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Abstract 

We show that in any n-partite tournament, where n/> 3, with no transmitters and no 3-kings, 
the number of 4-kings is at least eight. All n-partite tournaments, where n/>3, having eight 
4-kings and no 3-kings are completely characterized. This solves the problem proposed in Koh 
and Tan (accepted). 

1. Introduction 

An orientation of  a graph G is a digraph obtained from G by assigning a direction 

to each edge in G. Let K ( p l , p 2  . . . . .  pn) denote the complete n-partite graph, where 

n >~2 and Pi is the number o f  vertices in the ith partite set for each i = 1,2 . . . . .  n. 

Any orientation of  K ( p l , p 2 , . . . ,  Pn) is called an n-partite tournament. An n-partite 

tournament is called a tournament of  order n i f  Pl = P2 . . . . .  Pn = 1. A 2-partite 

tournament is better known as a bipartite tournament. 

Let D be a digraph with vertex set V(D). Given u, vEV(D) ,  the length 

of  a u-v dipath is the number o f  arcs contained in the path. The distance d(u,v) 

from u to v is defined as the minimum of  the lengths o f  all u-v dipaths. By con- 

vention, d(u, v) = oo i f  there exists no u-v dipath. Fol lowing [10], a vertex w in 

D is called an r-kin9, where r is a positive integer, i f  d(w,x)<<.r for each x E 

V(D). The set and the number o f  r-kings in D are, respectively, denoted by Kr(D)  

and kr(D). The concept o f  an r-king is closely related to that o f  the eccentricity 

e(v) of  a vertex v defined by e(v) = max{d (v , x ) I x  E V(D)}, which is a funda- 

mental notion in the applications of  graphs and digraphs (see, for instance, 

[1,4]) .  

Given a vertex v in a digraph D, we shall denote, respectively, by s(v) and s - ( v )  
the outdegree and indegree of  v. A vertex v is called a transmitter i f  s - ( v )  = 0. Let T 
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be a toumament. The integer s(v) is also called the score of v in T. Note that a vertex 

w is in KI(T)  if and only if s - ( w ) =  0. Thus kl(T)~<l. In 1953, the mathematical 
sociologist Landau pointed out in [9] that every vertex of maximum score in T is 
a 2-king, and so kz(T)~> 1. Answering a question asked by Silverman [15], Moon [ l l ]  
confirmed that kz(T) ¢ 2. Thus if k2(T) > 1, then k2(T)~>3. It is easy to see that 

k2(T) = 1 if and only if T contains a (unique) transmitter. On the other hand, Mau- 
rer [10] showed that given any two integers n,k with n>~k>>-3 and (n,k)  ¢ (4,4), 

there exists a toumament T of order n such that k z ( T ) =  k; and Reid [14] proved 
that, given a tournament T of order n>~3, there exists a toumament T t such that 
the subdigraph induced by K2(T t) is isomorphic to T if and only if T contains no 

transmitters. 
Given a digraph D, a trivial necessary condition for the existence of r-kings in D 

for some r is that 

D contains at most one transmitter. (*) 

Let T be an n-partite tournament satisfying ( ,) .  The first set of  results pertaining to 
the existence of r-kings in T was obtained by Gutin who showed in [3] the following: 
(1) k4(T)~> l; (2) k3(T)~> 1 if each partite set of T contains at most 3 vertices; and 
(3) there exist infinitely many multipartite tournaments T such that k3 (T)=  0. Gutin's 
results (1) and (3) were rediscovered by Petrovic and Thomassen [13]. It is obvious 
that for n~>2, k4(T) = k2(T) = 1 if and only if T contains a unique transmitter. To 
extend the above results, Koh and Tan investigated in [6] certain related problems and 
(i) obtained some new sufficient conditions for T to have k3(T)~>l, (ii) showed that 
if  T contains no transmitters, then 

k4(T)~> { 4  if n = 2 ,  

3 if n~>3 

(the case when n = 2 was proved independently by Petrovic [12]) and (iii) completely 
characterized all T with no transmitters such that the equalities in (ii) hold. All T with 
no transmitters and n>~3 such that k4(T) - -4  were characterized in [7]. 

