An orientation of a graph G is a digraph obtained from G by assigning a direction to each edge in G. Let $K(p_1, p_2, \ldots, p_n)$ denote the complete n-partite graph, where $n \geq 2$ and p_i is the number of vertices in the ith partite set for each $i = 1, 2, \ldots, n$. Any orientation of $K(p_1, p_2, \ldots, p_n)$ is called an n-partite tournament. An n-partite tournament is called a tournament of order n if $p_1 = p_2 = \cdots = p_n = 1$. A 2-partite tournament is better known as a bipartite tournament.

Let D be a digraph with vertex set $V(D)$. Given $u, v \in V(D)$, the length of a $u-v$ dipath is the number of arcs contained in the path. The distance $d(u,v)$ from u to v is defined as the minimum of the lengths of all $u-v$ dipaths. By convention, $d(u,v) = \infty$ if there exists no $u-v$ dipath. Following [10], a vertex w in D is called an r-king, where r is a positive integer, if $d(w,x) \leq r$ for each $x \in V(D)$. The set and the number of r-kings in D are, respectively, denoted by $K_r(D)$ and $k_r(D)$. The concept of an r-king is closely related to that of the eccentricity $e(v)$ of a vertex v defined by $e(v) = \max\{d(v,x) | x \in V(D)\}$, which is a fundamental notion in the applications of graphs and digraphs (see, for instance, [1, 4]).

Given a vertex v in a digraph D, we shall denote, respectively, by $s(v)$ and $s^{-}(v)$ the outdegree and indegree of v. A vertex v is called a transmitter if $s^{-}(v) = 0$. Let T
be a tournament. The integer $s(v)$ is also called the score of v in T. Note that a vertex w is in $K_1(T)$ if and only if $s^-(w) = 0$. Thus $k_1(T) \leq 1$. In 1953, the mathematical sociologist Landau pointed out in [9] that every vertex of maximum score in T is a 2-king, and so $k_2(T) \geq 1$. Answering a question asked by Silverman [15], Moon [11] confirmed that $k_2(T) \neq 2$. Thus if $k_2(T) \geq 1$, then $k_2(T) \geq 3$. It is easy to see that $k_2(T) = 1$ if and only if T contains a (unique) transmitter. On the other hand, Mau- rer [10] showed that given any two integers n,k with $n \geq k \geq 3$ and $(n,k) \neq (4,4)$, there exists a tournament T of order n such that $k_2(T) = k$; and Reid [14] proved that, given a tournament T of order $n \geq 3$, there exists a tournament T' such that the subdigraph induced by $K_2(T')$ is isomorphic to T if and only if T contains no transmitters.

Given a digraph D, a trivial necessary condition for the existence of r-kings in D for some r is that

$$D \text{ contains at most one transmitter.}$$

Let T be an n-partite tournament satisfying (*). The first set of results pertaining to the existence of r-kings in T was obtained by Gutin who showed in [3] the following:

(1) $k_4(T) \geq 1$; (2) $k_3(T) \geq 1$ if each partite set of T contains at most 3 vertices; and (3) there exist infinitely many multipartite tournaments T such that $k_3(T) = 0$. Gutin’s results (1) and (3) were rediscovered by Petrovic and Thomassen [13]. It is obvious that for $n \geq 2$, $k_4(T) = k_2(T) = 1$ if and only if T contains a unique transmitter. To extend the above results, Koh and Tan investigated in [6] certain related problems and (i) obtained some new sufficient conditions for T to have $k_3(T) \geq 1$, (ii) showed that if T contains no transmitters, then

$$k_4(T) \geq \begin{cases} 4 & \text{if } n = 2, \\ 3 & \text{if } n \geq 3 \end{cases}$$

(the case when $n = 2$ was proved independently by Petrovic [12]) and (iii) completely characterized all T with no transmitters such that the equalities in (ii) hold. All T with no transmitters and $n \geq 3$ such that $k_4(T) = 4$ were characterized in [7].

