The number of kings in a multipartite tournament

K.M. Koh, B.P. Tan*
Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511, Singapore

Received 7 July 1995; revised 28 November 1995

Abstract

We show that in any n-partite tournament, where $n \geqslant 3$, with no transmitters and no 3 -kings, the number of 4 -kings is at least eight. All n-partite tournaments, where $n \geqslant 3$, having eight 4 -kings and no 3 -kings are completely characterized. This solves the problem proposed in Koh and Tan (accepted).

1. Introduction

An orientation of a graph G is a digraph obtained from G by assigning a direction to each edge in G. Let $K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ denote the complete n-partite graph, where $n \geqslant 2$ and p_{i} is the number of vertices in the i th partite set for each $i=1,2, \ldots, n$. Any orientation of $K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is called an n-partite tournament. An n-partite tournament is called a tournament of order n if $p_{1}=p_{2}=\cdots=p_{n}=1$. A 2-partite tournament is better known as a bipartite tournament.

Let D be a digraph with vertex set $V(D)$. Given $u, v \in V(D)$, the length of a $u-v$ dipath is the number of arcs contained in the path. The distance $d(u, v)$ from u to v is defined as the minimum of the lengths of all $u-v$ dipaths. By convention, $d(u, v)=\infty$ if there exists no $u-v$ dipath. Following [10], a vertex w in D is called an r-king, where r is a positive integer, if $d(w, x) \leqslant r$ for each $x \in$ $V(D)$. The set and the number of r-kings in D are, respectively, denoted by $K_{r}(D)$ and $k_{r}(D)$. The concept of an r-king is closely related to that of the eccentricity $e(v)$ of a vertex v defined by $e(v)=\max \{d(v, x) \mid x \in V(D)\}$, which is a fundamental notion in the applications of graphs and digraphs (see, for instance, $[1,4]$).

Given a vertex v in a digraph D, we shall denote, respectively, by $s(v)$ and $s^{-}(v)$ the outdegree and indegree of v. A vertex v is called a transmitter if $s^{-}(v)=0$. Let T

[^0]be a tournament. The integer $s(v)$ is also called the score of v in T. Note that a vertex w is in $K_{1}(T)$ if and only if $s^{-}(w)=0$. Thus $k_{1}(T) \leqslant 1$. In 1953, the mathematical sociologist Landau pointed out in [9] that every vertex of maximum score in T is a 2-king, and so $k_{2}(T) \geqslant 1$. Answering a question asked by Silverman [15], Moon [11] confirmed that $k_{2}(T) \neq 2$. Thus if $k_{2}(T)>1$, then $k_{2}(T) \geqslant 3$. It is easy to see that $k_{2}(T)=1$ if and only if T contains a (unique) transmitter. On the other hand, Maurer [10] showed that given any two integers n, k with $n \geqslant k \geqslant 3$ and $(n, k) \neq(4,4)$, there exists a tournament T of order n such that $k_{2}(T)=k$; and Reid [14] proved that, given a tournament T of order $n \geqslant 3$, there exists a tournament T^{\prime} such that the subdigraph induced by $K_{2}\left(T^{\prime}\right)$ is isomorphic to T if and only if T contains no transmitters.

Given a digraph D, a trivial necessary condition for the existence of r-kings in D for some r is that

$$
\begin{equation*}
D \text { contains at most one transmitter. } \tag{*}
\end{equation*}
$$

Let T be an n-partite tournament satisfying (*). The first set of results pertaining to the existence of r-kings in T was obtained by Gutin who showed in [3] the following: (1) $k_{4}(T) \geqslant 1$; (2) $k_{3}(T) \geqslant 1$ if each partite set of T contains at most 3 vertices; and (3) there exist infinitely many multipartite tournaments T such that $k_{3}(T)=0$. Gutin's results (1) and (3) were rediscovered by Petrovic and Thomassen [13]. It is obvious that for $n \geqslant 2, k_{4}(T)=k_{2}(T)=1$ if and only if T contains a unique transmitter. To extend the above results, Koh and Tan investigated in [6] certain related problems and (i) obtained some new sufficient conditions for T to have $k_{3}(T) \geqslant 1$, (ii) showed that if T contains no transmitters, then

$$
k_{4}(T) \geqslant \begin{cases}4 & \text { if } n=2 \\ 3 & \text { if } n \geqslant 3\end{cases}
$$

(the case when $n=2$ was proved independently by Petrovic [12]) and (iii) completely characterized all T with no transmitters such that the equalities in (ii) hold. All T with no transmitters and $n \geqslant 3$ such that $k_{4}(T)=4$ were characterized in [7].

