T (P), F(P)) = (FacH0(P), SubH−1(νP));
(b) the modules in addH0(P) are the Ext-projectives in T (P);
(c) for each X in T (P), there is an exact sequence

0 → L → T0 → X → 0

with T0 in addH0(P) and L in T (P);
(d) the modules in addH−1(νP) are the Ext-injectives in F(P);
(e) for each Y in F(P), there is an exact sequence

0 → Y → F0 → L → 0

with F0 in addH−1(νP) and L in F(P).

We shall also need the following facts concerning B = EndDb(A)(P) and the torsion 
pair (X (P), Y(P)) in modB, in the case where A is hereditary.

Proposition 1.2. Let H be a hereditary algebra, let P be a 2-term silting complex in 
Kb(projH) and let B = EndDb(H)(P). Then the following hold.

(a) The torsion pair (X (P), Y(P)) is split.
(b) X (P) is closed under successors and Y(P) is closed under predecessors.
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(c) For any X ∈ X (P) and Y ∈ Y(P), we have pdYB ≤ 1 and idXB ≤ 1.
(d) The global dimension of B is at most 3.
(e) Any almost split sequence in modB lies entirely in either X (P) or Y(P), or else it 

is a connecting sequence

0 → F (νP ) → F ((radP )[1]) ⊕ F (νP/ soc(νP )) → F (P [1]) → 0,

for P indecomposable projective with P /∈ add(P ⊕P[1]), where F = HomDb(H)(P, −).

Proof. (a) This follows from [6, Lemma 5.5].
(b) This follows from (a), using the fact that there are no non-zero maps from objects 
in X (P) to objects in Y(P).
(c) Let Y be an object in Y(P). By definition, there is an H-module M ∈ T (P) such 
that HomDb(H)(P, M) = Y . Then by Proposition 1.1(c), there is an exact sequence

0 → L → T0 → M → 0

with T0 ∈ addH0(P) and L ∈ T (P). Applying HomDb(H)(P, −), we have an exact 
sequence

0 → HomDb(H)(P, L) → HomDb(H)(P, T0) → HomDb(H)(P,M) → 0.

On the other hand, applying HomH(−, N) for any N ∈ T (P) we have an exact sequence

Ext1H(T0, N) → Ext1H(L,N) → Ext2H(M,N)

where the first term is zero, using Proposition 1.1(b) and that T0 is in addH0(P), and 
where the last term is zero since H is hereditary. So Ext1H(L, N) = 0 for any N ∈ T (P), 
which implies L ∈ addH0(P) by Proposition 1.1(b). Since pdH0(P)H ≤ 1, we have 
that H0(P) is isomorphic to a direct summand of P. So both HomDb(H)(P, T0) and 
HomDb(H)(P, L) are projective, hence, we have pdYB = pdHomDb(H)(P, M)B ≤ 1. The 
proof for X ∈ X (P) is similar by using Proposition 1.1(d, e).

(d) This follows from (c), using [12, Proposition 2.1.1].
(e) This follows from (a) and [6, Proposition 5.6]. �
We also need the following observation which follows from [1, Lemma 2.3].

Lemma 1.3. For a projective A-module P , we have that P [1] is a direct summand in P
if and only if HomA(P, H0(P)) = 0.

We recall the notion of (strictly) shod algebras.
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Definition 1.4. ([8]) An algebra A is called shod if for each indecomposable A-module X, 
either pdXA ≤ 1 or idXA ≤ 1. Also, A is called strictly shod if A is shod and 
gl. dimA = 3.

Let L be the set of the indecomposable A-modules Y such that for all predecessors 
X of Y , we have that pdXA ≤ 1 and R be the set of the indecomposable A-modules X
such that for all successors Y of X, we have that idYA ≤ 1. We recall some equivalent 
characterizations of shod algebras.

Proposition 1.5. ([8]) The following are equivalent for an algebra A:

(a) A is a shod algebra;
(b) (addR, add(L \ R)) is a split torsion pair in modA;
(c) (add(R \ L), addL) is a split torsion pair in modA;
(d) there exists a split torsion pair (T , F) in modA such that pdYA ≤ 1 for each Y ∈ F

and idXA ≤ 1 for each X ∈ T .

2. Silted algebras and shod algebras

Note that by Proposition 1.2(a,c), any silted algebra is shod. In this section we prove 
that a finite dimensional algebra over an algebraically closed field is silted if and only if 
it is strictly shod or tilted. The following will be the key fact for our proof.

Proposition 2.1. If there is a 2-term silting complex P ∈ Kb(projA) such that 
(T (P), F(P)) satisfies condition (d) in Proposition 1.5, then A is a silted algebra.

The proof of this will follow after a series of lemmas. For this we now fix an algebra A
and assume the existence of a 2-term silting complex P =

(
P−1 p−→ P 0

)
∈ Kb(projA), 

such that (T (P), F(P)) satisfies condition (d) in Proposition 1.5. Then, in particular, 
A is a shod algebra. Let B = EndDb(A)(P) ∼= kQB/JB , where JB is an admissible ideal. 
We aim to prove that QB, the Gabriel quiver of B, is acyclic. Then we show that the 
corresponding hereditary algebra H = kQB admits a 2-term silting complex, such that A
is isomorphic to its endomorphism ring. This is our strategy for proving Proposition 2.1.

In order to describe QB and JB we need first to consider two factor algebras of B, 
namely EndA(H0(P)) and EndA(H−1(νP)).

Let P = PL ⊕ PM ⊕ PR, where PL is the direct sum of the indecomposable direct 
summands of P with zero 0th term and PR is the direct sum of the indecomposable 
direct summands of P with zero −1th term. We shall need the following lemma.

Lemma 2.2. H−1(P) is projective and H−1(P)[1] ∈ addPL. Dually, H0(νP) is injective 
and H0(νP) ∈ add νPR.
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Proof. We prove the first part. The proof of the second part is similar. Since P is given 
by the map P−1 p−→ P 0, we have an exact sequence

0 → H−1(P) → P−1 p−→ P 0 cp−→ H0(P) → 0.

By definition, the map cp is a projective cover of H0(P). Let K = ker cp. By Propo-
sition 1.1(b), H0(P) is Ext-projective in T (P). Therefore any direct summand of K is 
not in T (P), and since (T (P), F(P)) is split, by the assumption on P, we have that K
belongs to F(P). So pdKA ≤ 1 by the assumption, and hence H−1(P) is projective.

We now prove that H−1(P)[1] is in addPL. By Lemma 1.3, it is sufficient to prove 
that HomA(H−1(P), H0(P)) = 0. Applying HomDb(A)(−, H0(P)) to the triangle

H−1(P)[1] → P → H0(P) → H−1(P)[2],

we have an exact sequence

HomDb(A)(P, H0(P)[1]) → HomDb(A)(H−1(P)[1], H0(P)[1])

→ HomDb(A)(H0(P), H0(P)[2]),

where the first term is zero by H0(P) ∈ T (P) and the third term is zero by 
idH0(P)A ≤ 1. Then we have HomA(H−1(P), H0(P)) = 0. �

By this we get the following relations between the algebras EndA(H0(P)),
EndA(H−1(νP)) and EndDb(A)(P).

Lemma 2.3. The functor H0(−) gives a surjective homomorphism of algebras

H0(−) : EndDb(A)(P) → EndA(H0(P))

whose kernel is the space consisting of morphisms which factor through addPL. The 
functor H−1(ν−) gives a surjective homomorphism of algebras

H−1(ν−) : EndDb(A)(P) → EndA(H−1(νP))

whose kernel is the space consisting of morphisms which factor through addPR.

Proof. Since H0(−) is a k-linear functor, it gives a homomorphism of the algebras. 
Using that P is a projective presentation of H0(P), we obtain that this homomorphism 
is surjective. By H0(PL) = 0, we have that H0(f) = 0 for any morphism f which 
factors through PL. Now we assume that H0(f) = 0 for a chain map f = (f−1 f0) ∈
EndDb(A)(P). Considering the following diagram:
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P−1 p

f−1

P 0

f0

H0(P)

H0(f)

0

P−1 p
P 0 H0(P) 0

we have that f0 factors through p. So we may assume that f0 = 0 up to homotopy. In this 
case, f−1 factors through H−1(P). Due to Lemma 2.2, we have H−1(P)[1] ∈ addPL. 
Hence f factors through addPL. Thus, the proof of the first statement is complete. The 
second statement is dual to the first one. �

The following will be crucial for proving that QB is acyclic.

