
ELSEVIER Artificial Intelligence 92 (1997) 289-300

Artificial
Intelligence

Research Note

Higher-order Petri net models based on
artificial neural networks

Tommy W.S. Chow *, Jin-Yan Li
Department of Electronic Engineering, City Uniuersity of Hong Kong, 83 Tat Chee Avenue, Kowloon,

Hong Kong

Received May 1996; revised November 1996

Abstract

In this paper, the properties of higher-order neural networks are exploited in a new class of
Petri nets, called higher-order Petri nets (HOPN). Using the similarities between neural networks
and Petri nets this paper demonstrates how the McCullock-Pitts models and the higher-order
neural networks can be represented by Petri nets. A 5-tuple HOPN is defined, a theorem on the
relationship between the potential firability of the goal transition and the T-invariant (HOPN) is
proved and discussed. The proposed HOPN can be applied to the polynomial clause subset of
first-order predicate logic. A five-clause polynomial logic program example is also included to
illustrate the theoretical results. 0 1997 Elsevier Science B.V.

Keywords: Neural networks; Higher-order Petri nets; Polynomial clause program

1. Introduction

Petri nets (PN), when used as graphical and mathematical tools, have found consider-
able applications in a number of different areas [8]. On one hand, the places and
transitions of Petri nets are interconnected in various ways to provide the properties of
parallelism, and asynchronies. On the other hand, artificial neural networks (ANN)
based on massively parallel distributed processors which have natural properties for
storing experiential knowledge are being made available for different applications [5].
More importantly, ANN exhibits many characteristics similar to PN, for example, the
activation function in ANN is similar to the firing rule in PN. Owing to the similarities

* Corresponding author. E-mail: eetchow@cityu.edu.hk.

0004-3702/97/$17JXl 0 1997 Elsevier Science B.V. All rights reserved
PII SOOO4-3702(96)00048-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82559413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

290 T.W.S. Chow, J.-Y. Li/Artificiul Intelligence 92 (1997) 289-300

between ANN and PN, many recent works on combining the characteristics of PN and
ANN to form various types of new models have been reported [1,4,10]. As there has
been an increasing need to model diverse and complex systems, conventional Petri nets
have become inadequate for evaluating these situations. This prompted the development
in new classes of nets, for example, high-level Petri nets, which have played an
important role in automatic predicate logic programming [S]. While almost in the same
period of time, there has been much exciting and promising progress in the area of
ANN. Many new architectures, algorithms and theories have emerged in the area of
ANN. Especially, the introduction of higher-order synaptic weights in first-order ANN
has provided a marked contribution on both ANN theory and applications [2,3,6]. The
heuristic introduction of higher-order synaptic weights in neural networks has enabled
us to extend the concept of an arc in PN to a general sense that there exist higher-order
arcs in PN. In this paper we call this new class of Petri nets, higher-order Petri nets
(H~PN).

In computer science the introduction of logic programming has also sparked a new
era because it provides a uniform formalism for diverse aspects in computer science,
especially for artificial intelligence [9]. Murata [S] and Peterka and Murata [9] have
proposed a Petri net called predicate/transition net for a subset of Horn clause logic
programs. It turns out that the goal transition of Horn clause logic programs is
potentially firable if and only if there exists a non-negative T-invariant which includes
the goal transition in its support.

In this paper, we apply the higher-order Petri nets to polynomial logic programs,
which is a broad subset of logic programs and contains Horn clause logic programs. For
such a subset of logic programs, the goal transition is potentially firable (in higher-order
Petri nets) if and only if there exists a non-negative T-invariant (in higher-order Petri
nets) which includes the goal transition in its support.

The rest of this paper is organised as follows. In Section 2, the concepts and the
structures of conventional PN are briefly reviewed, and the McCulloch-Pitts model [5]
and its Petri net model are also described. In Section 3, the higher-order neuron is
described. The higher-order Petri net is formally defined and its related properties are
introduced. Furthermore, the equivalent Petri net model of a higher-order neuron is also
presented in this section. The main results of HOPN together with the theory of
potentially firing goal transition is described in Section 4. Section 5 details the
application of HOPN to polynomial logic programs, this includes the transformation
procedure that translates a polynomial clause program into its net model. Such a
transformation between the specification of the original problem and the model pre-
serves a logical equivalence. A conclusion is drawn in Section 6.