In searching for the 4 -kings of an n-partite tournament T in [6, 7], it was observed that some of the existing 4 -kings of T are actually 3 -kings. The following problem thus arises naturally:

If an n-partite tournament T contains no transmitters and $k_{3}(T)=0$, what is the least possible value of $k_{4}(T)$?

In [8], we made the first move to tackle the problem for the case when $n=2$ by establishing that $k_{4}(T) \geqslant 8$ and characterizing all bipartite tournaments T with $k_{3}(T)=0$ and $k_{4}(T)=8$. How about the more general case when $n \geqslant 3$? We shall give in this paper a complete solution to this question.

2. Notation and basic lemmas

Given an integer $n \geqslant 2$, we denote the n partite sets of an n-partite tournament T by $V_{1}, V_{2}, \ldots, V_{n}$. For each $i=1,2, \ldots, n$, let

$$
M_{i}=\left\{w \in V_{i} \mid s(w) \geqslant s(x) \text { for each } x \text { in } V_{i}\right\} .
$$

Given two distinct vertices u, v in T, we write ' $u \rightarrow v$ ' if u is adjacent to v. For any two subsets A, B of $V(T)$, we write ' $A \rightarrow B$ ' to signify that $a \rightarrow b$ for each $a \in A$ and $b \in B$. If $A=\{a\}$, then ' $A \rightarrow B$ ' is replaced by ' $a \rightarrow B$ '. Likewise, if $B=\{b\}$, then ' $A \rightarrow B$ ' is replaced by ' $A \rightarrow b$ '. For $v \in V(T)$, let

$$
O(v)=\{x \in V(T) \mid v \rightarrow x\} \quad \text { and } \quad I(v)=\{x \in V(T) \mid x \rightarrow v\} .
$$

Thus, $s(v)=|O(v)|$ and $s^{-}(v)=|I(v)|$, and for $u, v \in V_{i}, i=1,2, \ldots, n, O(u) \subseteq O(v)$ if and only if $I(u) \supseteq I(v)$. For $A \subseteq V(T)$, the subdigraph of T induced by A is denoted by $\langle A\rangle$.

We shall now give a series of basic lemmas which will be used to derive our main results in the next section.

We first start with tournaments. In Lemmas 1-3 below, H is a tournament of order $n \geqslant 3$ with no transmitters.

Lemma 1 (Reid [14]). The subdigraph $\left\langle K_{2}(H)\right\rangle$ of H itself contains no transmitters.
Lemma 2 (Huang and Li [5]). For each $u \in V(H) \backslash K_{2}(H),\left|I(u) \cap K_{2}(H)\right| \geqslant 2$.
The following lemma can be proved easily.

Lemma 3. Each vertex u in $K_{2}(H)$ lies on some 3-cycle of H.

In the remaining lemmas of this section, we assume that T is an n-partite tournament, where $n \geqslant 2$. Let $x_{i} \in M_{i}, i=1,2, \ldots, n$ and $H=\left\langle\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right\rangle$. Note that H is itself a tournament of order n. We shall call such a tournament H a maximum-scoretournament (MS-tournament) of T.

Lemma 4 (Petrovic and Thomassen [13]). Assume that T contains at most one transmitter. Let H be an MS-tournament of T. Then $K_{2}(H) \subseteq K_{4}(T)$, and so $k_{4}(T) \geqslant$ $k_{2}(H) \geqslant 1$.

Lemma 5 (Koh and Tan [6]). Assume $u, v \in V_{i}, i=1,2, \ldots, n$. If $s(u) \geqslant s(v)$ and u lies on a 3-cycle of T, then $d(u, v) \leqslant 3$.

Lemma 6 (Koh and Tan [6]). Assume $u \in V_{i}$ and $v \in V_{j}, i \neq j$ and let $w \in V_{j} \backslash\{v\}$. If $u \rightarrow v$ and $s(v) \geqslant s(w)$, then $d(u, w) \leqslant 3$.

Lemma 7 (Koh and Tan [6]). Assume $u \in V_{i}$ and $v \in M_{j}$. If $d(u, v) \leqslant 2$, then $d(u, x) \leqslant 4$ for each $x \in V_{j}$.

Lemma 8. Assume T has no transmitters. Let $u \in V(T)$. Suppose $d(u, x) \leqslant r$ for all $x \in V(T) \backslash V_{i}$. Then $u \in K_{r+1}(T)$.