Lemma 2.4. Both EndA(H0(P)) and EndA(H−1(νP)) are hereditary algebras.

Proof. We prove the statement for B0 = EndA(H0(P)). The proof for EndA(H−1(νP))
is similar. To complete the proof, it is sufficient to prove that pdSB0 ≤ 1 for any simple 
B0-module S. Since, by Lemma 2.3, the algebra B0 is a factor algebra of B, we have 
that modB0 is a full subcategory of modB closed under both submodules and factor 
modules. Therefore, the torsion pair (X (P), Y(P)) in modB, gives rise to a torsion pair 
(X (P) ∩modB0, Y(P) ∩modB0) in modB0. It is straightforward to verify that we have 
HomDb(A)(P, H0(P)) ∼= HomA(H0(P), H0(P)), so HomDb(A)(P, H0(P)) is a projective 
generator of modB0.

Let S be a simple B0-module and HomDb(A)(P, T0) 
pS→ S → 0 be a projective cover 

of S, where T0 ∈ addH0(P). We have that HomDb(A)(P, T0) is in Y(P), and since Y(P)
is closed under submodules, also the kernel of pS is in Y(P). Hence there is an L in 
T (P), such that there is an exact sequence

0 → HomDb(A)(P, L) → HomDb(A)(P, T0) → S → 0. (2.1)

We claim that Ext1A(L, T (P)) = 0. Indeed, since S is simple, either S ∈ X (P) ∩modB0
or S ∈ Y(P) ∩modB0. If S ∈ Y(P) ∩modB0, then, by definition, there is an X ∈ T (P)
such that S = HomDb(A)(P, X). By the silting theorem, the exact sequence (2.1) gives 
rise to an exact sequence

0 → L → T0 → X → 0 (2.2)

in modA. By the assumption on T (P), we have that Ext2A(−, T (P)) = 0. In 
particular Ext2A(X, T (P)) = 0, and hence it follows from the sequence (2.2) that 
Ext1A(L, T (P)) = 0.

Now consider the case with S ∈ X (P) ∩ modB0. Then, by definition, there is a 
Y ∈ F(P) such that S = HomDb(A)(P, Y [1]). So we have a triangle (see [6, Theorem 2.3]) 
in Db(A):
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Y → L → T0 → Y [1].

Since (T (P), F(P)) is split, it follows that Ext1(Y, T (P)) = 0. Therefore Ext1(L, T (P))
= 0. Thus, we have finished the proof of the claim that Ext1A(L, T (P)) = 0. This implies 
that L ∈ addH0(P) by Proposition 1.1(b). Hence the exact sequence (2.1) is a projective 
resolution of S, which shows that pdSB0 ≤ 1. �

We first give a preliminary description of QB and JB for B = EndDb(A)(P). This will 
be improved in Lemma 2.9.

Let V? be the set of the vertices of QB corresponding to the direct summands of P?
and let e? be the sum of primitive orthogonal idempotents ev with v ∈ V?, where ? = L, 
M or R. Let QLM

B (resp. QMR
B ) be the full subquiver of QB consisting of the vertices in 

VL ∪ VM (resp. VM ∪ VR) and the arrows between them. For any algebra Λ, we use QΛ
to denote its (Gabriel) quiver.

Lemma 2.5. With the above notation, the following hold.

(a) Each path in QB from VL to VR, or from VR to VL, is in JB. In particular, there 
are no arrows from VL to VR and no arrows from VR to VL.

(b) The surjective algebra morphisms in Lemma 2.3 induce isomorphisms of quivers 
QMR

B
∼= QEndA(H0(P)) and QLM

B
∼= QEndA(H−1(νP)).

(c) The algebra B is monomial, and the ideal JB is generated by the paths from VL to 
VR and the paths from VR to VL.

Proof. The first assertion in (a) follows from HomDb(A)(PR, PL) = 0 and
HomDb(A)(PL, PR) = 0. Then the second assertion follows since JB is admissible.

The surjective algebra morphisms in Lemma 2.3 induce algebra-isomorphisms 
EndA(H0(P)) ∼= B/BeLB and EndA(H−1(νP)) ∼= B/BeRB. The (Gabriel) quiver 
of B/Be?B is obtained from QB by removing the vertices in V? and the arrows adjacent 
to these vertices, where ? = L, R. Then (b) follows.

Moreover, it follows from the above algebra-isomorphisms that JB/JBeLJB = 0 =
JB/JBeRJB since, by Lemma 2.4, EndA(H0(P)) and EndA(H−1(νP)) are hereditary. 
So for any minimal relation 

∑
i λifi with λi ∈ k nonzero and fi a path in QB, each fi

factors through VL and VR. Hence, by (a), the assertions in (c) follow. �
Before we can show that QB is acyclic we need some more properties of the torsion 

pair (X (P), Y(P)).

Lemma 2.6. With the above notation, the following hold.

(a) For any X in modA, we have that the B-module HomDb(A)(P, X[1]) is in X (P), 
and that HomDb(A)(P, X) is in Y(P).
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(b) We have that the projective B-module HomDb(A)(P, PL) is in X (P) and that the 
injective B-module HomDb(A)(P, νPR) is in Y(P).

(c) Let CM be the projective cover of a B-module M . If CM is in add HomDb(A)(P, PL), 
then M is in X (P).

(d) Let EM be the injective envelope of aB-module M . If EM is in add HomDb(A)(P, νPR),
then M is in Y(P).

Proof. Part (a) is contained in [6, Lemma 3.6]. Part (b) follows directly from (a). Then 
parts (c) and (d) follow from the facts that X (P) is closed under factor modules, and 
Y(P) is closed under submodules. �
Lemma 2.7. We have Ext2B(X (P), Y(P)) = 0.

Proof. Since (T (P), F(P)) is split by assumption, we have that P is a tilting complex 
by [6, Proposition 5.7]. Then we have

Ext2B(X (P),Y(P)) ∼= HomDb(A)(F(P)[1], T (P)[2]) ∼= Ext1A(F(P), T (P)) = 0. �
Lemma 2.8. There are no paths from VL to VR in QB.

Proof. Assume there is a path p from v1 in VL to v2 in VR, and assume it contains no 
proper subpath from VL to VR. Then, by Lemma 2.5 (c), it follows that p is a minimal 
relation. Let Si for i = 1, 2 be the simple B-module corresponding to vertex vi. Then 
Ext2B(S1, S2) 
= 0, by [5, Proposition 3.4] (note that we use right modules but they use 
left modules).

By Lemma 2.6 (c,d), we have that S1 is in X (P) and S2 is in Y(P). Now the claim 
follows from Lemma 2.7. �

Summarizing, we have the following description of QB and JB .

Lemma 2.9. The quiver QB is acyclic and the ideal JB is generated by the paths from 
VR to VL.

Proof. By Lemma 2.4 and 2.5(b), there are no cycles in the subquivers QLM
B and QMR

B . 
On the other hand, there are no paths from VL to VR by Lemma 2.8. Hence, there are 
no cycles in QB. It follows from Lemma 2.5(c) and Lemma 2.8 that JB is generated by 
the paths from VR to VL. �

The following facts, see [1, Theorem 0.5 and Proposition 1.1], will be crucial. Recall 
that a torsion pair (T , F) in mod Λ is called functorially finite if both T and F are 
functorially finite subcategories.

Proposition 2.10. Let (T , F) be a torsion pair in mod Λ, for a finite dimensional alge-
bra Λ.
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(a) (T , F) is functorially finite if and only if there is a 2-term silting complex C in 
Kb(proj Λ), such that (T , F) = (T (C), F(C)).