In searching for the 4-kings of an n-partite tournament T in [6, 7], it was observed that some of the existing 4-kings of T are actually 3-kings. The following problem thus arises naturally:

If an n-partite tournament T contains no transmitters and $k_3(T) = 0$, what is the least possible value of $k_4(T)$?

In [8], we made the first move to tackle the problem for the case when $n = 2$ by establishing that $k_4(T) \geq 8$ and characterizing all bipartite tournaments T with $k_3(T) = 0$ and $k_4(T) = 8$. How about the more general case when $n \geq 3$? We shall give in this paper a complete solution to this question.
2. Notation and basic lemmas

Given an integer \(n \geq 2 \), we denote the \(n \) partite sets of an \(n \)-partite tournament \(T \) by \(V_1, V_2, \ldots, V_n \). For each \(i = 1, 2, \ldots, n \), let

\[
M_i = \{ w \in V_i \mid s(w) \geq s(x) \text{ for each } x \in V_i \}.
\]

Given two distinct vertices \(u, v \) in \(T \), we write \('u \rightarrow v' \) if \(u \) is adjacent to \(v \). For any two subsets \(A, B \) of \(V(T) \), we write \('A \rightarrow B' \) to signify that \(a \rightarrow b \) for each \(a \in A \) and \(b \in B \). If \(A = \{ a \} \), then \('A \rightarrow B' \) is replaced by \('a \rightarrow B' \). Likewise, if \(B = \{ b \} \), then \('A \rightarrow B' \) is replaced by \('A \rightarrow b' \). For \(v \in V(T) \), let

\[
O(v) = \{ x \in V(T) \mid v \rightarrow x \} \quad \text{and} \quad I(v) = \{ x \in V(T) \mid x \rightarrow v \}.
\]

Thus, \(s(v) = |O(v)| \) and \(s^{-}(v) = |I(v)| \), and for \(u, v \in V_i, i = 1, 2, \ldots, n \), \(O(u) \subseteq O(v) \) if and only if \(I(u) \supseteq I(v) \). For \(A \subseteq V(T) \), the subdigraph of \(T \) induced by \(A \) is denoted by \(\langle A \rangle \).

We shall now give a series of basic lemmas which will be used to derive our main results in the next section.

We first start with tournaments. In Lemmas 1–3 below, \(H \) is a tournament of order \(n \geq 3 \) with no transmitters.

Lemma 1 (Reid [14]). The subdigraph \(\langle K_2(H) \rangle \) of \(H \) itself contains no transmitters.

Lemma 2 (Huang and Li [5]). For each \(u \in V(H) \backslash K_2(H) \), \(|I(u) \cap K_2(H)| \geq 2 \).

The following lemma can be proved easily.

Lemma 3. Each vertex \(u \) in \(K_2(H) \) lies on some 3-cycle of \(H \).

In the remaining lemmas of this section, we assume that \(T \) is an \(n \)-partite tournament, where \(n \geq 2 \). Let \(x_i \in M_i, i = 1, 2, \ldots, n \) and \(H = \langle \{x_1, x_2, \ldots, x_n\} \rangle \). Note that \(H \) is itself a tournament of order \(n \). We shall call such a tournament \(H \) a maximum-score-tournament (MS-tournament) of \(T \).

Lemma 4 (Petrovic and Thomassen [13]). Assume that \(T \) contains at most one transmitter. Let \(H \) be an MS-tournament of \(T \). Then \(K_2(H) \subseteq K_4(T) \), and so \(k_4(T) \geq k_2(H) \geq 1 \).

Lemma 5 (Koh and Tan [6]). Assume \(u, v \in V_i, i = 1, 2, \ldots, n \). If \(s(u) \geq s(v) \) and \(u \) lies on a 3-cycle of \(T \), then \(d(u, v) \leq 3 \).