Proof. Let $y \in V_{i}$. Since T has no transmitters, there exists $x \in V(T) \backslash V_{i}$ such that $x \rightarrow y$. Thus $d(u, y) \leqslant d(u, x)+d(x, y) \leqslant r+1$. Hence $u \in K_{r+1}(T)$.

Lemma 9 (Koh and Tan [6]). Assume $u \in M_{i}$ for some i. If
(i) u lies on a 3-cycle of T and
(ii) for each $j, j \neq i$, there exists $v_{j} \in M_{j}$ such that $u \rightarrow v_{j}$, then $u \in K_{3}(T)$.

Lemma 10. Let $u, v \in V(T)$ such that $O(u) \subseteq O(v)$. If $u \in K_{r}(T)$ for some $r \geqslant 3$, then $v \in K_{r}(T)$.

Proof. Let $z \in V(T) \backslash\{u\}$. Since $u \in K_{r}(T), d(u, z) \leqslant r$. As $O(u) \nsubseteq O(v)$, we have $d(v, z) \leqslant r$. It remains to show that $d(v, u) \leqslant r$. If $u \in V_{i}$ and $v \in V_{j}$ with $j \neq i$, then $v \rightarrow u$; otherwise, $O(u) \nsubseteq O(v)$. Thus $d(v, u)=1$. Assume now $u, v \in V_{i}$ for some $i=1,2, \ldots, n$. As $u \in K_{r}(T), d(u, v) \leqslant r$, let $u \rightarrow x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{k-1} \rightarrow v, k \leqslant r$ be a $u-v$ path of length k. Since $O(u) \subseteq O(v), v \rightarrow x_{1}$. Since $I(v) \subseteq I(u), x_{k-1} \rightarrow u$. Hence, $v \rightarrow x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{k-1} \rightarrow u$ is a path of length k from v to u and so $d(v, u) \leqslant r$.

Lemma 11. Assume that $n \geqslant 3, T$ contains no transmitters and $k_{3}(T)=0$. Let $H=$ $\left\langle\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right\rangle$ be an MS-tournament of T. Suppose H contains no transmitters. If $x_{i} \in K_{2}(H)$, then there exists $u \in V_{j} \backslash\left\{x_{j}\right\}$ for some $j=1,2, \ldots, n, j \neq i$, such that
(i) $d\left(x_{i}, u\right)=4$,
(ii) $x_{j} \rightarrow x_{i}$,
(iii) $u \rightarrow x_{k}$ for all $k \neq j$, and
(iv) $u \in K_{4}(T)$.

Futhermore, for such a u, there exists $v \in K_{4}(T) \cap\left(V_{j} \backslash\left\{x_{j}, u\right\}\right)$ such that $d(u, v)=4$ and $O(u) \subseteq O(v)$.

Proof. Let $x_{i} \in K_{2}(H)$. By Lemma $4, x_{i} \in K_{4}(T)$. Since $k_{3}(T)=0$, there exists $u \in$ $V_{j}, j \in\{1,2, \ldots, n\}$, such that $d\left(x_{i}, u\right)=4$. By Lemma 3, x_{i} lies on some 3-cycle of H. Hence x_{i} lies on some 3-cycle of T. By Lemma $5, d\left(x_{i}, z\right) \leqslant 3$ for each $z \in$ V_{i}. Thus $j \neq i$. Since $x_{i} \in K_{2}(H), d\left(x_{i}, x_{j}\right) \leqslant 2$. Thus $u \neq x_{j}$. Observe that $x_{j} \rightarrow x_{i}$; otherwise, by Lemma $6, d\left(x_{i}, u\right) \leqslant 3$. Note also that $u \rightarrow x_{s}$ for all $s \neq j$; otherwise, $d\left(x_{i}, u\right) \leqslant d\left(x_{i}, x_{s}\right)+d\left(x_{s}, u\right) \leqslant 2+1=3$. By Lemma 6, we have
(a) $d(u, z) \leqslant 3$ for all $z \in V_{s}$ and for each $s \neq j$.

Since T has no transmitters, for each $y \in V_{j}$, there exists $z \in V(T) \backslash V_{j}$ such that $z \rightarrow y$. Thus $d(u, y) \leqslant d(u, z)+d(z, y) \leqslant 4$. Hence $u \in K_{4}(T)$. Since $k_{3}(T)=0$, by (a), there
exists $v \in V_{j} \backslash\{u\}$ such that $d(u, v)=4$. Since $d\left(u, x_{j}\right) \leqslant d\left(u, x_{i}\right)+d\left(x_{i}, x_{j}\right)=1+2=3$, $v \neq x_{j}$. As $u, v \in V_{j}$ and $d(u, v)=4, O(u) \subseteq O(v)$. By Lemma $10, v \in K_{4}(T)$.