(b) (T , F) is functorially finite if and only if T = FacU , where U is Ext-projective in T .

We need one more observation before finishing the proof of Proposition 2.1.

Lemma 2.11. We have X (P) ⊂ mod EndA(H−1(νP)) and Y(P) ⊂ mod EndA(H0(P)).

Proof. We only prove the first inclusion, the second can be proved dually. By the second 
part of Lemma 2.3, we only need to prove that for any element γ in EndDb(A)(P) which 
factors through addPR, we have Xγ = 0 for any X in X (P). This holds since X (P) =
HomDb(A)(P, F(P)[1]) and clearly HomDb(A)(PR, M [1]) = 0 for any A-module M . �
Proof of Proposition 2.1. Let P be a 2-term silting complex in Kb(projA) such that 
the induced torsion pair (T (P), F(P)) satisfies condition (d) in Proposition 1.5 and let 
B = EndDb(A)(P) = kQB/JB . By Lemma 2.9, the quiver QB is acyclic and the ideal JB
is generated by the paths from the vertices in VR to the vertices in VL. Let H = kQB . 
We then have an induced embedding modB ⊂ modH. We claim that (X (P), Y(P)) is 
also a torsion pair in modH.

For any H-module M , we only need to prove that M is in X (P) ∗Y(P). We first note 
that MeLH is in X (P) by Lemma 2.6(c). Consider the short exact sequence

0 → MeLH → M → M/MeLH → 0. (2.3)

By the description of JB it is clear that MJB ⊂ MeLH, and hence that N = M/MeLH

is in modB. Now, using that (X (P), Y(P)) is a torsion pair in modB, we have N ∈
X (P) ∗Y(P). Since X (P) is closed under extensions in modB, by Lemma 2.11, it is also 
an extension-closed subcategory of modEndA(H−1(νP)). By Lemma 2.4, Lemma 2.5(b) 
and the definition of H, we have EndA(H−1(νP)) ∼= H/HeRH. Hence X (P) is also 
closed under extensions in modH. Using the sequence (2.3), we have that M ∈ X (P) ∗
X (P) ∗ Y(P) = X (P) ∗ Y(P). Therefore, (X (P), Y(P)) is also a torsion pair in modH.

We also claim that for any X ∈ X (P) and Y ∈ Y(P), we have a functorial isomorphism 
Ext1H(X, Y ) ∼= Ext1B(X, Y ). For this, it is sufficient to prove that for any short exact 
sequence in modH:

0 → Y → E → X → 0,

we have that E ∈ modB. For any vertex vr in VR, we have Xevr = 0, by Lemma 2.11, 
and similarly Y evl = 0 for any vertex vl in VL. For an arbitrary path evrpevl in JB, we 
then have that X(evrpevl) = 0, so E(evrpevl) ⊂ Y evl = 0. Hence EJB = 0, and E is in 
modB.
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The torsion pair (X (P), Y(P)) is a functorially finite torsion pair in modB, by [6, 
Corollary 3.9], and it then follows from Proposition 2.10(b) that it is also functorially 
finite in modH.

Hence, by Proposition 2.10(a), it follows that there is a 2-term silting complex R
in Kb(projH) such that (T (R), F(R)) = (X (P), Y(P)). Since H is hereditary, the 
torsion pair (X (R), Y(R)) is split by Proposition 1.2(a). By the silting theorem, we have 
X (R) � F(R) = Y(P) � T (P) and similarly Y(R) � F(P).

So we have split torsion pairs (T (P), F(P)) in modA, and (X (R), Y(R)) in 
mod EndDb(H)(R). We claim that we actually have modA � mod EndDb(H)(R). For 
this, we need in addition a functorial isomorphism HomEnd

Db(H)(R)(Y(R), X (R)) ∼=
HomA(F(P), T (P)). Indeed, we have

HomA(F(P), T (P)) ∼= HomDb(A)(F(P)[1][−1], T (P))
∼= Ext1B(X (P),Y(P))
∼= Ext1H(X (P),Y(P))

= Ext1H(T (R),F(R))
∼= HomDb(H)(T (R),F(R)[1])
∼= HomEnd

Db(H)(R)(Y(R),X (R)).

It now follows that modA � mod EndDb(H)(R). Hence A ∼= EndDb(H)(R), and we have 
proved that A is silted. �

The following lemma gives a sufficient condition for a finite dimensional algebra to be 
tilted.

Lemma 2.12. Let A be a finite dimensional algebra and P a 2-term silting complex, such 
that the condition of Proposition 2.1 holds. If, in addition, T (P) contains all the injective 
A-modules, or F(P) contains all the projective A-modules, then A is a tilted algebra.

Proof. Assume T (P) contains all the injective A-modules. Then, we have νPL[−1] ∈
T (P). So 0 = HomDb(A)(P, νPL[−1][1]) = HomDb(A)(P, νPL) ∼= DHomDb(A)(PL, P). 
In particular, HomDb(A)(PL, PL) = 0. Hence PL = 0. Then |H0(P)| = |P| = |A|. 
Since H0(P) ∈ T (P), we have idH0(P)A ≤ 1 by assumption. It is clear that 
Ext1A(H0(P), H0(P)) = 0. So H0(P) is a cotilting A-module. By Lemma 2.4, the al-
gebra EndA(H0(P)) is hereditary. Therefore, the algebra A is tilted. The other case can 
be proved dually. �

Now we prove the main result in this section.

Theorem 2.13. Let A be a connected finite dimensional algebra over an algebraically 
closed field k. Then the following are equivalent:
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(a) A is a silted algebra;
(b) there is a split functorially finite torsion pair (T , F) in modA such that idA X ≤ 1

for any X ∈ T and pdA Y ≤ 1 for any Y ∈ F ;
(c) A is a shod algebra with (add(R \ L), addL) functorially finite;
(d) A is a tilted algebra or a strictly shod algebra.

In this case, the global dimension of A is at most 3.

Proof. (a)⇒(b): This follows from combining Proposition 1.2(a,c) and Proposition 
2.10(a).
(b)⇒(d): Assuming (b), it follows from Proposition 2.10(a) that there is a 2-term silting 
complex P ∈ Kb(projA) such that (T , F) = (T (P), F(P)). If F(P) contains all the 
projective A-modules, then A is a tilted algebra by Lemma 2.12. If there is a projective 
A-module in T (P), since T (P) is contained in addR, then R contains an Ext-projective 
module. By [12, Theorem II.3.3], if A is quasi-tilted, then A is tilted. Thus the proof is 
complete.
(d)⇒(c): See [7, Theorem 3.6].
(c)⇒(b): This is trivial.
(b)⇒(a): This follows from combining Propositions 2.1 and 2.10.

Finally, recall that it was proved in Proposition 1.2(e), that the global dimension of 
a silted algebra is at most 3. �

Note that we have now proved part (a) of Theorem 0.2.

3. Double sections

In [17], Reiten and Skowroński characterized strictly shod algebras as strict double 
tilted algebras, which are algebras whose AR-quiver contains a strict faithful double 
section with certain conditions. Let B be an algebra which is tilted or strictly shod. By 
the previous section, we know that B ∼= EndDb(H)(P) for a 2-term silting complex P
in the bounded derived category of some hereditary algebra H. In this section, we will 
use this fact to give an alternative proof of why B has a faithful double section Δ, by 
identifying the modules in Δ as images of some injective or projective A-modules under 
the functors HomDb(H)(P, −) or HomDb(H)(P, −[1]). Furthermore, we have that Δ is a 
section when B is tilted, while it is a strict double section when B is strictly shod. The 
construction of the double section Δ in a silted algebra is an analogue of the construction 
of a section in a tilted algebra. For the latter, we refer to [3, Section VIII.3].

We recall some definitions concerning AR-quivers. For an algebra Λ, denote by ΓΛ the 
AR-quiver of Λ and by τΛ = DTr and τ−1

Λ = TrD the AR-translations in ΓΛ. A τΛ-orbit 
of a module M ∈ mod Λ is the collection {τmΛ M | m ∈ Z}. A path x0 → x1 → · · · →
xs−1 → xs in ΓΛ is called sectional if there is no i with 1 ≤ i ≤ s − 1 such that 
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xi−1 = τΛxi+1 and is called almost sectional if there is exactly one i with 1 ≤ i ≤ s − 1
such that xi−1 = τΛxi+1.