Lemma 6 (Koh and Tan [6]). Assume \(u \in V_i \) and \(v \in V_j, i \neq j \) and let \(w \in V_j \backslash \{v\} \). If \(u \rightarrow v \) and \(s(v) \geq s(w) \), then \(d(u, w) \leq 3 \).
Lemma 7 (Koh and Tan [6]). Assume \(u \in V_i \) and \(v \in M_j \). If \(d(u, v) \leq 2 \), then \(d(u, x) \leq 4 \) for each \(x \in V_j \).

Lemma 8. Assume \(T \) has no transmitters. Let \(u \in V(T) \). Suppose \(d(u, x) \leq r \) for all \(x \in V(T) \setminus V_i \). Then \(u \in K_{r+1}(T) \).

Proof. Let \(y \in V_i \). Since \(T \) has no transmitters, there exists \(x \in V(T) \setminus V_i \) such that \(x \rightarrow y \). Thus \(d(u, y) \leq d(u, x) + d(x, y) \leq r + 1 \). Hence \(u \in K_{r+1}(T) \). □

Lemma 9 (Koh and Tan [6]). Assume \(u \in M_i \) for some \(i \). If

(i) \(u \) lies on a 3-cycle of \(T \) and

(ii) for each \(j, j \neq i \), there exists \(v_j \in M_j \) such that \(u \rightarrow v_j \), then \(u \in K_3(T) \).

Lemma 10. Let \(u, v \in V(T) \) such that \(O(u) \subseteq O(v) \). If \(u \in K_r(T) \) for some \(r \geq 3 \), then \(v \in K_r(T) \).

Proof. Let \(z \in V(T) \setminus \{ u \} \). Since \(u \in K_r(T) \), \(d(u, z) \leq r \). As \(O(u) \subseteq O(v) \), we have \(d(v, z) \leq r \). It remains to show that \(d(v, u) \leq r \). If \(u \in V_i \) and \(v \in V_j \) with \(j \neq i \), let \(u \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_{k-1} \rightarrow v \), \(k \leq r \) be a \(u \rightarrow v \) path of length \(k \). Since \(O(u) \subseteq O(v) \), \(v \rightarrow x_1 \). Since \(I(v) \subseteq I(u) \), \(x_{k-1} \rightarrow u \). Hence, \(v \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_{k-1} \rightarrow u \) is a path of length \(k \) from \(v \) to \(u \) and so \(d(v, u) \leq r \). □

Lemma 11. Assume that \(n \geq 3 \), \(T \) contains no transmitters and \(k_3(T) = 0 \). Let \(H = \langle \{x_1, x_2, \ldots, x_n\} \rangle \) be an MS-tournament of \(T \). Suppose \(H \) contains no transmitters. If \(x_i \in K_2(H) \), then there exists \(u \in V_j \setminus \{ x_j \} \) for some \(j = 1, 2, \ldots, n \), \(j \neq i \), such that

(i) \(d(x_i, u) = 4 \),

(ii) \(x_j \rightarrow x_i \),

(iii) \(u \rightarrow x_k \) for all \(k \neq j \), and

(iv) \(u \in K_4(T) \).

Furthermore, for such a \(u \), there exists \(v \in K_4(T) \cap (V_j \setminus \{ x_j, u \}) \) such that \(d(u, v) = 4 \) and \(O(u) \subseteq O(v) \).

Proof. Let \(x_i \in K_2(H) \). By Lemma 4, \(x_i \in K_4(T) \). Since \(k_3(T) = 0 \), there exists \(u \in V_j \), \(j \in \{ 1, 2, \ldots, n \} \), such that \(d(x_i, u) = 4 \). By Lemma 3, \(x_i \) lies on some 3-cycle of \(H \). Hence \(x_i \) lies on some 3-cycle of \(T \). By Lemma 5, \(d(x_i, z) \leq 3 \) for each \(z \in V_i \). Thus \(j \neq i \). Since \(x_i \in K_2(H) \), \(d(x_i, x_j) \leq 2 \). Thus \(u \neq x_j \). Observe that \(x_j \rightarrow x_i \); otherwise, by Lemma 6, \(d(x_i, u) \leq 3 \). Note also that \(u \rightarrow x_s \) for all \(s \neq j \); otherwise, \(d(x_i, u) \leq d(x_i, x_s) + d(x_s, u) \leq 2 + 1 = 3 \). By Lemma 6, we have

(a) \(d(u, z) \leq 3 \) for all \(z \in V_s \) and for each \(s \neq j \).