3. The main results

In this section, we shall solve the problem stated in Section 1. We begin with the following result.

Theorem 1. Let T be an n-partite tournament, where $n \geqslant 3$, with no transmitters and $k_{3}(T)=0$. If T contains an $M S$-tournament $H=\left\langle\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right\rangle$ such that H itself has no transmitters, then $k_{4}(T) \geqslant 9$.

Proof. By assumption, $k_{2}(H) \geqslant 3$. We consider two cases:
Case 1: $k_{2}(H)=3$. We may assume $K_{2}(H)=\left\{x_{1}, x_{2}, x_{3}\right\}$. By Lemma 1, we may also assume $x_{1} x_{2} x_{3} x_{1}$ is a 3-cycle. By Lemma $4, K_{2}(H) \subseteq K_{4}(T)$. Since $k_{3}(T)=0$, by Lemma 11, for each $i=1,2,3$, there exists $\left\{u_{p_{i}}, v_{p_{i}}\right\} \subseteq K_{4}(T) \cap\left(V_{p_{i}} \backslash\left\{x_{p_{i}}\right\}\right)$, where $p_{i} \neq i$, such that $d\left(x_{i}, u_{p_{i}}\right)=d\left(u_{p_{i}}, v_{p_{i}}\right)=4$ and $x_{p_{i}} \rightarrow x_{i}$. Now as $x_{1} x_{2} x_{3} x_{1}$ is a 3-cycle in T, it follows that $p_{1} \in\{3,4, \ldots, n\}, p_{2} \in\{1,4,5, \ldots, n\}$ and $p_{3} \in\{2,4,5, \ldots, n\}$. By Lemma 2, for $i=1,2,3$, if $p_{i} \geqslant 4$, then $\left(\left\{x_{1}, x_{2}, x_{3}\right\} \backslash\left\{x_{i}\right\}\right) \rightarrow x_{p_{i}}$. Thus, p_{1}, p_{2}, p_{3} are pairwise distinct. Since $\left\{x_{i}, u_{p_{i}}, v_{p_{i}}\right\} \subseteq K_{4}(T)$ for $i=1,2,3$, we have $k_{4}(T) \geqslant 9$.

