

DISCRETE MATHEMATICS

Discrete Mathematics 167/168 (1997) 411-418

The number of kings in a multipartite tournament

K.M. Koh, B.P. Tan*

Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511, Singapore

Received 7 July 1995; revised 28 November 1995

Abstract

We show that in any *n*-partite tournament, where $n \ge 3$, with no transmitters and no 3-kings, the number of 4-kings is at least eight. All *n*-partite tournaments, where $n \ge 3$, having eight 4-kings and no 3-kings are completely characterized. This solves the problem proposed in Koh and Tan (accepted).

1. Introduction

An orientation of a graph G is a digraph obtained from G by assigning a direction to each edge in G. Let $K(p_1, p_2, ..., p_n)$ denote the complete *n*-partite graph, where $n \ge 2$ and p_i is the number of vertices in the *i*th partite set for each i = 1, 2, ..., n. Any orientation of $K(p_1, p_2, ..., p_n)$ is called an *n*-partite tournament. An *n*-partite tournament is called a *tournament* of order *n* if $p_1 = p_2 = \cdots = p_n = 1$. A 2-partite tournament is better known as a *bipartite tournament*.

Let D be a digraph with vertex set V(D). Given $u, v \in V(D)$, the length of a u-v dipath is the number of arcs contained in the path. The distance d(u, v)from u to v is defined as the minimum of the lengths of all u-v dipaths. By convention, $d(u, v) = \infty$ if there exists no u-v dipath. Following [10], a vertex w in D is called an r-king, where r is a positive integer, if $d(w, x) \leq r$ for each $x \in$ V(D). The set and the number of r-kings in D are, respectively, denoted by $K_r(D)$ and $k_r(D)$. The concept of an r-king is closely related to that of the eccentricity e(v) of a vertex v defined by $e(v) = \max\{d(v, x) | x \in V(D)\}$, which is a fundamental notion in the applications of graphs and digraphs (see, for instance, [1, 4]).

Given a vertex v in a digraph D, we shall denote, respectively, by s(v) and $s^{-}(v)$ the outdegree and indegree of v. A vertex v is called a *transmitter* if $s^{-}(v) = 0$. Let T

^{*} Corresponding author.

be a tournament. The integer s(v) is also called the *score* of v in T. Note that a vertex w is in $K_1(T)$ if and only if $s^-(w) = 0$. Thus $k_1(T) \leq 1$. In 1953, the mathematical sociologist Landau pointed out in [9] that every vertex of maximum score in T is a 2-king, and so $k_2(T) \geq 1$. Answering a question asked by Silverman [15], Moon [11] confirmed that $k_2(T) \neq 2$. Thus if $k_2(T) > 1$, then $k_2(T) \geq 3$. It is easy to see that $k_2(T) = 1$ if and only if T contains a (unique) transmitter. On the other hand, Maurer [10] showed that given any two integers n, k with $n \geq k \geq 3$ and $(n, k) \neq (4, 4)$, there exists a tournament T of order $n \gg 3$, there exists a tournament T' such that the subdigraph induced by $K_2(T')$ is isomorphic to T if and only if T contains no transmitters.

Given a digraph D, a trivial necessary condition for the existence of r-kings in D for some r is that

D contains at most one transmitter. (*)

Let T be an n-partite tournament satisfying (*). The first set of results pertaining to the existence of r-kings in T was obtained by Gutin who showed in [3] the following: (1) $k_4(T) \ge 1$; (2) $k_3(T) \ge 1$ if each partite set of T contains at most 3 vertices; and (3) there exist infinitely many multipartite tournaments T such that $k_3(T) = 0$. Gutin's results (1) and (3) were rediscovered by Petrovic and Thomassen [13]. It is obvious that for $n \ge 2$, $k_4(T) = k_2(T) = 1$ if and only if T contains a unique transmitter. To extend the above results, Koh and Tan investigated in [6] certain related problems and (i) obtained some new sufficient conditions for T to have $k_3(T) \ge 1$, (ii) showed that if T contains no transmitters, then

$$k_4(T) \ge \begin{cases} 4 & \text{if } n = 2, \\ 3 & \text{if } n \ge 3 \end{cases}$$

(the case when n = 2 was proved independently by Petrovic [12]) and (iii) completely characterized all T with no transmitters such that the equalities in (ii) hold. All T with no transmitters and $n \ge 3$ such that $k_4(T) = 4$ were characterized in [7].