Let C be a connected component of ΓΛ. A connected full subquiver Δ of C is called 
a double section in C if the following conditions hold:

– Δ is acyclic, i.e. there is no oriented cycles in Δ;
– Δ is convex, i.e. for each path x1 → x2 → · · · → xs in C with x1, xs ∈ Δ we have 
xi ∈ Δ for all 1 ≤ i ≤ s;

– For each τΛ-orbit O in C we have 1 ≤ |Δ ∩ O| ≤ 2;
– If O is a τΛ-orbit in C and |Δ ∩ O| = 2 then Δ ∩ O = {X, τΛX} for some X ∈ C

and there are sectional paths I → · · · → τΛX and X → · · · → P , with I injective 
and P projective.

A double section Δ in C is called strict if there exists a τΛ-orbit O in C with |Δ ∩O| = 2
and is called a section if for any τΛ-orbit O in C we have |Δ ∩O| = 1. A double section 
is called faithful, if the direct sum of the corresponding modules is faithful.

Now let B be a connected silted algebra, that is, B is connected and there is a 
hereditary algebra H and a 2-term silting complex P ∈ Kb(projH) such that B =
EndDb(H)(P). Let F (−) = HomDb(H)(P, −) : Db(H) → modB.

Let P be a complete set of non-isomorphic indecomposable projective H-modules. 
Let Pl be the subset of P consisting of P with P ∈ addP and let Pr be the subset of 
P consisting of P with P [1] ∈ addP. It is clear that Pl ∩ Pr = ∅.

Lemma 3.1. With the above notation, the following hold.

(a) For any P ∈ P, we have F (P [1]) ∈ X (P) and F (νP ) ∈ Y(P); F (P [1]) = 0 if and 
only if P ∈ Pl; F (νP ) = 0 if and only if P ∈ Pr.

(b) For any P ∈ P \ (Pl ∪ Pr), we have that both of F (νP ) and F (P [1]) are indecom-
posable and there is an AR-sequence

0 → F (νP ) → F (νP/ soc(νP )) ⊕ F ((radP )[1]) → F (P [1]) → 0.

In particular, in this case, F (νP ) is not injective and F (P [1]) is not projective.
(c) An indecomposable B-module in X (P) is projective if and only if it is isomorphic 

to F (P [1]) for P ∈ Pr. In this case, there is a right minimal almost split map in 
modB

F (νP/ soc(νP )) ⊕ F ((radP )[1]) → F (P [1]).

(d) An indecomposable B-module in Y(P) is injective if and only if it is isomorphic to 
F (νP ) for P ∈ Pl. In this case, there is a left minimal almost split map in modB

F (νP ) → F (νP/ soc(νP )) ⊕ F ((radP )[1]).
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Proof. Statement (a) follows from Lemma 2.6 and the definitions of Pl and Pr and (b) 
follows from Proposition 1.2(f). We will prove (c). Statement (d) can be proved simi-
larly. For any P ∈ Pr, we have P [1] ∈ addP. So F (P [1]) is projective. Now we prove 
that all indecomposable projective modules in X (P) are of this from. Let F (M [1]) be 
an indecomposable projective B-module in X (P) with M ∈ F(P). Applying the functor 
F (−) to the projective cover PM

pM−−→ M of M in modH, we obtain an epimorphism 
F (PM [1]) → F (M [1]) since F (ker pM [2]) = 0. Since F (M [1]) is projective, this epimor-
phism is split. Hence F (M [1]) is a direct summand of F (PM [1]). Therefore, by (a) and 
(b), F (M [1]) has to have the form F (P [1]) for some P ∈ Pr.

By [9, Chap. 4], there is an AR-triangle

νP → νP/S ⊕ (radP )[1] → P [1] → (νP )[1]

in Db(H), where S = soc(νP ). Applying the functor F to this triangle, we obtain an 
exact sequence

0 → F (νP/S) ⊕ F (radP [1]) → F (P [1]) u−→ F ((νP )[1])

in modB. Note that the last map u in this exact sequence factors through F (S[1]). For 
each indecomposable summand P′ of P, if P′ is of the form P ′[1] for some P ′ ∈ Pr, 
then HomDb(H)(P′, S[1]) is 1-dimensional for P ′ ∼= P , and 0-dimensional for P ′ � P . 
If P′ is not of such form, then H−1(P′) = 0 and hence HomDb(H)(P′, νP [1]) ∼=
DHomDb(H)(P [1], P′) = 0. So the image of u is the simple top of F (P [1]). Hence 
F (νP/S) ⊕ F (radP [1]) → F (P [1]) is a right minimal almost split map. �

Let P ′
r be the subset of P consisting of modules from which there are nonzero 

morphisms to modules in Pr which do not factor through modules in Pl. Dually, let 
P ′

l be the subset of P consisting of modules to which there are nonzero morphisms from 
modules in Pl which do not factor through modules in Pr.

Theorem 3.2. Let H be a finite dimensional hereditary algebra and P be a 2-term silting 
complex in Kb(projH) such that B = EndDb(H)(P) is connected. Then the full subquiver 
Δ of ΓB formed by F (P [1]) for P ∈ P ′

r and by F (νP ) for P ∈ P ′
l ∪ (P \ P ′

r), is a 
faithful double section in a component ΨP of ΓB. Moreover, Δ is a section if and only 
if B is tilted, while Δ is a strict double section if and only if B is strictly shod.

Proof. We first note that, since A is hereditary, then for a projective P with P/
radP ∼= S, we have that radP is projective and νP/S is injective. By Lemma 3.1, 
P ′

r is the set of modules P ∈ P such that there is a path in ΓB from F (P [1]) to 
F (P ′[1]) for some P ′ ∈ Pr, and P ′

l is the set of P ∈ P such that there is a path from 
F (νP ′) to F (νP ) for some P ′ ∈ Pl.

Let Z1 → Z2 → · · · → Zs be a path in ΓB with Z1, Zs ∈ Δ. To prove that Δ is 
convex, it is clearly sufficient to prove that Z2 is in Δ, and proceed by induction.
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By assumption, the module Z1 is either of the form F (P [1]) for P ∈ P ′
r, or of the 

form F (νP ) for P ∈ P ′
l ∪ (P \ P ′

r).
First assume that Z1 is of the form F (P [1]). Since F (P [1]) belongs to X (P), by 

Proposition 1.2(b) we have that none of the Z2, . . . Zs are in Y(P), and hence none are 
of the form F (νQ) for a projective Q. In particular Zs = F (P ′[1]) for some projective 
P ′ in P ′

r, and using repeatedly Lemma 3.1(b,c) also Zs−1, Zs−2, . . . , Z2 must have this 
property. Hence, the claim that Z2 is in Δ holds in this case.

Now assume Z1 is of the form F (νP ) for some P in P ′
l∪(P \ P ′

r). By Lemma 3.1(b, d) 
we then have that either Z2 = F (Q[1]) or Z2 = F (νQ) for a projective Q. In case 
Z2 = F (Q[1]), we can use the argument for case I, to conclude that Q is in P ′

r and 
hence Z2 is in Δ. Therefore assume Z2 = F (νQ). Then by Lemma 3.1(b,d), the map 
Z1 → Z2 is induced by an irreducible map P → Q. If P ∈ P ′

l , then Q ∈ P ′
l and we are 

done. If P /∈ P ′
l , then since P is by assumption not in P ′

r, we must also have that Q is 
not in P ′

r. This finishes the proof for the claim that Z2 is in Δ for case II. Hence, we 
have that Δ is convex.

We next prove that Δ is acyclic. Let Δ′ be the full subquiver of ΓB formed by F (P [1])
for P ∈ P \ Pl and by F (νP ) for P ∈ P \ Pr. It follows from Lemma 3.1 that Δ′ is 
convex and acyclic. It is clear that Δ is a full subquiver of Δ′. So Δ is also acyclic.