2. Transformation of the McCullock-Pitts model into the PN model

2.1. McCullock-Pitts model

The McCullock-Pitts model [5] shown in Fig. 1 is the simplest form of neural
networks. It is the fundamental building block of many multilayer feedforward networks

T.W.S. Chow, J.-Y. Li/ArtQicial intelligence 92 (1997) 289-300 291

Y

Fig. 1. The neural McCullock-Pitts model.

and recurrent networks. In this model the well-known adaptability comes from represent-
ing the synaptic action by a variable weight which determines whether the neuron

should or should not fire. As there are many synapses, the summation node of the model

computes a linear combination of these inputs applied to its synapses and compares
them to a threshold. The resulting sum is then applied to a step function. If the sum

exceeds the threshold, the neuron fires and the output y is obtained.

In mathematical terms, the output y of the neuron is described as y =flE~=, wixi -
01, where x,, x2,. . . , x, are inputs, w,, w2,. . . , w, are the synaptic weights; 0 is the

threshold; and f(.) is the step function.

2.2. Brief review of conventional PN

Firstly, we briefly describe the concepts of conventional Petri nets [S].
The formal definition of conventional Petri net is described as a Stuple, PN =

(P, T, F, W, M,), where P = {p,, p2,. . . , p,) is a finite set of places; T =

It,, I,,..., tn} is a finite set of transitions, P U T Z 0, and P n T = Id; F C (P X T) U

(TX P) is a set of arcs; W : F + hJ is a weight function, where M represents the set of
non-negative integers; M, : P + N is the initial marking.

Enabled transition: a transition t is said to be enabled if each input place p of t
contains not less than n, number of tokens, where n, is equal to the weight of the
directed arc connecting p to t.

Firing rule: (i) Whether an enabled transition t would fire or not is dependent upon
an additional condition. (ii> The firing of an enabled transition t removes n, number of
tokens from each input place p, where n, is equal to the weight of the directed arc
connecting p to t. It also deposits nd number of tokens in each output place p, where

nd is equal to the weight of the directed arc connecting t to p.
The indegree (outdegree) of a transition t is an integer equal to the sum of the

weights of all incoming (outgoing) arcs of il. A transition is called a source (goal) if the
indegree (outdegree) equals 0. It is also defined that a source transition is uncondition-
ally enabled. The firing of a goal transition only consumes tokens but does not produce
tokens. The firing rule is illustrated in Fig. 2.

Incidence matrix: for a Petri net with n transitions and m places, the incidence
matrix A = [Aij] is an n X m matrix of integers, where aij is the weight of the arc from

transition i to its output place j minus the weight of the arc to transition i from its input
place j.

292 T.W.S. Chow, J.-Y. Li/Artificial Intelligence 92 (1997) 289-300

(4 (4

Fig. 2. An illustration of the firing rules. (a) The marking before firing the enabled transition t. (b) The

marking after tiring t, where t is disabled.

2.3. McCullock-Pitts model of the Petri net form

Using the similarities between neural networks and Petri nets, we are able to
transform the McCullock-Pitts model into the form of a Petri net as shown in Fig. 3,
where t,, , t,,, . . . , t,, and to are source transitions that create inputs to this model. The
spatial integrating behaviour of the neural form is modelled by transition t. Transitions
t, and t, mimic the step function, which is the activation function of the neural form.

3. Higher-order Petri net

The higher-order Petri net will be formally defined in this section. In this paper, we
extend the conventional Petri nets to a general sense by the introduction of higher-order
arcs. This process is similar to the heuristic introduction of higher-order synaptic
weights in neural network systems. After the necessary syntactical definitions are given,
this new type of HOPN is capable of evaluating more general and more complex
systems such as higher-order neural networks, polynomial predicate logic programs, etc.