In searching for the 4-kings of an *n*-partite tournament T in [6, 7], it was observed that some of the existing 4-kings of T are actually 3-kings. The following problem thus arises naturally:

If an *n*-partite tournament T contains no transmitters and $k_3(T) = 0$, what is the least possible value of $k_4(T)$?

In [8], we made the first move to tackle the problem for the case when n = 2 by establishing that $k_4(T) \ge 8$ and characterizing all bipartite tournaments T with $k_3(T)=0$ and $k_4(T)=8$. How about the more general case when $n \ge 3$? We shall give in this paper a complete solution to this question.

2. Notation and basic lemmas

Given an integer $n \ge 2$, we denote the *n* partite sets of an *n*-partite tournament *T* by V_1, V_2, \ldots, V_n . For each $i = 1, 2, \ldots, n$, let

$$M_i = \{ w \in V_i \mid s(w) \ge s(x) \text{ for each } x \text{ in } V_i \}.$$

Given two distinct vertices u, v in T, we write ' $u \to v$ ' if u is adjacent to v. For any two subsets A, B of V(T), we write ' $A \to B$ ' to signify that $a \to b$ for each $a \in A$ and $b \in B$. If $A = \{a\}$, then ' $A \to B$ ' is replaced by ' $a \to B$ '. Likewise, if $B = \{b\}$, then ' $A \to B$ ' is replaced by ' $A \to b$ '. For $v \in V(T)$, let

$$O(v) = \{x \in V(T) \mid v \to x\} \text{ and } I(v) = \{x \in V(T) \mid x \to v\}.$$

Thus, s(v) = |O(v)| and $s^-(v) = |I(v)|$, and for $u, v \in V_i$, i = 1, 2, ..., n, $O(u) \subseteq O(v)$ if and only if $I(u) \supseteq I(v)$. For $A \subseteq V(T)$, the subdigraph of T induced by A is denoted by $\langle A \rangle$.

We shall now give a series of basic lemmas which will be used to derive our main results in the next section.

We first start with tournaments. In Lemmas 1–3 below, H is a tournament of order $n \ge 3$ with no transmitters.

Lemma 1 (Reid [14]). The subdigraph $\langle K_2(H) \rangle$ of H itself contains no transmitters.

Lemma 2 (Huang and Li [5]). For each $u \in V(H) \setminus K_2(H)$, $|I(u) \cap K_2(H)| \ge 2$.

The following lemma can be proved easily.

Lemma 3. Each vertex u in $K_2(H)$ lies on some 3-cycle of H.

In the remaining lemmas of this section, we assume that T is an n-partite tournament, where $n \ge 2$. Let $x_i \in M_i$, i = 1, 2, ..., n and $H = \langle \{x_1, x_2, ..., x_n\} \rangle$. Note that H is itself a tournament of order n. We shall call such a tournament H a maximum-scoretournament (MS-tournament) of T.

Lemma 4 (Petrovic and Thomassen [13]). Assume that T contains at most one transmitter. Let H be an MS-tournament of T. Then $K_2(H) \subseteq K_4(T)$, and so $k_4(T) \ge k_2(H) \ge 1$.

Lemma 5 (Koh and Tan [6]). Assume $u, v \in V_i$, i = 1, 2, ..., n. If $s(u) \ge s(v)$ and u lies on a 3-cycle of T, then $d(u, v) \le 3$.

Lemma 6 (Koh and Tan [6]). Assume $u \in V_i$ and $v \in V_j$, $i \neq j$ and let $w \in V_j \setminus \{v\}$. If $u \to v$ and $s(v) \ge s(w)$, then $d(u, w) \le 3$.

Lemma 7 (Koh and Tan [6]). Assume $u \in V_i$ and $v \in M_j$. If $d(u,v) \leq 2$, then $d(u,x) \leq 4$ for each $x \in V_j$.

Lemma 8. Assume T has no transmitters. Let $u \in V(T)$. Suppose $d(u,x) \leq r$ for all $x \in V(T) \setminus V_i$. Then $u \in K_{r+1}(T)$.

Proof. Let $y \in V_i$. Since T has no transmitters, there exists $x \in V(T) \setminus V_i$ such that $x \to y$. Thus $d(u, y) \leq d(u, x) + d(x, y) \leq r + 1$. Hence $u \in K_{r+1}(T)$. \Box

Lemma 9 (Koh and Tan [6]). Assume $u \in M_i$ for some *i*. If

(i) u lies on a 3-cycle of T and

(ii) for each j, $j \neq i$, there exists $v_j \in M_j$ such that $u \to v_j$, then $u \in K_3(T)$.