We proceed to show that Δ is faithful and connected. For this, consider the B-modules 
Ta = ⊕P∈Pr

F (P [1]) ∈ X (P) and Tb = ⊕P∈P\Pr
F (νP ) ∈ Y(P). We claim that 

T = Ta ⊕ Tb is a tilting module. Indeed, by Proposition 1.2(d) we have pdTb ≤ 1, 
and by Lemma 3.1(c) it follows that Ta is projective. So we have that Ext1(Tb, Ta) ∼=
DHom(Ta, τBTb). Since by Proposition 1.2(b) we have that Y(P) is closed under prede-
cessors, we must have that τBTb is also in Y(P). Hence, since Ta is in X (P), we have that 
Ext1(Tb, Ta) ∼= DHomB(Ta, τBTb) = 0. The B-module F (νP) is Ext-injective in Y(P)
by [6, Proposition 2.8(3)]. Hence, we have Ext1B(Tb, Tb) = 0. Hence Ext1B(T, T ) = 0. 
Since clearly |T | = |A| = |B|, we have that T is a tilting B-module.

Now, let ΔT be the smallest convex full subquiver of ΓB which contains all indecom-
posable summands of T . Since T is a tilting module, we have that ΔT is connected and 
faithful. It is easy to check that ΔT is the full subquiver of Δ′ formed by F (νP ) for 
P ∈ P \ Pr and by F (P [1]) for P ∈ P ′

r. So Δ is a full subquiver of ΔT and ΔT \ Δ is 
contained in Y(P) ∩ Δ′.

We will construct recursively a sequence of faithful connected full subquivers Δ0 =
ΔT , Δ1, · · · , Δm = Δ of Δ′ such that all of them contain Δ as a full subquiver and 
Δs+1 is a full subquiver of Δs with one less vertex for each 0 ≤ s ≤ m − 1. Assume 
that Δs has been constructed for some s. By assumption we have Δ ⊂ Δs ⊂ ΔT and so 
Δs \ Δ ⊂ Y(P) ∩ Δ′. Then for each vertex Z = F (νP ) in Δs \ Δ, there is no path from 
F (νP ′) to Z for any P ′ ∈ Pl, but there is a path from τ−1

B Z = F (P [1]) to F (P ′′[1])
for some P ′′ ∈ Pr. So τ−1

B Z ∈ Δs and one can choose a vertex Z ∈ Δs \ Δ which is a 
source in Δs. Now let Δs+1 be the full subquiver of Δ′ obtained from Δs by removing Z
and the arrows adjacent to Z. By Lemma 3.1(b), we have that Δs+1 is also faithful and 
connected. This finishes the construction and the proof that Δ is faithful and connected.
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Now let ΨP be the connected component of ΓB which contains Δ. By the construction 
of Δ, if a τB-orbit O in ΨP intersects Δ, then |O ∩ Δ| ≤ 2. When it equals 2, the last 
condition in the definition of double section holds. So what we need to prove is that Δ
intersects each τB-orbit in ΨP. By definition, for each P ∈ P, at least one of F (νP ) and 
F (P [1]) is in Δ. Hence what we need to prove is equivalent to that Δ′ intersects each 
τB-orbit in ΨP. This proof is similar to the proof for the tilting case (cf. e.g. the proof of 
[3, Theorem VIII.3.5]), but we provide details for completeness. By induction, we only 
need to prove that for any τB-orbit O ⊂ ΨP, if there is an arrow τnY → Z or Z → τnY

in ΨP for some n ∈ Z, a module Z ∈ O and a module Y ∈ Δ′, then O intersects Δ′. We 
assume that |n| is minimal, and consider the following three cases.

– The case n < 0. We first claim that Y = F (P [1]) for some P ∈ P, since we 
otherwise can replace Y by τ−1Y , and then this contradicts the minimality of |n|. 
We next claim that it follows that Z ∈ Δ′ and then we are done. To prove this 
claim, assume first that Z is in X (P) but not in Δ′. Then, by Lemma 3.1(c), it is not 
projective. So τZ 
= 0 and there exists an arrow τZ → τn+1Y or τn+1Y → τZ. This 
contradicts the minimality of |n|. Now assume Z is in Y(P) but not in Δ′. Then, by 
Lemma 3.1(d), it is not injective and then τ−1Z 
= 0. There is no arrow from τnY to 
Z since τnY ∈ X (P). If there is an arrow Z → τnY , then τ−1Z ∈ X (P) since it is 
a successor of τnY . Since Z ∈ Y(P), the AR-sequence starting at Z is a connecting 
sequence, which implies that Z ∈ Δ′. This is a contradiction.

– The case n > 0. This is dual to the above case.
– The case n = 0. If there exists an arrow Y → Z with Y = F (P [1]) for some P ∈ P, 

then Z ∈ X (P). If Z is projective, then it is in Δ′; if Z is not projective, then τZ 
= 0
and there is an arrow τZ → Y , which implies τZ ∈ Δ′ by Lemma 3.1. If there exists 
an arrow Y → Z with Y = F (νP ) for some P ∈ P, the claim follows directly from 
Lemma 3.1. Similarly, for the case Z → Y , we also have that O intersects Δ′.

Therefore, we have proved that Δ is a faithful double section.
To proceed, consider the following full subquivers of Δ′

Δ′
l = {x ∈ Δ | there is an almost sectional path x → · · · → F (P [1]) for some P ∈ Pr},

Δ′
r = {y ∈ Δ | there is an almost sectional path F (νP ) → · · · → y for some P ∈ Pl},

Δl = (Δ \ Δ′
r) ∪ τBΔ′

r,

Δr = (Δ \ Δ′
l) ∪ τ−1

B Δ′
l.

We claim that for any modules X from Δr and Y from Δl, we have HomB(X, τBY ) = 0. 
By definition, we have {F (P [1]) | P ∈ P ′

l∩P ′
r} ⊂ Δ′

r and {F (νP ) | P ∈ P ′
l∩P ′

r} ⊂ Δ′
l. 

So
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Δl ∩ X (P) = (Δ \ Δ′
r) ∩ X (P) ⊂ {F (P [1]) | P ∈ P ′

r \ (P ′
l ∩ P ′

r)},
Δl ∩ Y(P) ⊂ Δ′ ∩ Y(P) = {F (νP ) | P ∈ P \ Pr},
Δr ∩ Y(P) = (Δ \ Δ′

l) ∩ Y(P) ⊂ {F (νP ) | P ∈ P \ P ′
r}.

Hence by Lemma 3.1, we have τB (Δl ∩ X (P)) ⊂ {F (νP ) | P ∈ P ′
r \ (P ′

l ∩ P ′
r)}. First, 

recall that we have proved that Tb = ⊕P∈PF (νP ) is a direct summand of a tilting 
B-module. Then HomB(Tb, τBTb) = 0. It follows that

HomB(Δr ∩ Y(P), τB (Δl ∩ Y(P))) = 0. (3.1)

Second, for any map f from P1 ∈ P \ P ′
r to P2 ∈ P ′

r \ (P ′
l ∩ P ′

r), since P2 ∈ P ′
r

but P1 /∈ P ′
r, we have that f factors through Pl as f1f2. Furthermore, since P2 /∈ P ′

l , 
the map f1 factors through Pr. Hence F (νf) = 0. By the silting theorem, it is easy to 
check that F (ν−) induces an epimorphism HomA(P1, P2) → HomB(F (νP1), F (νP2)). 
Therefore, we have that

HomB (Δr ∩ Y(P), τB (Δl ∩ X (P))) = 0. (3.2)

Third, note that τBΔl ⊂ Y(P), so we have that

HomB (Δr ∩ X (P), τBΔl) = 0. (3.3)

Combining the equations (3.1), (3.2) and (3.3), we complete the proof of the claim.
It now follows that if Δ is a double section, then B is a strictly shod algebra by [17, 

Theorem 8.2]. On the other hand, if Δ is a section, which implies that Δl = Δr = Δ, 
then by [16, Theorem 1.6] and [18, Theorem 3], it follows that B is a tilted algebra. By 
Theorem 2.13, the algebra B is either tilted or strictly shod, therefore we have the last 
assertion. �
Remark 3.3. In the above proof, a tilting module is constructed for each functorially 
finite torsion pair (T , F) satisfying condition (d) in Proposition 1.5 in a silted algebra, 
which is the one considered in [8] when (T , F) = (add(R \ L), addL).