3.1. Higher-order neuron

The higher-order neuron [2,3,6] is the basic block of higher-order neural networks,
and contains higher-order synaptic weights from its inputs. The total input of such a
higher-order neuron consists of a linear combination of its inputs and combinations of its
input products. For a fully-connected higher-order neuron with N-dimensional input
neurons, x= (x,, x2,. . . , x,), its output fix> is described as

f(x1 = 5 c W(n(&)),%(I)%l(2) . . . X??(j),

j= 0 (n(k)) I

Fig. 3. The McCullock-Pitts model of the Petri net form, where z = Cy= , x,w, - 8.

T.W.S. Chow, J.-Y. Li/Artijicial Intelligence 92 (1997) 289-300 293

where ync k)) is the jth-order connection weights from the input neurons, n(l),
n(2), . . . , n(j): to the higher-order neuron. The inner summation runs over all situations.
The symbol of {n(k))j is a set of positive integers and is defined as (n(k>}j =
{n(l), n(2),...,n(j)}c_{l,2,...,N) and satisfies n(l><n(2)< ... <n(j). Espe-
cially, (n(k)lj = fl, the empty set, if and only if j = 0. In this situation, WY) stands for
the threshold of the higher-order neuron.

3.2. Higher-order Petri net

Definition 1. A higher-order Petri net is defined as a Quple, HOPN =
(P, T, F, W, MO), where P= ipl, p2, p,} is a finite set of places; T =
It,, 12,..., r,}isafinitesetof transitions, PUTfO,and PnT=@; FC(PXT)U

(P2xT)U ... U(P”XT)U(TXP) is a set of arcs. If fE(P’XT), then f is
called the ith-order arc; W : F -+ IV is a weight function, where N represents the set of
non-negative integers; M, : P + N denotes the initial token distribution, called the
initial marking.

According to this definition, it is clear that the major differences between an HOPN
and the conventional Petri nets are the definitions of the arc and the weight. In HOPN,
we denote f,$&&$,,, E (Pk X T), k = 1, 2,. . . , m, as the k&order input arc of
transition j from places prC,), prC2), . . . , prCkj, and its corresponding weight as w:,!:;,,,,
where {r(i)}, = {r(l), r(2), . . . , r(k)} C 11, 2,. . . , m) and r(1) < r(2) < * . . < r(k). We
also denote arc fij,hj E (TX P), as the output arc from transition i to place j and its
corresponding weight as uij.

Definition 2 (Firing rule). A transition t is said to be enabled or firable if there exist at
least one of its kth-order input arcs such that each of this arc’s places have at least as
many tokens as the weight of this k&order arc. Such an arc is defined as an enabled
arc.

An enabled transition may or may not fire. When an enabled transition I fires, one of
its enabled arcs fires. The number of tokens in each of the input places related to the
fired arc, p, is reduced by the number that is equal to the weights assigned to the fired
arc from p to t. And the number of tokens in each of its output places increases by the
number that is equal to the weights of the outgoing arc from the transition 1.

An example shown in Fig. 4 illustrates the definitions and the firing rule of HOPN. In
Fig. 4(a), p,, p2 and p3 are the input places of transition I,, and p4, ps are the output

(a) lb)

Fig. 4. An example of illustration of HOPN. (a) The initial distribution of tokens. (b) The distribution state of
tokens after t, fired.

294 T.W.S. Chow, J.-Y. Li/Artijicial Intelligence 92 (1997) 289-300

places, and w$fj represents the weight of the second-order arc f from places p2, p3 to
transition rr. The remaining arcs are conventional. Except w(z’) = 2, all other weights are
equal to 1. Fig. 4(b) shows the token distribution after the transition t, fired, which is
equivalent to having the arc _#$‘) fired. The arc f2(‘) is not enabled before firing but f{‘)
and f&y are enabled.

Following Peterka and Murata 191, we know that a firing sequence u = (t,, t2,. . . , f,,)
is said to be able to transform a marking M,, into a marking M,,. where
M&,, M,, tz, M,,..., tn] > M,, and Mj represents the marking state after the ith
transition in the firing sequence fires. A firing sequence cr = (t,, t2,. . . , t,,) is said to be
executable from Ma if t, is firable from M,,, and t2 is firable from M,, and so on for
all transitions in (T. A transition t is said to be potentiallyfirable if it can be made
firable through a certain firing sequence.