Lemma 10. Let $u, v \in V(T)$ such that $O(u) \subseteq O(v)$. If $u \in K_r(T)$ for some $r \ge 3$, then $v \in K_r(T)$.

Proof. Let $z \in V(T) \setminus \{u\}$. Since $u \in K_r(T)$, $d(u,z) \leq r$. As $O(u) \not\subseteq O(v)$, we have $d(v,z) \leq r$. It remains to show that $d(v,u) \leq r$. If $u \in V_i$ and $v \in V_j$ with $j \neq i$, then $v \to u$; otherwise, $O(u) \not\subseteq O(v)$. Thus d(v,u) = 1. Assume now $u, v \in V_i$ for some i = 1, 2, ..., n. As $u \in K_r(T)$, $d(u,v) \leq r$, let $u \to x_1 \to x_2 \to \cdots \to x_{k-1} \to v$, $k \leq r$ be a *u*-*v* path of length *k*. Since $O(u) \subseteq O(v)$, $v \to x_1$. Since $I(v) \subseteq I(u)$, $x_{k-1} \to u$. Hence, $v \to x_1 \to x_2 \to \cdots \to x_{k-1} \to u$ is a path of length *k* from *v* to *u* and so $d(v,u) \leq r$. \Box

Lemma 11. Assume that $n \ge 3$, T contains no transmitters and $k_3(T) = 0$. Let $H = \langle \{x_1, x_2, ..., x_n\} \rangle$ be an MS-tournament of T. Suppose H contains no transmitters. If $x_i \in K_2(H)$, then there exists $u \in V_j \setminus \{x_j\}$ for some $j = 1, 2, ..., n, j \neq i$, such that

- (i) $d(x_i, u) = 4$,
- (ii) $x_j \rightarrow x_i$,
- (iii) $u \to x_k$ for all $k \neq j$, and
- (iv) $u \in K_4(T)$.

Futhermore, for such a u, there exists $v \in K_4(T) \cap (V_j \setminus \{x_j, u\})$ such that d(u, v) = 4and $O(u) \subseteq O(v)$.

Proof. Let $x_i \in K_2(H)$. By Lemma 4, $x_i \in K_4(T)$. Since $k_3(T) = 0$, there exists $u \in V_j$, $j \in \{1, 2, ..., n\}$, such that $d(x_i, u) = 4$. By Lemma 3, x_i lies on some 3-cycle of H. Hence x_i lies on some 3-cycle of T. By Lemma 5, $d(x_i, z) \leq 3$ for each $z \in V_i$. Thus $j \neq i$. Since $x_i \in K_2(H)$, $d(x_i, x_j) \leq 2$. Thus $u \neq x_j$. Observe that $x_j \rightarrow x_i$; otherwise, by Lemma 6, $d(x_i, u) \leq 3$. Note also that $u \rightarrow x_s$ for all $s \neq j$; otherwise, $d(x_i, u) \leq d(x_i, x_s) + d(x_s, u) \leq 2 + 1 = 3$. By Lemma 6, we have

(a) $d(u,z) \leq 3$ for all $z \in V_s$ and for each $s \neq j$.

Since T has no transmitters, for each $y \in V_j$, there exists $z \in V(T) \setminus V_j$ such that $z \to y$. Thus $d(u, y) \leq d(u, z) + d(z, y) \leq 4$. Hence $u \in K_4(T)$. Since $k_3(T) = 0$, by (a), there exists $v \in V_j \setminus \{u\}$ such that d(u, v) = 4. Since $d(u, x_j) \leq d(u, x_i) + d(x_i, x_j) = 1 + 2 = 3$, $v \neq x_i$. As $u, v \in V_i$ and d(u, v) = 4, $O(u) \subseteq O(v)$. By Lemma 10, $v \in K_4(T)$. \Box

3. The main results

In this section, we shall solve the problem stated in Section 1. We begin with the following result.

Theorem 1. Let T be an n-partite tournament, where $n \ge 3$, with no transmitters and $k_3(T) = 0$. If T contains an MS-tournament $H = \langle \{x_1, x_2, ..., x_n\} \rangle$ such that H itself has no transmitters, then $k_4(T) \ge 9$.