In searching for the 4-kings of  an n-partite tournament T in [6, 7], it was observed 
that some of the existing 4-kings of  T are actually 3-kings. The following problem 

thus arises naturally: 

I f  an n-partite toumament T contains no transmitters and k3(T) ----- 0, what is the least 
possible value of ka(T)? 

In [8], we made the first move to tackle the problem for the case when n = 2 by 
establishing that k4(T)>~ 8 and characterizing all bipartite tournaments T with k3(T)= 0 
and k4 (T)=8 .  How about the more general case when n>~3? We shall give in this 
paper a complete solution to this question. 
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2. Notation and basic lemmas 

Given an integer n/>2, we denote the n partite sets o f  an n-partite toumament T by 

V1,/12 . . . . .  V~. For each i = 1,2 . . . . .  n, let 

Mi = {wE V/Is(w)>>.s(x) for each x in V/}. 

Given two distinct vertices u, v in T, we write 'u --~ v' i f  u is adjacent to v. For  any 

two subsets A,B of  V(T), we write 'A ~ B '  to signify that a ~ b for each aEA and 

b EB.  I f  A = {a}, then 'A ~ B'  is replaced by ' a  ~ B'.  Likewise, i f  B = {b}, then 

'A- -+B '  is replaced by 'A ~ b ' .  For vE V(T), let 

O(v)= {xE V(T) lv--+x} and I ( v ) =  {xE V(T) I x  ~ v}. 

Thus, s ( v ) =  IO(v)l and s - ( v ) =  II(v)l, and for u, vE ~, i =  1,2 . . . . .  n, O(u)C_O(v) i f  

and only if  I(u)~_I(v). For A C_ V(T),  the subdigraph o f  T induced by A is denoted 

by (A). 

We shall now give a series o f  basic lemmas which will be used to derive our main 

results in the next section. 

We first start with tournaments. In Lemmas 1-3 below, H is a tournament of  order 

n ~> 3 with no transmitters. 

Lemma 1 (Reid [14]). The subdigraph (K2(H)) o f  H itself contains no transmitters. 

Lemma 2 (Huang and Li [5]). For each uE V(H)\K2(H),  I f ( u ) n K 2 ( H ) I  ~>2. 

The following lemma can be proved easily. 

Lemma 3. Each vertex u in K2(H) lies on some 3-cycle o f  H. 

In the remaining lemmas of  this section, we assume that T is an n-partite tournament, 

where n~>2. Let xi EMi ,  i = 1,2 . . . . .  n and H = ({xl,x2 . . . . .  Xn}). Note that H is 

itself a toumament  of  order n. We shall call such a toumament  H a maximum-score- 
tournament (MS-toumament)  o f  T. 

Lemma 4 (Petrovic and Thomassen [13]). Assume that T contains at most one trans- 

mitter. Let H be an MS-tournament o f  T. Then K2(H)CK4(T) ,  and so k4(T)~> 

k2(H) >. 1. 

Lemma 5 (Koh and Tan [6]). Assume u, vE Vi, i =  1,2 . . . . .  n. I f  s ( u ) > ~ s ( v )  a n d  u lies 

on a 3-cycle o fT ,  then d(u,v)<~3. 

Lemma 6 (Koh and Tan [6]). Assume u E Vi and v E Vy, i ¢ j and let w E Vj\{v}. I f  

u---~ v and s(v)>~s(w), then d(u,w)<~3. 
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Lemma 7 (Koh and Tan [6]). Assume uE Vi and vEMj. I f  d(u,v)<~2, then d(u,x)<~ 4 

for each x E Vj. 

Lemma 8. Assume T has no transmitters. Let u E V(T). Suppose d(u,x)<~r for all 
xE  V(T)\Vi. Then uEKr+1(T). 

Proof. Let y E V/. Since T has no transmitters, there exists xE V(T)\Vi such that x --~ y. 

Thus d(u,y)<~d(u,x)+d(x ,y)<~r + 1. Hence uEKr+I(T). [] 

Lemma 9 (Koh and Tan [6]). Assume uEMi for some i. I f  
( i)  u lies on a 3-cycle of  T and 

(ii) for each j ,  j ~ i, there exists vjEMj such that u ~ vj, then uEK3(T). 