Case 2: $k_{2}(H) \geqslant 4$. By Lemma 4, $K_{2}(H) \subseteq K_{4}(T)$. We may assume $x_{1} \in K_{2}(H)$. Since $k_{3}(T)=0$, by Lemma 11 , there exists $\left\{u_{p}, v_{p}\right\} \subseteq K_{4}(T) \cap\left(V_{p} \backslash\left\{x_{p}\right\}\right), p \neq 1$, such that $d\left(x_{1}, u_{p}\right)=d\left(u_{p}, v_{p}\right)=4$ and $O\left(u_{p}\right) \subseteq O\left(v_{p}\right)$. We may assume $p=n$. By Lemma 11, we also have $x_{n} \rightarrow x_{1}$. If $x_{n} \notin K_{2}(H)$, then by Lemma 2, $\left|I\left(x_{n}\right) \cap K_{2}(H)\right| \geqslant 2$. If $x_{n} \in K_{2}(H)$, then by Lemma 1, $\left\langle K_{2}(H)\right\rangle$ has no transmitters and so $I\left(x_{n}\right) \neq \emptyset$ in $\left\langle K_{2}(H)\right\rangle$. In either case, $I\left(x_{n}\right) \cap K_{2}(H) \neq \emptyset$. We may assume $x_{2} \in I\left(x_{n}\right) \cap K_{2}(H)$. By Lemma 11, there exists $\left\{u_{q}, v_{q}\right\} \subseteq K_{4}(T) \cap V_{q} \backslash\left\{x_{q}\right\}, q \neq 2$, such that $d\left(x_{2}, u_{q}\right)=d\left(u_{q}, v_{q}\right)=4$ and $O\left(u_{q}\right) \subseteq O\left(v_{q}\right)$. By Lemma 11, we also have $x_{q} \rightarrow x_{2}$. Thus $q \neq n$, and we have $\left\{u_{q}, v_{q}, u_{n}, v_{n}\right\} \subseteq K_{4}(T) \backslash K_{2}(H)$. Observe that $u_{q} \rightarrow x_{n}$; otherwise, $d\left(x_{2}, u_{q}\right)=2$. Also, as $O\left(u_{q}\right) \subseteq O\left(v_{q}\right)$, we have $v_{q} \rightarrow x_{n}$. Note that $u_{n} \rightarrow x_{2}$; otherwise, $d\left(x_{1}, u_{n}\right) \leqslant d\left(x_{1}, x_{2}\right)+$ $d\left(x_{2}, u_{n}\right) \leqslant 2+1=3$. Now as $O\left(u_{n}\right) \subseteq O\left(v_{n}\right)$, we have $v_{n} \rightarrow x_{2}$. Since $v_{n} \rightarrow x_{2} \rightarrow x_{n}$ and $x_{n} \in M_{n}$, there exists $w \in V(T) \backslash V_{n}$ such that $x_{n} \rightarrow w \rightarrow v_{n}$. Since $O\left(u_{n}\right) \subseteq O\left(v_{n}\right)$, we have $I\left(v_{n}\right) \subseteq I\left(u_{n}\right)$. Thus $w \rightarrow u_{n}$. Note that $w \notin\left\{u_{q}, v_{q}\right\}$ since $\left\{u_{q}, v_{q}\right\} \rightarrow x_{n}$. By Lemma $11, u_{n} \rightarrow V(H) \backslash\left\{x_{n}\right\}$. Thus $w \notin V(H)$. Suppose $w \in K_{4}(T)$. Then $\left\{u_{n}, v_{n}, u_{q}, v_{q}, w\right\} \cup K_{2}(H) \subseteq K_{4}(T)$ and since $k_{2}(H) \geqslant 4$, we have $k_{4}(T) \geqslant 9$. Assume now $w \notin K_{4}(T)$. Since $w \rightarrow u_{n} \rightarrow x_{i}$ for each $i=1,2, \ldots, n-1$, by Lemma 7 , (g) $d(w, z) \leqslant 4$ for all $z \in V_{i}$ and for each $i=1,2, \ldots, n-1$.

Since $w \notin K_{4}(T)$, by (g), there exists $v \in V_{n}$ such that $d(w, v) \geqslant 5$. Since $w \rightarrow\left\{u_{n}, v_{n}\right\}$, $v \notin\left\{u_{n}, v_{n}\right\}$. Also $v \neq x_{n}$ as $w \rightarrow u_{n} \rightarrow x_{2} \rightarrow x_{n}$. Note that $O\left(u_{n}\right) \subseteq O(v)$; otherwise, $d(w, v) \leqslant 3$. By Lemma $10, v \in K_{4}(T)$. Thus, $\left\{u_{n}, v_{n}, u_{q}, v_{q}, v\right\} \cup K_{2}(H) \subseteq K_{4}(T)$. As $k_{2}(H) \geqslant 4$, we have $k_{4}(T) \geqslant 9$. The proof is now complete.

Fig. 1.

Finally, we have:
Theorem 2. Let T be an n-partite tournament, where $n \geqslant 3$, with no transmitters and $k_{3}(T)=0$. Then
(i) $k_{4}(T) \geqslant 8$;
(ii) $k_{4}(T)=8$ if and only if T is isomorphic to a multipartite tournament of Fig. 1, where $\left\langle V_{1}^{\prime} \cup V_{2}^{\prime}\right\rangle$ and $\left\langle V_{i} \cup V_{j}\right\rangle$ for $i, j \in\{3,4, \ldots, n\}, i \neq j$, are arbitrary bipartite tournaments.

Proof. (i) By Theorem 1, we may assume that every MS-tournament of T has a transmitter. Let $H=\left\langle\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right\rangle$ be an MS-tournament of T. We may assume x_{1} is a transmitter of H. Then $x_{1} \in K_{2}(H)$. By Lemma 4, $x_{1} \in K_{4}(T)$. Since $x_{1} \rightarrow x_{j}$ for all $j \geqslant 2$, by Lemma 6, $d\left(x_{1}, x\right) \leqslant 3$ for all $x \in V(T) \backslash V_{1}$. As $k_{3}(T)=0$, there exists $u \in V_{1}$ such that $d\left(x_{1}, u\right)=4$. It follows that $O\left(x_{1}\right) \subseteq O(u)$. Since $x_{1} \in M_{1}, O(u)=O\left(x_{1}\right)$. By Lemma 10, $u \in K_{4}(T)$. Since $K_{3}(T)=0$, by Lemma $9, u$ and x_{1} lie on no 3-cycles in T. Since T has no transmitters, $I\left(x_{1}\right) \neq \emptyset$. Let $y \in I\left(x_{1}\right)$. Then $d\left(y, x_{i}\right) \leqslant 2$ for each $i=1,2, \ldots, n$. By Lemma $7, y \in K_{4}(T)$, and so $I\left(x_{1}\right) \subseteq K_{4}(T)$.