Proof. By assumption, $k_2(H) \ge 3$. We consider two cases:

Case 1: $k_2(H) = 3$. We may assume $K_2(H) = \{x_1, x_2, x_3\}$. By Lemma 1, we may also assume $x_1x_2x_3x_1$ is a 3-cycle. By Lemma 4, $K_2(H) \subseteq K_4(T)$. Since $k_3(T) = 0$, by Lemma 11, for each i = 1, 2, 3, there exists $\{u_{p_i}, v_{p_i}\} \subseteq K_4(T) \cap \{V_{p_i} \setminus \{x_{p_i}\}\}$, where $p_i \neq i$, such that $d(x_i, u_{p_i}) = d(u_{p_i}, v_{p_i}) = 4$ and $x_{p_i} \rightarrow x_i$. Now as $x_1x_2x_3x_1$ is a 3-cycle in *T*, it follows that $p_1 \in \{3, 4, \dots, n\}$, $p_2 \in \{1, 4, 5, \dots, n\}$ and $p_3 \in \{2, 4, 5, \dots, n\}$. By Lemma 2, for i = 1, 2, 3, if $p_i \ge 4$, then $(\{x_1, x_2, x_3\} \setminus \{x_i\}) \rightarrow x_{p_i}$. Thus, p_1, p_2, p_3 are pairwise distinct. Since $\{x_i, u_{p_i}, v_{p_i}\} \subseteq K_4(T)$ for i = 1, 2, 3, we have $k_4(T) \ge 9$.

Case 2: $k_2(H) \ge 4$. By Lemma 4, $K_2(H) \subseteq K_4(T)$. We may assume $x_1 \in K_2(H)$. Since $k_3(T) = 0$, by Lemma 11, there exists $\{u_p, v_p\} \subseteq K_4(T) \cap (V_p \setminus \{x_p\}), p \neq 1$, such that $d(x_1, u_p) = d(u_p, v_p) = 4$ and $O(u_p) \subseteq O(v_p)$. We may assume p = n. By Lemma 11, we also have $x_n \rightarrow x_1$. If $x_n \notin K_2(H)$, then by Lemma 2, $|I(x_n) \cap K_2(H)| \ge 2$. If $x_n \in K_2(H)$, then by Lemma 1, $\langle K_2(H) \rangle$ has no transmitters and so $I(x_n) \neq \emptyset$ in $\langle K_2(H) \rangle$. In either case, $I(x_n) \cap K_2(H) \neq \emptyset$. We may assume $x_2 \in I(x_n) \cap K_2(H)$. By Lemma 11, there exists $\{u_q, v_q\} \subseteq K_4(T) \cap V_q \setminus \{x_q\}, q \neq 2$, such that $d(x_2, u_q) = d(u_q, v_q) = 4$ and $O(u_q) \subseteq O(v_q)$. By Lemma 11, we also have $x_q \to x_2$. Thus $q \neq n$, and we have $\{u_q, v_q, u_n, v_n\} \subseteq K_4(T) \setminus K_2(H)$. Observe that $u_q \to x_n$; otherwise, $d(x_2, u_q) = 2$. Also, as $O(u_q) \subseteq O(v_q)$, we have $v_q \to x_n$. Note that $u_n \to x_2$; otherwise, $d(x_1, u_n) \leq d(x_1, x_2) +$ $d(x_2, u_n) \leq 2 + 1 = 3$. Now as $O(u_n) \subseteq O(v_n)$, we have $v_n \to x_2$. Since $v_n \to x_2 \to x_n$ and $x_n \in M_n$, there exists $w \in V(T) \setminus V_n$ such that $x_n \to w \to v_n$. Since $O(u_n) \subseteq O(v_n)$, we have $I(v_n) \subseteq I(u_n)$. Thus $w \to u_n$. Note that $w \notin \{u_q, v_q\}$ since $\{u_q, v_q\} \to x_n$. By Lemma 11, $u_n \to V(H) \setminus \{x_n\}$. Thus $w \notin V(H)$. Suppose $w \in K_4(T)$. Then $\{u_n, v_n, u_q, v_q, w\} \cup K_2(H) \subseteq K_4(T)$ and since $k_2(H) \ge 4$, we have $k_4(T) \ge 9$. Assume now $w \notin K_4(T)$. Since $w \to u_n \to x_i$ for each i = 1, 2, ..., n-1, by Lemma 7, (g) $d(w,z) \leq 4$ for all $z \in V_i$ and for each i = 1, 2, ..., n-1.