L e m m a  10. Let u, vE V(T)  such that O(u)C_O(v). l f  uEKr(T)  for some r>~3, then 
vEKr(T). 

Proof .  Let z E V(T) \{u} .  Since u E Kr(T), d(u,z)<~r. As O(u)~=O(v), we have 

d(v,z)<<.r. It remains to show that d(v,u)<<.r. I f  u E ~ and v E Vj with j ~ i, then 

v ~ u; otherwise, O(u)~= O(v). Thus d(v, u) = 1. Assume now u, v E V/ for some 

i =  1,2 . . . . .  n. As uEKr(T) ,  d(u,v)<~r, let u ---~ xl --+ x2 --* ""  ---~ xk-1 --~ v, k<~r be 

a u-v path of  length k. Since O(u)C_O(v), v ~ xl. Since I(v)C_l(u), xk-1 ~ u. 

Hence, v ~ Xl ~ x2 ~ . . .  ~ xk-1 ~ u is a path o f  length k from v to u and so 

d(v,u)<~r. [] 

Lemma 11. Assume that n~>3, T contains no transmitters and k 3 ( T ) - - 0 .  Let H = 
( {Xl,X2 . . . . .  xn} ) be an MS-tournament o f  T. Suppose H contains no transmitters. I f  
xiEK2(H), then there exists uE Vj\{xj} for some j =  1,2 . . . . .  n, j ~ i, such that 

( i)  d(xi, u) = 4, 
(ii) x j  ~ xi, 

(ii i)  u ~ xk for all k ~ j ,  and 
( iv) uEK4(T ). 
Futhermore, for such a u, there exists vEKa(T)  fq (Vj\ {xj, u} ) such that d ( u , v ) = 4  

and O(u) C_ O(v). 

Proof .  Let xi E Kz(H). By Lemma 4, xi E K4(T).  Since k3(T) = 0, there exists u E 

Vj, j E {1,2 . . . . .  n}, such that d(xi, u) z 4. By Lemma 3, xi lies on some 3-cycle 

o f  H.  Hence xi lies on some 3-cycle o f  T. By Lemma 5, d(xi,z)<~3 for each z E 

V/. Thus j ¢ i. Since xi E K2(H), d(xi,xj)<.2. Thus u ¢ xj. Observe that xj  -+xi; 
otherwise, by  Lemma 6, d(xi, u)<~3. Note also that u ~ Xs for all s ~ j ;  otherwise, 

d(xi, u)<~d(xi,xs) + d(xs, u)<.2 + 1 = 3 .  By Lemma 6, we have 

(a) d(u,z)<~3 for all z E  V~ and for each s C j .  

Since T has no transmitters, for each y E  Vj, there exists z E V(T)\Vj  such that z--*y. 
Thus d(u , y )< .d (u , z )+  d(z,y)<.4. Hence u EK4(T). Since k3(T) = 0, by (a), there 
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exists vE Vj\{u} such that d(u ,v )=  4. Since d(u,~.)<.d(u,xi) + d(xi ,x j)= 1 + 2 = 3, 
v C  xj. As u, vCV/ and d ( u , v ) = 4 ,  O(u)CO(v) .  By Lemma 10, vEK4(T). [] 

3. The main results 

In this section, we shall solve the problem stated in Section 1. We begin with the 

following result. 

Theorem 1. Let T be an n-partite tournament, where n >~3, with no transmitters and 
k3(T) = 0. I f  T contains an MS-tournament H = ({xl,x2 . . . . .  xn}) such that H itself 
has no transmitters, then ka(T) >7 9. 