Definition 3 (Relation matrix and incidence matrix). For an HOPN, if there are m
places and n transitions, there are m relation matrices. The first one, A,, is an n X m
matrix as shown in the following.

PI P2 ..- P,

A, =

(1) a,,
(1)

a2m

I

a(l)
nm

where, ~$1) is the weight of the first-order arc from transition i to place j minus the
weight of the first-order arc from place j to transition i.

The second one, A,, and the last one, A,, are n X s and n X 1 matrices respectively,
where s = Ci.

(PI*

t1

A, =
t2

P,)

a$’ is the negative of the weight of the second-order arc from two places corresponding
to j to transition i, and a$;“) is the negative of the weight of the m&order arc from m
places to transition i.

T.W.S. Chow, J.-Y. Li/Artificial Intelligence 92 (1997) 289-300

___-.

Fig. 5. An informal illustration of a decomposing procedure for HOPN.

295

An HOPN, that has all transitions with outdegree d 1, can be decomposed. Given a
transition ti, the decomposing procedure is shown in Fig. 5. If ti has k non-zero input
arcs, transition ti could be decomposed into k transitions, and each of them connects to
one arc. It is also noted that a higher-order arc can be regarded as a combination of
several conventional arcs. Therefore, ti creates a set of conventional transitions, denoted
as q = (t\‘), ty), . . . , ti”>. After the transformation of all transitions, the definitions of
the higher-order firing ‘rule and the enabled transition are identical to the conventional
one. The transformed HOPN incidence matrix is called the incidence matrix of this
HOPN, and is denoted as A.

t, t,

ty) (1) t, (1) . . . t,, --* p (n) t2 . . . ” tp

Pl

AT =
Pi

Pfl

‘ij

where AT represents the transition of the matrix A. It is noticed that the elements of the
incidence matrix depend on the relation matrices Ai (i = 1, 2,. . . , m>.

Definition 4 (T-invariant). A vector of integers, X’, is called a pre-T-invariant if
ATX’ = 0. The ith entry of the vector X’ is denoted by X’(i). An n-vector of
non-negative integers, X, is called a T-invariant of HOPN only if X(i) = CjX’(j),
where X’(j) is an entry of X’ whose corresponding transition belongs to Ti.

Following Peterka and Murata [91, it is known that a subset of transitions correspond-
ing to non-zero entries of an n-vector X > 0 is called its support and is denoted by
11 X 11. A T-invariant X > 0 is said to be executable from M,, if there exists a firing
sequence (+ executable from marking Ma such that its count vector Cr = X [9].

3.3. Equivalent Petri net of a higher-order neural network

Fig. 6(a) shows the architecture of a second-order neuron. Exploiting the similarities
between the Petri nets and the neural networks, Fig. 6(b) shows the informal transforma-
tion between higher-order Petri nets and higher-order neurons.

296 T.W.S. Chow, J.-Y. Li/Artijicial Intelligence 92 (1997) 289-300

(a> (b)
Fig. 6. (a) The architecture of a second-order neuron, where w,? is a second-order synaptic weight,
y = x,w, + x2w2 + x,.Qw,~. (b) The equivalent Petri net model. t,, t2 are source transitions. If the firing
sequence (1,. t2, t3, t4, t5, t,) is running, place p can get one token of form y,

4. Main results

Peterka and Murata [9] have identified the relationship between the T-invariant and
the potential firability of a goal transition. Based on this method and the techniques for
finding the T-invariant in high-level nets, Petri nets are very useful in solving practical
problems, such as Horn clause logic programs. In this paper, we prove that such a
relationship also exists in the HOPN. Thus, Petri nets can solve a broad class of logic
programs, i.e., polynomial logic programs (the definition will be given in the next
section).

Lemma [9]. Let PN = (P, T, F, W, IV,) be a Petri net (conventional) that has all
transitions with outdegree Q 1. Let tR be a goal transition in T. There exists a jring

sequence to reproduce the empty marking and to fire the goal transition tR in PN iff PN

has a T-invariant (conventional) X such that X > 0 and X(t,> # 0.