Since \(T \) has no transmitters, for each \(y \in V_j \), there exists \(z \in V(T) \setminus V_j \) such that \(z \rightarrow y \). Thus \(d(u, y) \leq d(u, z) + d(z, y) \leq 4 \). Hence \(u \in K_4(T) \). Since \(k_3(T) = 0 \), by (a), there
exists $v \in V_j \setminus \{u\}$ such that $d(u,v) = 4$. Since $d(u,x_i) \leq d(u,x_i) + d(x_i,x_j) = 1 + 2 = 3$, $v \neq x_j$. As $u,v \in V_j$ and $d(u,v) = 4$, $O(u) \subseteq O(v)$. By Lemma 10, $v \in K_4(T)$. □

3. The main results

In this section, we shall solve the problem stated in Section 1. We begin with the following result.

Theorem 1. Let T be an n-partite tournament, where $n \geq 3$, with no transmitters and $k_3(T) = 0$. If T contains an MS-tournament $H = \{x_1,x_2,\ldots,x_n\}$ such that H itself has no transmitters, then $k_4(T) \geq 9$.

Proof. By assumption, $k_2(H) \geq 3$. We consider two cases:

Case 1: $k_2(H) = 3$. We may assume $K_2(H) = \{x_1,x_2,x_3\}$. By Lemma 1, we may also assume $x_1x_2x_3x_1$ is a 3-cycle. By Lemma 4, $K_2(H) \subseteq K_4(T)$. Since $k_3(T) = 0$, by Lemma 11, for each $i = 1,2,3$, there exists $\{u_{p_i},v_{p_i}\} \subseteq K_4(T) \cap (V_p \setminus \{x_{p_i}\})$, where $p_i \neq i$, such that $d(x_i,u_{p_i}) = d(u_{p_i},v_{p_i}) = 4$ and $x_{p_i} \rightarrow x_i$. Now as $x_1x_2x_3x_1$ is a 3-cycle in T, it follows that $p_1 \in \{3,4,\ldots,n\}$, $p_2 \in \{1,4,5,\ldots,n\}$ and $p_3 \in \{2,4,5,\ldots,n\}$. By Lemma 2, for $i = 1,2,3$, if $p_i > 4$, then $\{\{x_1,x_2,x_3\}\setminus\{x_i\}\} \rightarrow x_{p_i}$. Thus, p_1,p_2,p_3 are pairwise distinct. Since $\{x_i,u_{p_i},v_{p_i}\} \subseteq K_4(T)$ for $i = 1,2,3$, we have $k_4(T) \geq 9$.