Proof .  By assumption, k2(H)~>3. We consider two cases: 

Case 1: k2(H) = 3. We may assume K2(H)  = {Xl,X2,X3}. By Lemma 1, we may 

also assume XlX2X3Xl is a 3-cycle. By Lemma 4, K2(H)C_K4(T).  Since k3(T) = 0, 

by Lemma 11, for each i = 1,2,3, there exists {Up,,Vp,} C_ K4(T) n (Vp,\{Xp,}), where 

Pi ~ i, such that d(xi, Up, ) = d(ur,, Vp,) = 4 and xp, ~ xi. Now as XlX2X3XI is a 3-cycle 

in T, it follows that Pl E { 3 , 4 , . . . , n } ,  p2C {1,4,5 . . . . .  n} and P3 E { 2 , 4 , 5  . . . . .  n}. By 

Lemma 2, for i =  1,2,3, i f  pi>~4, then ({Xl,X2,X3}\{Xi}) --~ Xpi. Thus, Pl,P2, P3 are 

pairwise distinct. Since {xi, Up,,Vp,} C_K4(T) for i = 1,2,3, we have k4(T)~>9. 

Case 2: k2(H) ~>4. By Lemma 4, K2(H)  C- K4(T). We may assume xl EK2(H) .  Since 

k3(T) = 0, by Lemma 11, there exists {Up, Vp} c_ K4(T) n (Vp\{Xp}), p ¢ 1, such that 

d(xl, Up)= d(up, v p ) =  4 and O(up)C_ O(vp). We may assume p = n. By Lemma 11, we 

also have xn --~xl. l fxn  CK2(H) ,  then by Lemma 2, ]I(x,)NKz(H)I ~>2. I fx~ EK2(H) ,  

then by Lemma 1, (K2(H)) has no transmitters and so I(x,)  :/: ~ in (K2(H)).  In ei- 

ther case, l(x~) n K2(H)  ~ ~. We may assume x2 E I(xn) N K2(H).  By Lemma 11, 

there exists {Uq,Vq}CK4(T)n Vq\{Xq}, q ~ 2, such that d(x2,Uq)= d(uq, Vq)= 4 
and O(uq)C_O(Vq). By Lemma 11, we also have Xq --~ x2. Thus q ¢ n, and we have 

{Uq, Vq, u,, vn} c_ K4(T)\K2(H). Observe that Uq --+ xn; otherwise, d(x2, Uq) = 2. Also, 

as O(Uq) C_ O(vq), we have Vq ~ x , .  Note that u, ~ x2; otherwise, d(xl, un) <~d(xl,x2)+ 
d(x2,Un)<.2 q- 1 = 3. NOW as O(un)CO(vn), we have v, ~ x 2 .  Since v, ~ x2 ---* xn 

and xnEM,,  there exists wE V(T)\V~ such that x~ ---+ w---,  v,. Since O(u~)C_O(vn), 
we have I(v~)C_I(un). Thus w --+ u,. Note that w ~ {Uq, I)q} since {Uq, Vq} --, xn. 
By Lemma 11, u~ ~ V(H)\{xn}. Thus w ¢ V(H). Suppose w E K4(T). Then 

{b!n,Un,blq, Uq, W} U Kz(H)C_K4(T) and since k2(H)~>4, we have k4(T)~>9. Assume 

now w ¢ K4(T). Since w --~ un ---+xi for each i = 1,2 . . . . .  n - 1, by Lemma 7, 

(g) d(w,z)<~4 for all z E  ~ and for each i = 1,2 . . . . .  n - 1. 

Since wCK4(T), by (g),  there exists vE V~ such that d(w,v)>.5. Since w--~{u,,v,}, 
v ¢ {u~,v,}. Also v =/= x~ as w ~ u, ~ x2 --~ x~. Note that O(u~)C_O(v); otherwise, 

d(w,v)<~3. By Lemma 10, v E K4(T). Thus, {u,,vn, Uq, Vq, V} U Kz(H)C_K4(T). As 

k2(H)~>4, we have k4(T)>~9. The proof  is now complete. [] 
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/ " ~ l u  ab-"g"~ 
V~ 

½ 

VI = V~ U {xx,u,a,b} and Vz = V~ U {x2,e,v,w} 

Fig. 1. 

Finally, we have: 

Theorem 2. Let T be an n-partite tournament, where n >>. 3, with no transmitters and 
ka(T) = 0. Then 

(i) k4(T) ~> 8; 
(ii) k a ( T ) = 8  i f  and only i f  T is isomorphic to a multipartite tournament of  Fig. 1, 

where (~' U V2' ) and (Vii U Vj) for i , j  E {3,4 . . . . .  n}, i ~ j, are arbitrary bipartite 
tournamen ts. 