Claim 1. If $\left|I\left(x_{1}\right) \cap V_{i} \backslash\left\{x_{i}\right\}\right| \geqslant 1$, then $\left|I\left(x_{1}\right) \cap V_{i} \backslash\left\{x_{i}\right\}\right| \geqslant 2$.
We may assume $I\left(x_{1}\right) \cap V_{2} \backslash\left\{x_{2}\right\} \neq \emptyset$. Among the vertices in $I\left(x_{1}\right) \cap V_{2} \backslash\left\{x_{2}\right\}$, let v have maximum score. Since x_{1} is not on any 3-cycle, $v \rightarrow x_{i}$ for all $i \neq 2$. By Lemma $6, d(v, x) \leqslant 3$ for all $x \in V(T) \backslash V_{2}$. Now as $k_{3}(T)=0$, there exists $w \in V_{2} \backslash\{v\}$ such that $d(v, w)=4$. Again, we have $O(v) \subseteq O(w)$. Thus $w \neq x_{2}$. Hence $w \in I\left(x_{1}\right)$, and so $\left|I\left(x_{1}\right) \cap V_{2} \backslash\left\{x_{2}\right\}\right| \geqslant 2$. In addition, from the choice of v, we have $O(v)=O(w)$.

Claim 2. $I(v) \subseteq K_{4}(T)$.
Since T has no transmitters, $I(v) \neq \emptyset$. Let $y \in I(v)$. Since $v \rightarrow x_{i}$ for all $i \neq 2$ and $y \rightarrow v$, we have $d\left(y, x_{i}\right) \leqslant 2$ for all $i \neq 2$. By Lemma $7, d(y, x) \leqslant 4$ for all $x \in V(T) \backslash V_{2}$. Let $z \in V_{2} \backslash\{v\}$. If $d(v, z)=2$, then $d(y, z) \leqslant d(y, v)+d(v, z)=1+2=3$. If $O(v) \subseteq O(z)$, then as $s(v) \geqslant s(z)$, we have $O(v)=O(z)$. Thus $I(z)=I(v)$ and so $y \rightarrow z$. In either case, $d(y, z) \leqslant 3$. Hence $y \in K_{4}(T)$. This shows that $I(v) \subseteq K_{4}(T)$.

Claim 3. $O\left(x_{2}\right) \cap I(v) \subseteq V_{1}$.
Let $a \in O\left(x_{2}\right) \cap I(v)$. Then $x_{2} \rightarrow a \rightarrow v$. Since $v \rightarrow x_{1} \rightarrow x_{2}$ and x_{1} lies on no 3-cycles in T, we must have $a \in V_{1}$. Thus $O\left(x_{2}\right) \cap I(v) \subseteq V_{1}$, as required.

Since $v \rightarrow\left\{x_{1}, u\right\} \rightarrow x_{2}$ and $x_{2} \in M_{2},\left|O\left(x_{2}\right) \cap I(v)\right| \geqslant 2$. Thus $s^{-}(v) \geqslant 2$. By Claims 2 and $3,\left|K_{4}(T) \cap V_{1}\right| \geqslant 4$. Observe that we have actually proved the following claim:

Claim 4. If V_{i} contains a transmitter of some $M S$-tournament, then $\left|V_{i} \cap K_{4}(T)\right| \geqslant 4$.
Claim 5. If $s^{-}(v) \geqslant 3$, then $k_{4}(T) \geqslant 9$.
Assume $s^{-}(v) \geqslant 3$. Suppose $s(v)=s\left(x_{2}\right)$. Then as $v \rightarrow x_{i}$ for all $i \neq 2,\left\langle V(H) \backslash\left\{x_{2}\right\} \cup\right.$ $\{v\}\rangle$ is an MS-tournament with v as a transmitter. By Claim 4, $\left|V_{2} \cap K_{4}(T)\right| \geqslant 4$. Now as $\left|\left\{x_{1}, u\right\} \cup I(v)\right| \geqslant 5$, we have $k_{4}(T) \geqslant 9$. Assume now $s(v)<s\left(x_{2}\right)$. Since $v \rightarrow\left\{x_{1}, u\right\} \rightarrow x_{2}$, we have $\left|O\left(x_{2}\right) \cap I(v)\right| \geqslant 3$. By Claim 3, $O\left(x_{2}\right) \cap I(v) \subseteq V_{1}$. Suppose $I\left(x_{1}\right) \cap V_{i} \backslash\left\{x_{i}\right\} \neq \emptyset$ for some $i \geqslant 3$. By Claim $1,\left|I\left(x_{1}\right) \cap V_{i} \backslash\left\{x_{i}\right\}\right| \geqslant 2$. Now as $I\left(x_{1}\right) \subseteq K_{4}(T)$, we have $\left|V_{i} \cap K_{4}(T)\right| \geqslant 2$, and so $k_{4}(T) \geqslant 9$. Assume now $x_{1} \rightarrow$ V_{i} for all $i \geqslant 3$. Then $v \rightarrow V_{i}$ for all $i \geqslant 3$; otherwise, x_{1} lies on some 3 -cycle in T. Thus $I(v) \subseteq V_{1}$. If $s^{-}(v) \geqslant 5$, then $k_{4}(T) \geqslant 9$. Assume now $3 \leqslant s^{-}(v) \leqslant 4$. Suppose $I(v) \cap I\left(x_{2}\right) \neq \emptyset$. Then as $\left|O\left(x_{2}\right) \cap I(v)\right| \geqslant 3$ and $s^{-}(v) \leqslant 4$, we have $\left|O\left(x_{2}\right) \cap I(v)\right|=3$ and $\left|I\left(x_{2}\right) \cap I(v)\right|=1$. Let $O\left(x_{2}\right) \cap I(v)=\{a, b, c\}$ and $I\left(x_{2}\right) \cap I(v)=\{e\}$. Note that $e \rightarrow v \rightarrow V(T) \backslash\left(V_{2} \cup\{a, b, c, e\}\right)$ and $e \rightarrow x_{2} \rightarrow\{a, b, c\}$. By Lemma 8, $e \in K_{3}(T)$, a contradiction. Thus, $I\left(x_{2}\right) \cap I(v)=\emptyset$. Note that $x_{2} \rightarrow I(v) \rightarrow v \rightarrow V(T) \backslash\left(V_{2} \cup I(v)\right)$. By Lemma 8, $x_{2} \in K_{4}(T)$. Now as $k_{3}(T)=0$, there exists $z \in V_{2} \backslash\left\{x_{2}\right\}$ such that $d\left(x_{2}, z\right)=4$. Again, $O\left(x_{2}\right) \subseteq O(z)$. Note that $z \notin\{v, w\}$. By Lemma $10, z \in K_{4}(T)$. Thus, $\left\{x_{1}, u, v, w, x_{2}, z\right\} \cup I(v) \subseteq K_{4}(T)$, and so $k_{4}(T) \geqslant 9$. This proves Claim 5 .