Remark 3.4. In general, B is not necessarily connected even if H is connected. In this 
case, the subquiver Δ constructed in the above theorem is a union of faithful double 
sections Δi in components Ψi

P of ΓBi
, where each Bi is a connected component of B.

Corollary 3.5. Let H be a finite dimensional hereditary algebra and P be a 2-term silting 
complex in Kb(projH) such that B = EndDb(H)(P) is connected. Then B is strictly shod 
if and only if there are nonzero morphisms f : P1 → P2 and g : P2 → P3 with P1 ∈ Pl, 
with P2 ∈ P \ (Pl ∩Pr) and with P3 ∈ Pr such that f does not factor through Pr and 
g does not factor through Pl.
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Proof. By Theorem 3.2, the algebra B is strictly shod if and only if Δ is a strict double 
section, that is, there is a P2 ∈ P \ (Pl ∪ Pr) such that both F (νP ) and F (P [1])
belong to Δ. By the construction of Δ, this is equivalent to that P2 ∈ P ′

l ∩P ′
r. Then by 

definition, this is equivalent to that there is a morphism from a module P1 ∈ Pl to P2, 
which does not factor through Pr and there is a morphism from P2 to P3 ∈ Pr, which 
does not factor through Pl. Thus, the proof is complete. �
Corollary 3.6. Let H be a finite dimensional hereditary algebra and P be a 2-term tilting 
complex. Then EndDb(H)(P) is a tilted algebra.

Proof. This follows from Theorem 2.13 and Corollary 3.5, using the fact that
HomH(Pl, Pr) = 0 when P is tilting. �
4. Abelian hereditary categories

In this section, we define and study 2-term silting complexes in bounded derived cate-
gories of abelian categories. Let A be an abelian k-category. Assume that A is Ext-finite, 
i.e., for any objects M, N ∈ A, we have that dimk ExtiA(M, N) is finite for all i ≥ 0. 
Then Db(A) is Krull–Schmidt and Hom-finite (cf. [12, Section I.4]). In [13], the authors 
also study 2-term silting complexes in bounded derived categories of abelian categories. 
We remark that the difference between our setting and [13] is that we assume that A is 
Ext-finite while they assume that A admits arbitrary coproducts.

Definition 4.1. A complex P in Db(A) is called a 2-term silting complex if the following 
hold:

(S1) HomDb(A)(P, M [i]) = 0 for any M ∈ A and i 
= 0 or 1.
(S2) HomDb(A)(P, P[1]) = 0.
(S3) For any M ∈ A, if HomDb(A)(P, M [i]) = 0 for any i ∈ Z, then M = 0.

Remark 4.2. When A is the module category of a finite dimensional k-algebra A, we 
show in Corollary 4.11 that the 2-term silting complexes defined here are the same as 
the 2-term silting complexes in Kb(projA) considered in the previous sections of this 
paper.

We need the following well-known result concerning truncations in Db(A).

Lemma 4.3. Let X ∈ Db(A) be an object with Hi(X) = 0 for i < m and i > n. Then 
there exist triangles

Xi−1 → Xi → Hi(X)[−i] → Xi−1[1]
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for i ∈ Z such that Xi = 0 for i < m and Xn = X, where Hi(X) is the n-th cohomology 
of X.

We have the following immediate consequences.

Lemma 4.4. Let P be a complex in Db(A) satisfying (S1). For any X ∈ Db(A) and i ∈ Z, 
there exists an exact sequence

0 → HomDb(A)(P, Hi−1(X)[1]) → HomDb(A)(P,X[i]) → HomDb(A)(P, Hi(X)) → 0.

Proof. Applying HomDb(A)(P, −) to the triangles in Lemma 4.3, by (S1), we have

HomDb(A)(P,X[i]) ∼= HomDb(A)(P,Xi[i]) (4.1)

HomDb(A)(P,Xi−2[i]) = 0 (4.2)

HomDb(A)(P,Xi−2[i + 1]) ∼= HomDb(A)(P,Xi−1[i + 1]) = 0 (4.3)

and two exact sequences

HomDb(A)(P,Xi−2[i]) → HomDb(A)(P,Xi−1[i]) → HomDb(A)(P, Hi−1(X)[−(i− 1)][i])

→ HomDb(A)(P,Xi−2[i + 1])

and

0 → HomDb(A)(P,Xi−1[i]) → HomDb(A)(P,Xi[i]) → HomDb(A)(P, Hi(X)[−i][i])

→ HomDb(A)(P,Xi−1[i + 1]).

By the first exact sequence, together with (4.2) and (4.3), we have HomDb(A)(P, Xi−1[i])
∼= HomDb(A)(P, Hi−1(X)[1]). Then by the second exact sequence, together with (4.1)
and (4.3), we get the required exact sequence. �
Lemma 4.5. Let P be a complex in Db(A) satisfying (S1). Then the following hold.

(a) Hi(P) = 0 for any i > 0 or i < −1.
(b) HomDb(A)(P, P[i]) = 0 for any i > 1 or i < −1.
(c) There is a triangle in Db(A)

H−1(P)[1] → P → H0(P) → H−1(P)[2]. (4.4)

(d) For any M ∈ A, the triangle (4.4) induces a functorial isomorphism

HomDb(A)(H0(P),M) ∼= HomDb(A)(P,M), (4.5)
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and a monomorphism

HomDb(A)(H0(P),M [1]) ↪→ HomDb(A)(P,M [1]). (4.6)

Proof. Let n be the maximal number such that Hn(P) 
= 0 and let m be the minimal 
number such that Hm(P) 
= 0. Then, on the one hand, there is a nonzero map P →
Hn(P)[−n] by Lemma 4.3. On the other hand, let P be of the form · · · → P i di

−→ P i+1 →
· · · , then there is a nonzero map from P to (Pm/ im dm−1)[m]. Hence, by (S1), we have 
that n ≤ 0 and m ≥ −1. Thus we have assertion (a). Then (b) follows from Lemma 4.4
and (c) follows from Lemma 4.3. Finally, applying HomDb(A)(−, M) to the triangle (4.4)
yields the functorial isomorphism (4.5) and the monomorphism (4.6). �

Let P be a complex in Db(A) satisfying (S1). For an integer m, consider the pair of 
subcategories

D≤m(P) = {X ∈ Db(A) | HomDb(A)(P,X[i]) = 0, for any i > m}

and

D≥m(P) = {X ∈ Db(A) | HomDb(A)(P,X[i]) = 0, for any i < m}

in the derived category Db(A). Let T (P) = D≤0(P) ∩A and F(P) = D≥1(P) ∩A. Then 
by (S1), we have

T (P) = {X ∈ A | HomDb(A)(P, X[1]) = 0}

and

F(P) = {X ∈ A | HomDb(A)(P, X) = 0}.

We now obtain results similar to [13, Theorem 2.10].

Lemma 4.6. Let P be a complex in Db(A) satisfying (S1). Then the following hold.

(a) T (P) is closed under factor objects and F(P) is closed under subobjects.
(b) P satisfies (S2) if and only if H0(P) ∈ T (P).
(c) P satisfies (S3) if and only if T (P) ∩ F(P) = {0}.
(d) If P satisfies (S2) and (S3), then:

(i) for each M ∈ A, there is an exact sequence

0 → tM → M → M/tM → 0

with tM ∈ T (P) and M/tM ∈ F(P);
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(ii) (T (P), F(P)) is a torsion pair in A;
(iii) T (P) = FacH0(P);
(iv) an object M ∈ T (P) is Ext-projective if and only if M ∈ addH0(P).