Proof.  (i) By Theorem 1, we may assume that every MS-tournament o f  T has a 

transmitter. Let H ---- ({Xl,X2 . . . . .  xn}) be an MS-tournament o f  T. We may assume Xl 

is a transmitter o f  H.  Then xl EKz(H). By Lemma 4, xl EK4(T). Since xl ~ xj for all 
j~>2, by Lemma 6, d(Xl,X)<,3 for all xE V(T)\Vl. As k3(T) = 0, there exists uE V1 
such that d(xl,u) = 4. It follows that O(Xl)C O(u). Since xl EM1, O(u) = O(xl). By 

Lemma 10, u E K4(T). Since K3(T) ---- 0, by Lemma 9, u and xl lie on no 3-cycles 
in T. Since T has no transmitters, I(xl)  ~ ~. Let yEI (x l ) .  Then d(y, xi)<~2 for each 

i -- 1,2 . . . . .  n. By Lemma 7, yEK4(T),  and so I(xl)C_K4(T). 

Claim 1. I f  II(xl ) A V/\{xi}l ~> 1, then II(xl ) N Vi\{xi}I ~>2. 

We may assume I ( x l )N  V2\{x2} ¢ ~. Among the vertices in I (Xl)N V2\{x2} , let 
v have maximum score. Since xl is not on any 3-cycle, v --~ xi for all i ¢ 2. By 
Lemma 6, d(v,x)<~3 for all xE V(T)\V2. Now as k3(T) = 0, there exists wE  V2\{v} 
such that d(v,w) = 4. Again, we have O(v)C_ O(w). Thus w ¢ x2. Hence w E l(xl ), 
and so I I (xl)N V~\{x2}] ~>2. In addition, from the choice of  v, we have O(v) = O(w). 
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Claim 2. I(v) C K4(T). 

Since T has no transmitters, I(v) # 0. Let y E I ( v ) .  Since v-+xi for all i ~ : 2  and 

y --+ v, we have d(y, xi)<~2 for all i # 2. By Lemma 7, d(y,x)<~4 for all xE V ( T ) \ ~ .  
Let zE  V2\{v}. I fd (v , z )  : 2, then d(y , z )<.d(y ,v )+d(v , z )  = 1+2 : 3. I f  O(v) C_ O(z), 
then as s(v)>~s(z), we have O(v) = O(z). Thus l ( z )  = l(v) and so y --~ z. In either 

case, d(y,z)<~3. Hence yEK4(T) .  This shows that I (v )CK4(T) .  

Claim 3. O(x2)NI(v)C_ V1 

Let a E O ( x 2 ) n I ( v ) .  Then x2 ~ a ---* v. Since v ~ xl ---+ x2 and xl lies on no 

3-cycles in T, we must have a E  V1. Thus O(x2)N l(v)C_ V1, as required. 

Since v --~ {xl,u} ~ x2 and x2 CM2, [O(xz)NI(v)[ >/2. Thus s - (v )~>2 .  By Claims 2 

and 3, [K4(T)N Vt]>~4. Observe that we have actually proved the following claim: 

Claim 4. I f  Vi contains a transmitter of  some MS-tournament, then I~ n K4(T)I/>4. 

Claim 5. I fs-(v)>~3,  then k4(T)~>9. 

Assume s - (v)>~3.  Suppose s(v) = s ( x 2 ) .  Then as v ~ xi for all i # 2, (V(H)\{x2}U 
{v}) is an MS-tournament with v as a transmitter. By Claim 4, IV2 N K4(T)I~>4. 