Since $w \notin K_4(T)$, by (g), there exists $v \in V_n$ such that $d(w, v) \ge 5$. Since $w \to \{u_n, v_n\}$, $v \notin \{u_n, v_n\}$. Also $v \ne x_n$ as $w \to u_n \to x_2 \to x_n$. Note that $O(u_n) \subseteq O(v)$; otherwise, $d(w, v) \le 3$. By Lemma 10, $v \in K_4(T)$. Thus, $\{u_n, v_n, u_q, v_q, v\} \cup K_2(H) \subseteq K_4(T)$. As $k_2(H) \ge 4$, we have $k_4(T) \ge 9$. The proof is now complete. \Box

Finally, we have:

Theorem 2. Let T be an n-partite tournament, where $n \ge 3$, with no transmitters and $k_3(T) = 0$. Then

(i) $k_4(T) \ge 8;$

(ii) $k_4(T) = 8$ if and only if T is isomorphic to a multipartite tournament of Fig. 1, where $\langle V'_1 \cup V'_2 \rangle$ and $\langle V_i \cup V_j \rangle$ for $i, j \in \{3, 4, ..., n\}$, $i \neq j$, are arbitrary bipartite tournaments.

Proof. (i) By Theorem 1, we may assume that every MS-tournament of T has a transmitter. Let $H = \langle \{x_1, x_2, \dots, x_n\} \rangle$ be an MS-tournament of T. We may assume x_1 is a transmitter of H. Then $x_1 \in K_2(H)$. By Lemma 4, $x_1 \in K_4(T)$. Since $x_1 \to x_j$ for all $j \ge 2$, by Lemma 6, $d(x_1, x) \le 3$ for all $x \in V(T) \setminus V_1$. As $k_3(T) = 0$, there exists $u \in V_1$ such that $d(x_1, u) = 4$. It follows that $O(x_1) \subseteq O(u)$. Since $x_1 \in M_1$, $O(u) = O(x_1)$. By Lemma 10, $u \in K_4(T)$. Since $K_3(T) = 0$, by Lemma 9, u and x_1 lie on no 3-cycles in T. Since T has no transmitters, $I(x_1) \neq \emptyset$. Let $y \in I(x_1)$. Then $d(y, x_i) \le 2$ for each $i = 1, 2, \dots, n$. By Lemma 7, $y \in K_4(T)$, and so $I(x_1) \subseteq K_4(T)$.

Claim 1. If $|I(x_1) \cap V_i \setminus \{x_i\}| \ge 1$, then $|I(x_1) \cap V_i \setminus \{x_i\}| \ge 2$.

We may assume $I(x_1) \cap V_2 \setminus \{x_2\} \neq \emptyset$. Among the vertices in $I(x_1) \cap V_2 \setminus \{x_2\}$, let v have maximum score. Since x_1 is not on any 3-cycle, $v \to x_i$ for all $i \neq 2$. By Lemma 6, $d(v,x) \leq 3$ for all $x \in V(T) \setminus V_2$. Now as $k_3(T) = 0$, there exists $w \in V_2 \setminus \{v\}$ such that d(v,w) = 4. Again, we have $O(v) \subseteq O(w)$. Thus $w \neq x_2$. Hence $w \in I(x_1)$, and so $|I(x_1) \cap V_2 \setminus \{x_2\}| \geq 2$. In addition, from the choice of v, we have O(v) = O(w).

Claim 2. $I(v) \subseteq K_4(T)$.

Since T has no transmitters, $I(v) \neq \emptyset$. Let $y \in I(v)$. Since $v \to x_i$ for all $i \neq 2$ and $y \to v$, we have $d(y,x_i) \leq 2$ for all $i \neq 2$. By Lemma 7, $d(y,x) \leq 4$ for all $x \in V(T) \setminus V_2$. Let $z \in V_2 \setminus \{v\}$. If d(v,z) = 2, then $d(y,z) \leq d(y,v) + d(v,z) = 1+2 = 3$. If $O(v) \subseteq O(z)$, then as $s(v) \geq s(z)$, we have O(v) = O(z). Thus I(z) = I(v) and so $y \to z$. In either case, $d(y,z) \leq 3$. Hence $y \in K_4(T)$. This shows that $I(v) \subseteq K_4(T)$.

Claim 3. $O(x_2) \cap I(v) \subseteq V_1$.