Case 2: $k_2(H) \geq 4$. By Lemma 4, $K_2(H) \subseteq K_4(T)$. We may assume $x_1 \in K_2(H)$. Since $k_3(T) = 0$, by Lemma 11, there exists $\{u_q,v_q\} \subseteq K_4(T) \cap (V_p \setminus \{x_{q}\})$, $p \neq 1$, such that $d(x_1,u_q) = d(u_q,v_q) = 4$ and $O(u_q) \subseteq O(v_q)$. We may assume $p = n$. By Lemma 11, we also have $x_n \rightarrow x_1$. If $x_n \notin K_2(H)$, then by Lemma 2, $|I(x_n) \cap K_2(H)| \geq 2$. If $x_n \in K_2(H)$, then by Lemma 1, $(K_2(H))$ has no transmitters and so $I(x_n) \neq \emptyset$ in $(K_2(H))$. In either case, $I(x_n) \cap K_2(H) \neq \emptyset$. We may assume $x_2 \in I(x_n) \cap K_2(H)$. By Lemma 11, there exists $\{u_q,v_q\} \subseteq K_4(T) \cap V_q \setminus \{x_q\}$, $q \neq 2$, such that $d(x_2,u_q) = d(u_q,v_q) = 4$ and $O(u_q) \subseteq O(v_q)$. By Lemma 11, we also have $x_q \rightarrow x_2$. Thus $q \neq n$, and we have $\{u_q,v_q,u_n,v_n\} \subseteq K_4(T) \setminus K_2(H)$. Observe that $u_q \rightarrow x_n$, otherwise, $d(x_2,u_q) = 2$. Also, as $O(u_q) \subseteq O(v_q)$, we have $v_q \rightarrow x_n$. Note that $u_n \rightarrow x_2$; otherwise, $d(x_1,u_n) \leq d(x_1,x_2) + d(x_2,u_n) \leq 2 + 1 = 3$. Now as $O(u_n) \subseteq O(v_n)$, we have $v_n \rightarrow x_2$. Since $v_q \rightarrow x_2 \rightarrow x_n$ and $x_n \in M_n$, there exists $w \in V(T) \setminus V_n$ such that $x_n \rightarrow w \rightarrow v_n$. Since $O(u_n) \subseteq O(v_n)$, we have $I(v_n) \subseteq I(u_n)$. Thus $w \rightarrow u_n$. Note that $w \notin \{u_q,v_q\}$ since $\{u_q,v_q\} \rightarrow x_n$. By Lemma 11, $u_n \rightarrow V(H) \setminus \{x_n\}$. Thus $w \notin V(H)$. Suppose $w \in K_4(T)$. Then $\{u_n,v_n,u_q,v_q,w\} \subseteq K_2(H) \subseteq K_4(T)$ and since $k_2(H) \geq 4$, we have $k_4(T) \geq 9$. Assume now $w \notin K_4(T)$. Since $w \rightarrow u_n \rightarrow x_i$ for each $i = 1,2,\ldots,n-1$, by Lemma 7,\[\text{d}(w,z) \leq 4\text{ for all } z \in V_i\text{ and for each } i = 1,2,\ldots,n-1.\]

Since $w \notin K_4(T)$, by (g), there exists $v \in V_n$ such that $d(w,v) \geq 5$. Since $w \notin \{u_n,v_n\}$, $v \notin \{u_n,v_n\}$. Also $v \neq x_n$ as $w \rightarrow u_n \rightarrow x_2 \rightarrow x_n$. Note that $O(u_n) \subseteq O(v)$; otherwise, $d(w,v) \leq 3$. By Lemma 10, $v \in K_4(T)$. Thus, $\{u_n,v_n,u_q,v_q,v\} \subseteq K_2(H) \subseteq K_4(T)$. As $k_2(H) \geq 4$, we have $k_4(T) \geq 9$. The proof is now complete. □
Finally, we have:

Theorem 2. Let T be an n-partite tournament, where $n \geq 3$, with no transmitters and $k_3(T) = 0$. Then

(i) $k_4(T) \geq 8$;

(ii) $k_4(T) = 8$ if and only if T is isomorphic to a multipartite tournament of Fig. 1, where $\langle V'_1 \cup V'_2 \rangle$ and $\langle V_i \cup V_j \rangle$ for $i, j \in \{3, 4, \ldots, n\}$, $i \neq j$, are arbitrary bipartite tournaments.