Proof. For (a), we only prove the assertion for T (P). The proof for F(P) is similar. For 
any M ∈ T (P) and an epimorphism f : M → M ′ in A, apply HomDb(A)(P, −) to the 
exact sequence 0 → ker f → M → M ′ → 0. Since HomDb(A)(P, ker f [2]) = 0 by (S1), we 
have that HomDb(A)(P, M ′[1]) = 0. So M ′ ∈ T (P). Then T (P) is closed under factor 
objects.

By Lemma 4.4, there is an exact sequence

0 → HomDb(A)(P, H0(P)[1]) → HomDb(A)(P,P[1]) → HomDb(A)(P, H1(P)) → 0.

Because H1(P) = 0 by Lemma 4.5(a), the assertion (b) follows.
For any M ∈ A, by definition, M ∈ T (P) ∩F(P) if and only if HomDb(A)(P, M [i]) = 0

for any i ∈ Z. So we have (c).
For (d), consider an arbitrary M ∈ A. Since A is Hom-finite and Krull–Schmidt, there 

is a right addH0(P)-approximation g : X → M . Let tM = im g ∈ FacH0(P) and con-
sider the exact sequence 0 → tM → M → M/tM → 0. Since H0(P) is in T (P) by (b), it 
follows from (a) that so is tM . On the other hand, by Lemma 4.5(d), each map from P to 
M factors through H0(P), hence it factors through g. So HomDb(A)(P, M/tM) = 0 and 
then by definition we have M/tM ∈ F(P). Hence (i) holds, and (ii) follows by definition. 
By (a) and (b), we have FacH0(P) ⊂ T (P). Let M ∈ T (P). Since (T (P), F(P)) is a 
torsion pair, we have M ∼= tM ∈ FacH0(P). Hence we have (iii). For (iv), the proof of 
[6, Proposition 2.8(2)] works here, using (iii) and Lemma 4.5(d). �

Applying results from [12], we obtain that 2-term silting complexes induce t-structures 
also in our setting.

Proposition 4.7. Let A be an Ext-finite abelian category, let P be a 2-term silting complex 
in Db(A) and let B = EndDb(A)(P). Then the following hold.

(a) (D≤0(P), D≥0(P)) is a t-structure in Db(A).
(b) This t-structure is bounded, in the sense that for any X ∈ Db(A), there is an s such 

that X ∈ D≤s(P).
(c) C(P) : = D≤0(P) ∩D≥0(P) is an abelian category, where the short exact sequences 

are the triangles in Db(A) whose terms are in A.
(d) C(P) = {X ∈ Db(A) | H0(X) ∈ T (P), H−1(X) ∈ F(P) and Hi(X) = 0 for i 
=

−1 or 0}.
(e) (F(P)[1], T (P)) is a torsion pair in C(P).
(f) HomDb(A)(P, −) gives an equivalence from C(P) to modB.
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Proof. By Lemma 4.4, we have that

D≤0(P) = {X ∈ Db(A) | HomDb(A)(P, Hi−1(X)[1])

= HomDb(A)(P, Hi(X)) = 0, for any i > 0}.

Then by (S1) and (S3), we have

D≤0(P) = {X ∈ Db(A) | Hi(X) = 0 for any i > 0, and H0(X) ∈ T (P)}. (4.7)

Similarly, we have

D≥0(P) = {X ∈ Db(A) | Hi(X) = 0 for any i < −1, and H−1(X) ∈ F(P)}.

Hence by [12, Proposition I.2.1, Corollary I.2.2], (a), (c), (d) and (e) follow. To prove 
(b), consider equation (4.7). Combined with Lemma 4.3, this gives

D≤0(P) =
⋃
z>0

A[z] ∗ · · · ∗ A[1] ∗ T (P). (4.8)

Let X be an arbitrary object in Db(A). By Lemma 4.3, it follows that X ∈ A[−m] ∗ · · · ∗
A[−n] for integers m < n. Then X[n +1] is in A[−m +n +1] ∗ · · · ∗A[1], and hence X ∈
D≤(n+1)(P). This proves (b). For (f), we refer to the proof of [14, Proposition 3.13]. �

Recall from [12] that an object in A is called a tilting object if there exists a torsion 
pair (T , F) in A satisfying the following properties.

(T1) T is a tilting torsion class, that is, T is a cogenerator for A.
(T2) T = FacT .
(T3) ExtiA(T, X) = 0 for X ∈ T and i > 0.
(T4) If Z ∈ T satisfies ExtiA(Z, X) = 0 for all X ∈ T and i > 0, then Z ∈ addT .
(T5) If ExtiA(T, X) = 0 for i ≥ 0 and X in A then X = 0.

The following result gives the relationship between 2-term silting complexes and tilting 
objects.

Proposition 4.8. Let T be an object in an Ext-finite abelian category A. Then T is a 
tilting object in A if and only if it is a 2-term silting complex in Db(A).

Proof. First assume that T is a tilting object in A. Then (S1) follows from [12, 
Lemma 4.1], while (S2) follows from (T2) and (T3) and (S3) follows from (T5). So 
T is a 2-term silting complex in Db(A).

Now assume that T ∈ A is a 2-term silting complex in Db(A). In this case T = H0(T )
is a projective generator in C(T ) by Proposition 4.7(f). Let T = T (T ). Then (T2) 
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follows from Lemma 4.6(d.iii); (T3) and (T4) follows from (S1) and Lemma 4.6(d.iv); 
(T5) follows from (S3). Now we prove (T1). For any M ∈ A, consider the canonical exact 
sequence

0 → tM → M → M/tM → 0 (4.9)

with respect to the torsion pair (T (T ), F(T )). Since T is a projective generator in C(T ), 
there is an exact sequence

0 → N → T ′ → (M/tM)[1] → 0 (4.10)

in C(T ) with T ′ ∈ addT . Since T ′ ∈ T (T ) and T (T ) is closed under subobjects in C(T ), 
we have N is also in T (T ). The exact sequences (4.9) and (4.10) induce triangles

tM → M → M/tM → tM [1]

and

T ′[−1] → M/tM → N → T ′

in Db(A). Because HomDb(A)(T ′[−1], (tM)[1]) ∼= HomDb(A)(T ′, (tM)[2]) = 0 by (S1), 
we have that the map T ′[−1] → M/tM factors as T ′[−1] → M → M/tM . Hence, by the 
octahedral axiom, we have the following commutative diagram of triangles:

T ′[−1] T ′[−1]

tM M M/tM tM [1]

tM E N tM [1]

T ′ T ′

The triangle in the second column gives an exact sequence 0 → M → E → T ′ → 0
in A. By the triangle in the third row, we have E ∈ T (T ) since T (T ) is closed under 
extensions. Hence T (T ) is a cogenerator of A. �
Remark 4.9. By Proposition 4.8, an object T in an Ext-finite abelian category A is a 
tilting object if and only if ExtiA(T, −) = 0 for i > 1, Ext1A(T, T ) = 0 and condition (T5) 
holds. Note that in [12], the category A is only assumed to be Hom-finite. However, if A
has a tilting object T , then by [12, Theorem 4.6], we have that Db(A) is equivalent to the 
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bounded derived category of EndA(T ). Since EndA(T ) is a finite dimensional algebra, it 
follows that also Db(A) is Krull–Schmidt and Hom-finite. Hence A is Ext-finite.

Let Dc(A) be the full subcategory of Db(A) consisting of the complexes X that satisfy

HomDb(A)(X,A[i]) = 0

for i � 0. It is clear that Dc(A) is a thick subcategory of Db(A). Recall that an object 
P in a triangulated category T is called a silting object (see [2, Definition 2.1]) if

– HomT (P, P[i]) = 0 for any i > 0, and
– thickP = T ,

where thickP denotes the smallest thick subcategory of T containing P.

Lemma 4.10. Let P be a 2-term silting complex in Db(A). Then P ∈ Dc(A) and 
thick P = Dc(A). In particular, P is a silting object in Dc(A).