Let $a \in O(x_2) \cap I(v)$. Then $x_2 \to a \to v$. Since $v \to x_1 \to x_2$ and x_1 lies on no 3-cycles in T, we must have $a \in V_1$. Thus $O(x_2) \cap I(v) \subseteq V_1$, as required.

Since $v \to \{x_1, u\} \to x_2$ and $x_2 \in M_2$, $|O(x_2) \cap I(v)| \ge 2$. Thus $s^-(v) \ge 2$. By Claims 2 and 3, $|K_4(T) \cap V_1| \ge 4$. Observe that we have actually proved the following claim:

Claim 4. If V_i contains a transmitter of some MS-tournament, then $|V_i \cap K_4(T)| \ge 4$.

Claim 5. If $s^{-}(v) \ge 3$, then $k_4(T) \ge 9$.

Assume $s^-(v) \ge 3$. Suppose $s(v) = s(x_2)$. Then as $v \to x_i$ for all $i \ne 2$, $\langle V(H) \setminus \{x_2\} \cup \{v\}\rangle$ is an MS-tournament with v as a transmitter. By Claim 4, $|V_2 \cap K_4(T)| \ge 4$. Now as $|\{x_1, u\} \cup I(v)| \ge 5$, we have $k_4(T) \ge 9$. Assume now $s(v) < s(x_2)$. Since $v \to \{x_1, u\} \to x_2$, we have $|O(x_2) \cap I(v)| \ge 3$. By Claim 3, $O(x_2) \cap I(v) \subseteq V_1$. Suppose $I(x_1) \cap V_i \setminus \{x_i\} \ne \emptyset$ for some $i \ge 3$. By Claim 1, $|I(x_1) \cap V_i \setminus \{x_i\}| \ge 2$. Now as $I(x_1) \subseteq K_4(T)$, we have $|V_i \cap K_4(T)| \ge 2$, and so $k_4(T) \ge 9$. Assume now $x_1 \to V_i$ for all $i \ge 3$. Then $v \to V_i$ for all $i \ge 3$; otherwise, x_1 lies on some 3-cycle in T. Thus $I(v) \subseteq V_1$. If $s^-(v) \ge 5$, then $k_4(T) \ge 9$. Assume now $3 \le s^-(v) \le 4$. Suppose $I(v) \cap I(x_2) \ne \emptyset$. Then as $|O(x_2) \cap I(v)| \ge 3$ and $s^-(v) \le 4$, we have $|O(x_2) \cap I(v)| = 3$ and $|I(x_2) \cap I(v)| = 1$. Let $O(x_2) \cap I(v) = \{a, b, c\}$ and $I(x_2) \cap I(v) = \{e\}$. Note that $e \to v \to V(T) \setminus (V_2 \cup \{a, b, c, e\})$ and $e \to x_2 \to \{a, b, c\}$. By Lemma 8, $e \in K_3(T)$, a contradiction. Thus, $I(x_2) \cap I(v) = \emptyset$. Note that $x_2 \to I(v) \to v \to V(T) \setminus (V_2 \cup I(v))$. By Lemma 8, $x_2 \in K_4(T)$. Now as $k_3(T) = 0$, there exists $z \in V_2 \setminus \{x_2\}$ such that $d(x_2, z) = 4$. Again, $O(x_2) \subseteq O(z)$. Note that $z \notin \{v, w\}$. By Lemma 10, $z \in K_4(T)$. Thus, $\{x_1, u, v, w, x_2, z\} \cup I(v) \subseteq K_4(T)$, and so $k_4(T) \ge 9$. This proves Claim 5.

We now consider $s^-(v) = 2$. Since $|O(x_2) \cap I(v)| \ge 2$, $I(v) = O(x_2) \cap I(v)$. Note that $x_2 \to I(v) \to v \to V(T) \setminus (V_2 \cup I(v))$. By Lemma 8, $x_2 \in K_4(T)$. As $k_3(T) = 0$, there exists $c \in V_2 \setminus \{x_2\}$ such that $d(x_2, c) = 4$. Thus $O(x_2) \subseteq O(c)$. Since $x_2 \in M_2$, $O(c) = O(x_2)$. By Lemma 10, $c \in K_4(T)$, and so $k_4(T) \ge 8$. This proves part (i).