Theorem. Let HOPN = (P, T, F, W, IV,) be a higher-order Petri net that has all
transitions with outdegree < 1. Let te be a goal transition in T. There exists a jring

sequence to reproduce the empty marking and to fire the goal transition t, in HOPN ifs
HOPN has a T-invariant X such that X > 0 and X(t,) # 0.

Proof. The necessity can be proved as follows. Firstly, if there exists such a firing
sequence, then X(t,> # 0. Secondly, after all transitions of this HOPN are transformed
into a new Petri net according to the way described in Section 3, conventional firing
rules can similarly be applied to the new Petri net and the original firing sequence
changes into a new firing sequence to reproduce the empty marking. From the Lemma,
the new PN has a T-invariant X’ such that X’ 2 0. In fact, X’ is the pre-T-invariant of
HOPN. Therefore, the HOPN has a T-invariant X such that X > 0 and X(ts) # 0.

The sufficiency can be proved as follows. Based on the definition of the T-invariant
of HOPN, if the HOPN has a T-invariant X such that X & 0 and X(ts) # 0, there exists
a T-invariant of the new PN based on X after the transformation of the HOPN. From the
Lemma, there exists a firing sequence of HOPN to reproduce the empty marking and to

T.W.S. Chow, J.-Y. Li/Artijiciul Intelligence 92 (1997) 289-300 291

fire the goal transition t, only if the entry r, (j) of the PN firing sequence is considered as
ti for all i and k. 0

5. Logic application of HOPN

The HOPN discussed in the above sections can be applied to polynomial clause logic
programming which is the generalised Horn clause. In the first-order predicate logic,
there is a special class of clauses of the form B + (Zy= , Ancij)m, where B and A,(i) are
atomic formulas [7], + is the implication symbol, and m > 0. An atomic formula is of
the form ~(t,,,.., t,>, where p is a k-place predicate symbol and t,, . . . , t, are terms.

(C:z , Ancij)m can be expanded into the form X(l-I A,,,,) only if we consider Aiti, as
Ancij. It can be shown that An(i) is equivalent to Ai(i) in a logic sense. When m = 0,
namely, B + , which stands for the assertion of a fact, corresponds to a source transition
without input places. Another special form, + X(n A,(,,>, is a goal statement and
corresponds to a goal transition.

Consider a simple polynomial logic program that consists of five clauses:
(1) Head(Lussy, Mike) + ;
(2) Tutor(Mike, John) + ;
(3) Head(a, b) + Tutor(a, b);
(4) Employed x, y> + Tutor(x, y> + Head(x, y) + Head(x, z)Employer(z, y);
(5) + Employed x, John).

Clause (1) states “Lussy is the Head of Mike” and is an assertion of a fact. Clause (4)
states “x is an Employer of y if x is a Head of z and z is an Employer of y, or x is a
Tutor of y, or x is a Head of y. Clause (5) is a goal statement saying “who is
Employer of Tom?“.

In the following section, we elaborate the conversion of a polynomial logic program
into a higher-order graphic Petri net. Given a logic program that consists of n clauses
and m distinct predicate symbols, the corresponding graphical HOPN has m places and
n transitions. The above logic program can, therefore, be represented by Fig. 7, which
has five transitions and three places. In this figure, the letters u, b, x, y and z are
denoted as variables and the letters L, M and J are denoted as constants. For each
transition, a variable of the same symbol appearing on the incoming and the outgoing
arcs denotes the same variable. It can be noticed that the arcs in Fig. 7 are labelled with
(M, J>, CL, M), (~9 Y>, (a, b), <(x, z>, (z, y>> and (x, J). According to the
definition of HOPN, these labels are considered as the weights (in a broad sense) which

P2

Fig. 7. A higher-order PN representation of a logic program.

298 T.W.S. Chow, J.-Y. Li/Artijicial Intelligence 92 (1997) 289-300

(4

(b)

Fig. 8. Two Petri-nets with “coloured” tokens [8], including a HOPN, for the illustration of the transition

firing rule.

determine the number of tokens and the type of “coloured” tokens [S] to be removed

from or added to the places. For example, when the transition t in Fig. 8 fires, the
following things occur.