Proof. By (S1) we have that P belongs to Dc(A). Let X be an object in Dc(A). In 
particular, by Proposition 4.7 (b), the complex X belongs to D≤s(P) for some integer s. 
Using (4.8) we obtain

D≤s(P) = D≤0(P)[−s]

=
(⋃

z>0
A[z] ∗ · · · ∗ A[1] ∗ T (P)

)
[−s] ⊂

(⋃
z>0

A[z] ∗ · · · ∗ A[1] ∗ A
)

[−s].

So by definition, we obtain

HomDb(A)(X, D≤s(P)[i]) = 0 for i � 0. (4.11)

Take a right addP[−s]-approximation P′[−s] → X and extend it to a triangle

X1 → P′[−s] → X → X1[1].

By applying HomDb(A)(P, −) to this triangle, we have that X1 is also in D≤s(P). Then 
X ∈ addP[−s] ∗D≤s(P)[1]. Recursively, we have that X is in addP[−s] ∗ addP[−s +
1] ∗ · · · ∗ addP[−s + i − 1] ∗D≤s(P)[i] for any i > 0. Then there is a triangle

X′ → X u−→ X′′ → X′[1]

with X′ ∈ addP[−s] ∗addP[−s +1] ∗· · ·∗addP[−s +i −1] and X′′ ∈ D≤s(P)[i]. By (4.11), 
for i � 0, we have that u = 0. Hence X ∈ thickP, which implies that thickP = Dc(A). 
By (S2) and Lemma 4.5(b), we have HomDb(A)(P, P[i]) = 0 for any i > 0. Hence it 
follows that P is a silting object in Dc(A). �
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Consider now the case with A = modA, for a finite dimensional algebra A. Then we 
have two different definitions of 2-term silting complexes, which we now compare.

Corollary 4.11. Let A be a finite dimensional k-algebra. Regard Kb(projA) as a thick 
subcategory of Db(A). Then Dc(modA) = Kb(projA) and a complex in Db(A) satisfies 
Definition 4.1 if and only if it is a 2-term silting complex in Kb(projA) as defined in 
the introduction.

Proof. It is clear that Kb(projA) ⊂ Dc(modA). Conversely, it is straightforward to 
check that any complex X ∈ Dc(modA) has a projective resolution of finite length, so 
it is in Kb(projA). Hence Dc(A) = Kb(projA).

Let P be a complex {di : P i → P i+1}i∈Z in Db(modA) satisfying (S1), (S2) and (S3). 
Then by Lemma 4.10, the complex P is a silting object in Dc(A) = Kb(projA). Up to 
isomorphism, we may assume that P is minimal in the sense that im di ⊆ radP i+1 for 
all i. By Lemma 4.5(a), Hi(P) = 0 for i > 0 or i < −1, so P i = 0 for i 
= 0, −1. Hence 
P is a 2-term silting complex in Kb(projA).

Let P be a 2-term silting complex in Kb(projA), as defined in the introduction. Then 
it is clear that P satisfies (S1) and (S2). There is a triangle A → P′ → P′′ → A[1], with 
P′, P′′ in addP, see [6, Corollary 3.3]. Since A satisfies (S3), so does P. Thus, the proof 
is finished. �

We also have the following application of Lemma 4.10.

Corollary 4.12. Let A be an Ext-finite abelian category satisfying that for any M ∈ A, 
there is an m ∈ Z such that ExtiA(M, −) = 0 for any i > m. Then Dc(A) = Db(A) and 
the 2-term silting complexes in Db(A) are precisely the silting objects in Db(A) satisfying 
(S1).

Proof. For any object M ∈ A, we have M ∈ Dc(A) by assumption. Since the smallest 
thick subcategory of Db(A) containing A is Db(A), we have Dc(A) = Db(A). Then the 
last part of the assertion follows directly from Lemma 4.10. �
Definition 4.13. Let B be a finite dimensional k-algebra. We call B a quasi-silted algebra 
if there is an Ext-finite hereditary abelian k-category H and a 2-term silting complex P
in Db(H) such that B = EndDb(H)(P).

Lemma 4.14. Let P be a two-term silting complex in the bounded derived category of an 
Ext-finite hereditary abelian category H. Then P ∼= H0(P) ⊕H−1(P)[1] and H−1(P) is 
projective in H.

Proof. Since H is hereditary, triangle (4.4) is split. Hence we have P ∼= H0(P) ⊕
H−1(P)[1]. Then by (S1), it follows that H−1(P) is projective in H. �
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Corollary 4.15. Let H be an Ext-finite hereditary abelian category such that there are 
2-term silting complexes in Db(H). Then H has tilting objects.

Proof. Let P be a 2-term silting complex in Db(H). By Lemma 4.14, we have P ∼=
H0(P) ⊕H−1(P)[1]. Consider a triangle containing a right addH0(P)-approximation of 
H−1(P)[1]

X′ → X → H−1(P)[1] → X′[1],

where X ∈ addH0(P). Since P is a silting object in Db(H) by Corollary 4.12, the 
complex X′ ⊕H0(P) is also a silting object in Db(H) by [2, Theorem 2.31]. It is easy to 
check that X′⊕H0(P) satisfies condition (S1), so by Corollary 4.12 again, X′⊕H0(P) is 
a 2-term silting complex in Db(H). Furthermore, we have that X′ ∈ H−1(P) ∗X implies 
X′ ∈ H. Hence X′ ⊕H0(P) is in H. By Proposition 4.8, it is a tilting object. �

Now we have the following direct consequence, which, together with Theorem 2.13, 
Proposition 4.8 and [12, Theorem II.2.3], also finishes the proof of part (b) of our main 
result, Theorem 0.2.

Corollary 4.16. Any quasi-silted algebra is shod.

Proof. Let P be a 2-term silting complex in Db(H) for an Ext-finite hereditary abelian 
k-category H. By Corollary 4.15, it follows that H has tilting objects. Without loss 
of generality, we may assume that H is indecomposable. Then either H has enough 
projective objects or H does not have any projective objects, by [10, Theorem 4.2]. For 
the first case, we have that H � modH for some finite-dimensional hereditary k-algebra 
H and then EndDb(H)(P) is shod by Theorem 2.13. For the second case, by Lemma 4.14, 
we have P ∼= H0(P) and hence P is isomorphic to a tilting object by Proposition 4.8. 
Hence EndDb(H)(P) is quasi-tilted and hence shod by [12, Theorem II.2.3]. �
5. An example

In this section we discuss a small example of a strictly shod algebra, and point out 
how it can be realized as the endomorphism algebra of a 2-term silting complex over a 
hereditary algebra.

Consider the algebra B = kQ/J , where Q is the Dynkin quiver of type A4, with linear 
orientation

1 2
α

3
β

4
γ

and with ideal of relations J generated by βα and γβ. The global dimension of B is 3.
This is a Nakayama algebra, it has exactly 7 (isomorphism classes of) indecomposable 

modules. Out of these, 5 are projective and/or injective. In addition, we have the simples 
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S2 and S3, corresponding to vertex 2 and 3. It is easily verified that S2 (resp. S3) 
has projective dimension 1 (resp. 2), and injective dimension 2 (resp. 1). So this is by 
definition a strictly shod algebra. It is easily seen to be derived equivalent to a path 
algebra of type A4 (it can be obtained from A4 by tilting twice).

Now consider the hereditary path algebra H = k
→
D4 with 

→
D4 the quiver

1

3 4

2

Let Pi denote the projective H-module corresponding to vertex i. Consider the 2-term 
silting complex given by P = PL ⊕ PM ⊕ PR, with PL = P2[1], with PM = (P3 → P1)
and with PR = P1 ⊕ P4. Then, it is easy to verify that EndDb(mod H)(P) ∼= B.

We remark that by [1, Section 3], there is a 1–1 correspondence between 2-term 
silting complexes and so called support τ -tilting modules for a given algebra, given by 
P �→ H0(P). Note that when the algebra is hereditary, support τ -tilting is the same as 
support tilting. The support tilting module corresponding to P in our example is given 
by P1 ⊕ P4 ⊕ P1/P3, which is easily seen to be a tilting module for the path algebra of 
the subquiver spanned by the vertices 1, 3, 4.
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