Now as ]{xl,u} U I(v)l~>5, we have k4(T)~>9. Assume now s(v) < s(x2). Since 

v---+ {xl,u} ~ x2, we have tO(x2)N/ (v ) l~>3 .  By Claim 3, O(x2)N l (v)  C_ VL. Sup- 

pose I ( x t ) N  Vi\{xi} ¢ 0 for some i>~3. By Claim 1, I I ( x l ) n  Vi\{xi}l~>2. Now 

as I ( x l )CK4(T) ,  we have ]~ N Ka(T)I~>2, and so k4(T)~>9. Assume now x t ~  

V/ for all i~>3. Then v ~ ~ for all i~>3; otherwise, xl lies on some 3-cycle in 

T. Thus l(v)C_ V1. If  s - (v )~>5 ,  then k4(T)>~9. Assume now 3~<s-(v)~<4.  Suppose 

l ( v )N l (x2 )  # O. Then as IO(xz)NI(v)l>~3 and s (v)~<4, we have IO(xz)nl(v) l  = 3 
and ]I(x2) N/ (v ) [  = 1. Let O(x2) n I(v) = {a,b,c} and l(xe) N l ( v )  = {e}. Note that 

e ~ v ~ V(T) \ (V2U{a ,b , c , e } )  and e---~ x2 ---+ {a,b,c}. By Lemma 8, eEK3(T) ,  a 
contradiction. Thus, I(x2) N I(v) = 0. Note that x2 ~ l(v) ~ v ~ V(T)\(I/2 U l(v)). 
By Lemma 8, x2 E K4(T). Now as k3(T) = 0, there exists z E Ve\{x2} such that 

d(xz,z) = 4. Again, O(xz)C_O(z). Note that z ¢ {v,w}. By Lemma 10, z E K4(T). 

Thus, {xl, u, v, w, x2,z} U l (v)  C_ K4(T),  and so k4(T) ~> 9. This proves Claim 5. 

We now consider s - (v )  = 2. Since IO(x2) n l (v) l  ~>2, l (v)  = O(x2) N l(v). Note 

that x2 --~ l (v)  --+ v --~ V(T)\(V2 U I(v)). By Lemma 8, x2 E K4(T). As k3(T) = 0, 

there exists c E ~ \ { x 2 }  such that d(xe,c) = 4. Thus O(x2)C_O(c). Since x2 E Me, 

O(c) = O(x2). By Lemma 10, cEK4(T),  and so k4(T)~>8. This proves part (i). 

(ii) The sufficiency is obvious. We shall prove the necessity. Assume that k3(T) = 0 

and k4(T) = 8. By Theorem 1, we may assume that every MS-tournament of  T has 

a transmitter. Let Xl,X2,U,V,W be the vertices as described in the proof  of  part (i). 

Then {xl ,u ,v ,w} C_K4(T). Since k4(T) = 8, it follows from the proof  of  part (i)  that 

s ( v ) -  2, x2 CK4(T),  and that there exists cEK4(T)N Ve\{x2} such that d(x2 ,c )= 4 
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and O(c) = O(x2). NOW as x2 EM2, we have s - (x2 )  = 2 and X2 ~ V(T)\(V2U{Xl,U}). 

Since [O(x2) N l(v)l  >12, we have I(v)  = O(x2) N l(v).  Let O(x2) n I(v)  = {a, b}. Then 
{v,w} ~ V(T)\(V2 U {a,b}).  By Claims 2 and 3 in (i), {a,b}C_K4(T) N V~. Thus, 

K4(T) = {Xl,U,V,W, x2,a,b,c}. Since I(xl)C_K4(T), we have s - ( x l )  = s - ( u )  = 2 and 
{Xl,U} ~ V(T)\(V1 U {v,w}). Note that {a,b} ~ {v,w} ~ V(T)\(V2 U {a,b})  and 

{a,b) ~ v ~ Xl ~ V2\{v,w}. Thus, d(a,x)<.3 for all x C  V(T) \ {b}  and d(b,x)<.3 

for all x E  V(T) \ {a} .  Now as k3(T) = 0, we must have d(a,b) = d(b,a) = 4. Thus 
O(a) = O(b). Suppose s - (a )~>3 .  Let z EI (a ) \ {xz , c} .  Then z --* {a,b} ~ {v,w} --* 

V(T)\(V2 U {a,b}).  By Lemma 8, zEK4(T) ,  a contradiction. Thus, s - ( a )  = s - (b )  = 2 

and {a,b} ~ V(T)\(V1 N {x2,c}). Combining the above results, we conclude that T is 
isomorphic to an n-partite tournament of  Fig. 1. [] 
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