. p, loses one token of the colour (x, y). With the substitution IL I x, MI y), p2

gets one token of (L, M).
. p3 and p4 lose one token of the colour (x, z) and one token of the colour (z, y)

respectively. With the substitution {A 1 x, B I z, C 1 y), p5 gets one token of

(A, C>.
It is also noted that the symbol ((X, z), (z, y)) represents a higher-order weight.
The incidence matrix, A, can be obtained from Fig. 7.

Head(P, > Tut4 p2 1 EmrWer(pLI >

tl (L, M) 0 0

t2 0 (M, J> 0

t3 (a, b) -(a, b> 0

A= 0 (x, Y> .

-(x7 Y> (x, Y>

0 (x, Y> - (z, Y>

ts 0 0 lx, J>

T.W.S. Chow, J.-Y. Li/Artificial Intelligence 92 (1997) 289-300 299

There are three firing sequences, u,, o2 and os, to reproduce empty marking and fire

goal transition, ol = (t2, t,, r,>, u2 = (tz, t3, I,, t,), and o3 = (t,, t2, t3, t,, t,, ts>.
These three firing sequences have the following substitution vectors Xi, X2 and X3.

4

II

t2

t3

x3 =

t4

ts

-1

0
0

{Mb, Jib}

{LIx,Mly)

fi
{LIx,Mlz,Jl

{L 1x1

fl

t2

t3

where fi denotes no firings and {] denotes a firing with no substitutions. X,, X2 and X3
can be interpreted as “pre-T-invariant” as they satisfy AT 0 Xi = 0, i = 1, 2, 3, where 0
denotes “matrix product with substitution” [8,9].

6. Conclusions

Exploiting the properties of higher-order neural networks, the arcs and the weights of
the conventional Petri nets have been extended to a general sense in this paper. The
enabling conditions and the firing rules for HOPN are defined and do not contradict the
conventional Petri nets. The proposed HOPN covers a broader range of cases compared
to the conventional Petri nets. Therefore it can be regarded as a generalisation of the
conventional Petri nets. As there is an inherent relationship between Petri nets and
neural networks, this paper also demonstrates that the McCullock-Pitts model and
higher-order networks can be represented by Petri nets. We have demonstrated that the
application of an HOPN in the class of polynomial clause subset of the first-order
predicate logic is straightforward. The relationship between the potential firability of the
goal transition and the T-invariant (HOPN) has also been discussed. It is shown that the
goal transition of an HOPN is potentially firable if and only if there exists a non-nega-
tive T-invariant which includes the goal transition in its support. Finally, practical results
on the T-invariant have been obtained, and the theorem presented in this paper is
believed to be practically useful.

T.W.S. Chow, J.-Y. Li/Artijicial Intelligence 92 (1997) 289-300

References

[I] S.I. Ahson, Petri net models of fuzzy neural networks, IEEE Trurzs. Syst. Man Cybern. 25 (1995)

926-932.

[2] S.I. Amari, Dualistic geometry of the manifold of higher-order neurons, Neurcrl Networks 4 (1991)

443-451.

[3] CL. Giles and T. Maxwell, Learning, invariance, and generalization in high-order neural networks, Appl.
Optics 26 (1987) 4972-4978.

[4] M.K. Habib and R.W. Newcomb, Neuron type processor modelling using a timed Petri net, IEEE Truns.
Neurul Networks 1 (1990) 282-289.

[.5] S. HayErin, Neural Networks: A Comprehensive Foundution (Macmillan, New York, 1994).

[6] J.Y. Li and T.W.S. Chow, Functional approximation of higher-order neural networks, J. Intell. Syst. (to

appear).
[7] J.W. Lloyd, Foundurions ofLogic Programming (Springer, Berlin, 1984).

[8] T. Murata, Petri nets: properties, analyses and applications, Proc. IEEE 77 (1989) 541-580.

[9] G. Pete&a and T. Murata, Proof procedure and answer extraction in Petri net model of logic programs,

IEEE Truns. Sojiw. Eng. 15 (1989) 209-217.
[IO] K. Venkatesh, 0. Masory and A. Pandya, A high level Petri net model of olfactory bulb, in: Proceedings

Internationd Conjkrence on Neural Networks, San Francisco, CA (1993) 766-771.