We now consider $s^{-}(v)=2$. Since $\left|O\left(x_{2}\right) \cap I(v)\right| \geqslant 2, I(v)=O\left(x_{2}\right) \cap I(v)$. Note that $x_{2} \rightarrow I(v) \rightarrow v \rightarrow V(T) \backslash\left(V_{2} \cup I(v)\right)$. By Lemma 8, $x_{2} \in K_{4}(T)$. As $k_{3}(T)=0$, there exists $c \in V_{2} \backslash\left\{x_{2}\right\}$ such that $d\left(x_{2}, c\right)=4$. Thus $O\left(x_{2}\right) \subseteq O(c)$. Since $x_{2} \in M_{2}$, $O(c)=O\left(x_{2}\right)$. By Lemma $10, c \in K_{4}(T)$, and so $k_{4}(T) \geqslant 8$. This proves part (i).
(ii) The sufficiency is obvious. We shall prove the necessity. Assume that $k_{3}(T)=0$ and $k_{4}(T)=8$. By Theorem 1, we may assume that every MS-tournament of T has a transmitter. Let x_{1}, x_{2}, u, v, w be the vertices as described in the proof of part (i). Then $\left\{x_{1}, u, v, w\right\} \subseteq K_{4}(T)$. Since $k_{4}(T)=8$, it follows from the proof of part (i) that $s^{-}(v)=2, x_{2} \in K_{4}(T)$, and that there exists $c \in K_{4}(T) \cap V_{2} \backslash\left\{x_{2}\right\}$ such that $d\left(x_{2}, c\right)=4$
and $O(c)=O\left(x_{2}\right)$. Now as $x_{2} \in M_{2}$, we have $s^{-}\left(x_{2}\right)=2$ and $x_{2} \rightarrow V(T) \backslash\left(V_{2} \cup\left\{x_{1}, u\right\}\right)$. Since $\left|O\left(x_{2}\right) \cap I(v)\right| \geqslant 2$, we have $I(v)=O\left(x_{2}\right) \cap I(v)$. Let $O\left(x_{2}\right) \cap I(v)=\{a, b\}$. Then $\{v, w\} \rightarrow V(T) \backslash\left(V_{2} \cup\{a, b\}\right)$. By Claims 2 and 3 in (i), $\{a, b\} \subseteq K_{4}(T) \cap V_{1}$. Thus, $K_{4}(T)=\left\{x_{1}, u, v, w, x_{2}, a, b, c\right\}$. Since $I\left(x_{1}\right) \subseteq K_{4}(T)$, we have $s^{-}\left(x_{1}\right)=s^{-}(u)=2$ and $\left\{x_{1}, u\right\} \rightarrow V(T) \backslash\left(V_{1} \cup\{v, w\}\right)$. Note that $\{a, b\} \rightarrow\{v, w\} \rightarrow V(T) \backslash\left(V_{2} \cup\{a, b\}\right)$ and $\{a, b\} \rightarrow v \rightarrow x_{1} \rightarrow V_{2} \backslash\{v, w\}$. Thus, $d(a, x) \leqslant 3$ for all $x \in V(T) \backslash\{b\}$ and $d(b, x) \leqslant 3$ for all $x \in V(T) \backslash\{a\}$. Now as $k_{3}(T)=0$, we must have $d(a, b)=d(b, a)=4$. Thus $O(a)=O(b)$. Suppose $s^{-}(a) \geqslant 3$. Let $z \in I(a) \backslash\left\{x_{2}, c\right\}$. Then $z \rightarrow\{a, b\} \rightarrow\{v, w\} \rightarrow$ $V(T) \backslash\left(V_{2} \cup\{a, b\}\right)$. By Lemma $8, z \in K_{4}(T)$, a contradiction. Thus, $s^{-}(a)=s^{-}(b)=2$ and $\{a, b\} \rightarrow V(T) \backslash\left(V_{1} \cap\left\{x_{2}, c\right\}\right)$. Combining the above results, we conclude that T is isomorphic to an n-partite tournament of Fig. 1.

Acknowledgements

We would like to express our sincere thanks to the referees for their helpful suggestions. One of the referees even helped simplify the proof of Theorem 2.

References

[1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Reading, MA, 1990).
[2] W.D. Goddard, G. Kubicki, O.R. Oellermann and S. Tian, On multipartite tournaments, J. Combin. Theory Ser. B 52 (1991) 284-300.
[3] G.M. Gutin, The radii of n-partite tournaments, Math. Notes 40 (1986) 743-744.
[4] G.M. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey, J. Graph Theory 19 (1995) 481-505.
[5] J. Huang and W. Li, Toppling kings in a tournament by introducing new kings, J. Graph Theory 11 (1987) 7-11.
[6] K.M. Koh and B.P. Tan, Kings in multipartite tournaments, Discrete Math., accepted.
[7] K.M. Koh and B.P. Tan, Multipartite tournaments having exactly four 4-kings, in: Combinatorics, Graph Theory, Algorithms and Applications, Beijing, 1993 (World Science Publishing, River Edge, NJ, 1994) 125-136.
[8] K.M. Koh and B.P. Tan, Number of 4-kings in bipartite tournaments with no 3-kings, Discrete Math., accepted.
[9] H.G. Landau, On dominance relations and the structure of animal societies, III: the condition for a score structure, Bull. Math. Biophys. 15 (1953) 143-148.
[10] S.B. Maurer, The king chicken theorems, Math. Mag. 53 (1980) 67-80.
[11] J.W. Moon, Solution to problem 463, Math. Mag. 35 (1962) 189.
[12] V. Petrovic, Kings in bipartite tournaments, submitted.
[13] V. Petrovic and C. Thomassen, Kings in k-partite tournaments, Discrete Math. 98 (1991) 237-238.
[14] K.B. Reid, Every vertex a king, Discrete Math. 38 (1982) 93-98.
[15] D.L. Silverman, Problem 463, Math. Mag. 35 (1962) 189.

[^0]: * Corresponding author.