(ii) The sufficiency is obvious. We shall prove the necessity. Assume that $k_3(T) = 0$ and $k_4(T) = 8$. By Theorem 1, we may assume that every MS-tournament of T has a transmitter. Let x_1, x_2, u, v, w be the vertices as described in the proof of part (i). Then $\{x_1, u, v, w\} \subseteq K_4(T)$. Since $k_4(T) = 8$, it follows from the proof of part (i) that $s^-(v) = 2, x_2 \in K_4(T)$, and that there exists $c \in K_4(T) \cap V_2 \setminus \{x_2\}$ such that $d(x_2, c) = 4$ and $O(c) = O(x_2)$. Now as $x_2 \in M_2$, we have $s^-(x_2) = 2$ and $x_2 \to V(T) \setminus (V_2 \cup \{x_1, u\})$. Since $|O(x_2) \cap I(v)| \ge 2$, we have $I(v) = O(x_2) \cap I(v)$. Let $O(x_2) \cap I(v) = \{a, b\}$. Then $\{v, w\} \to V(T) \setminus (V_2 \cup \{a, b\})$. By Claims 2 and 3 in (i), $\{a, b\} \subseteq K_4(T) \cap V_1$. Thus, $K_4(T) = \{x_1, u, v, w, x_2, a, b, c\}$. Since $I(x_1) \subseteq K_4(T)$, we have $s^-(x_1) = s^-(u) = 2$ and $\{x_1, u\} \to V(T) \setminus (V_1 \cup \{v, w\})$. Note that $\{a, b\} \to \{v, w\} \to V(T) \setminus (V_2 \cup \{a, b\})$ and $\{a, b\} \to v \to x_1 \to V_2 \setminus \{v, w\}$. Thus, $d(a, x) \le 3$ for all $x \in V(T) \setminus \{b\}$ and $d(b, x) \le 3$ for all $x \in V(T) \setminus \{a\}$. Now as $k_3(T) = 0$, we must have d(a, b) = d(b, a) = 4. Thus O(a) = O(b). Suppose $s^-(a) \ge 3$. Let $z \in I(a) \setminus \{x_2, c\}$. Then $z \to \{a, b\} \to \{v, w\} \to V(T) \setminus (V_2 \cup \{a, b\})$. By Lemma 8, $z \in K_4(T)$, a contradiction. Thus, $s^-(a) = s^-(b) = 2$ and $\{a, b\} \to V(T) \setminus (V_1 \cap \{x_2, c\})$. Combining the above results, we conclude that T is isomorphic to an n-partite tournament of Fig. 1. \Box

Acknowledgements

We would like to express our sincere thanks to the referees for their helpful suggestions. One of the referees even helped simplify the proof of Theorem 2.

References

- [1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Reading, MA, 1990).
- [2] W.D. Goddard, G. Kubicki, O.R. Oellermann and S. Tian, On multipartite tournaments, J. Combin. Theory Ser. B 52 (1991) 284-300.
- [3] G.M. Gutin, The radii of n-partite tournaments, Math. Notes 40 (1986) 743-744.
- [4] G.M. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey, J. Graph Theory 19 (1995) 481-505.
- [5] J. Huang and W. Li, Toppling kings in a tournament by introducing new kings, J. Graph Theory 11 (1987) 7-11.
- [6] K.M. Koh and B.P. Tan, Kings in multipartite tournaments, Discrete Math., accepted.
- [7] K.M. Koh and B.P. Tan, Multipartite tournaments having exactly four 4-kings, in: Combinatorics, Graph Theory, Algorithms and Applications, Beijing, 1993 (World Science Publishing, River Edge, NJ, 1994) 125–136.
- [8] K.M. Koh and B.P. Tan, Number of 4-kings in bipartite tournaments with no 3-kings, Discrete Math., accepted.
- [9] H.G. Landau, On dominance relations and the structure of animal societies, III: the condition for a score structure, Bull. Math. Biophys. 15 (1953) 143-148.
- [10] S.B. Maurer, The king chicken theorems, Math. Mag. 53 (1980) 67-80.
- [11] J.W. Moon, Solution to problem 463, Math. Mag. 35 (1962) 189.
- [12] V. Petrovic, Kings in bipartite tournaments, submitted.
- [13] V. Petrovic and C. Thomassen, Kings in k-partite tournaments, Discrete Math. 98 (1991) 237-238.
- [14] K.B. Reid, Every vertex a king, Discrete Math. 38 (1982) 93-98.
- [15] D.L. Silverman, Problem 463, Math. Mag. 35 (1962) 189.