Proof. (i) By Theorem 1, we may assume that every MS-tournament of T has a transmitter. Let $H = \langle \{x_1, x_2, \ldots, x_n\} \rangle$ be an MS-tournament of T. We may assume x_1 is a transmitter of H. Then $x_1 \in K_2(H)$. By Lemma 4, $x_1 \in K_4(T)$. Since $x_1 \rightarrow x_j$ for all $j \geq 2$, by Lemma 6, $d(x_1, x) \leq 3$ for all $x \in V(T) \setminus V_1$. As $k_3(T) = 0$, there exists $u \in V_1$ such that $d(x_1, u) = 4$. It follows that $O(x_1) \subseteq O(u)$. Since $x_1 \in M_1$, $O(u) = O(x_1)$. By Lemma 10, $u \in K_4(T)$. Since $K_3(T) = 0$, by Lemma 9, u and x_1 lie on no 3-cycles in T. Since T has no transmitters, $I(x_1) \neq \emptyset$. Let $y \in I(x_1)$. Then $d(y, x_1) \leq 2$ for each $i = 1, 2, \ldots, n$. By Lemma 7, $y \in K_4(T)$, and so $I(x_1) \subseteq K_4(T)$.

Claim 1. If $|I(x_1) \cap V'_1 \setminus \{x_1\}| \geq 1$, then $|I(x_1) \cap V'_1 \setminus \{x_1\}| \geq 2$.

We may assume $I(x_1) \cap V'_2 \setminus \{x_2\} \neq \emptyset$. Among the vertices in $I(x_1) \cap V'_2 \setminus \{x_2\}$, let v have maximum score. Since x_1 is not on any 3-cycle, $v \rightarrow x_i$ for all $i \neq 2$. By Lemma 6, $d(v, x) \leq 3$ for all $x \in V(T) \setminus V_2$. Now as $k_3(T) = 0$, there exists $w \in V'_2 \setminus \{v\}$ such that $d(v, w) = 4$. Again, we have $O(v) \subseteq O(w)$. Thus $w \neq x_2$. Hence $w \in I(x_1)$, and so $|I(x_1) \cap V'_2 \setminus \{x_2\}| \geq 2$. In addition, from the choice of v, we have $O(v) = O(w)$.

\[V_1 = V'_1 \cup \{x_1, u, a, b\} \quad \text{and} \quad V_2 = V'_2 \cup \{x_2, c, v, w\} \]

Fig. 1.
Claim 2. $I(v) \subseteq K_4(T)$.

Since T has no transmitters, $I(v) \neq \emptyset$. Let $y \in I(v)$. Since $v \rightarrow x_i$ for all $i \neq 2$ and $y \rightarrow v$, we have $d(y, x_i) \leq 2$ for all $i \neq 2$. By Lemma 7, $d(y, x_i) \leq 4$ for all $x \in V(T) \setminus V_2$. Let $z \in V_2 \setminus \{v\}$. If $d(v, z) = 2$, then $d(y, z) \leq d(y, v) + d(v, z) = 1 + 2 = 3$. If $O(v) \subseteq O(z)$, then as $s(v) \geq s(z)$, we have $O(v) = O(z)$. Thus $I(z) = I(v)$ and so $y \rightarrow z$. In either case, $d(y, z) \leq 3$. Hence $y \in K_4(T)$. This shows that $I(v) \subseteq K_4(T)$.

Claim 3. $O(x_2) \cap I(v) \subseteq V_1$.

Let $a \in O(x_2) \cap I(v)$. Then $x_2 \rightarrow a \rightarrow v$. Since $v \rightarrow x_1 \rightarrow x_2$ and x_1 lies on no 3-cycles in T, we must have $a \in V_1$. Thus $O(x_2) \cap I(v) \subseteq V_1$, as required.

Since $v \rightarrow \{x_1, u\} \rightarrow x_2$ and $x_2 \in M_2$, $|O(x_2) \cap I(v)| \geq 2$. Thus $s^-(v) \geq 2$. By Claims 2 and 3, $|K_4(T) \cap V_1| \geq 4$. Observe that we have actually proved the following claim:

Claim 4. If V_i contains a transmitter of some MS-tournament, then $|V_i \cap K_4(T)| \geq 4$.

Claim 5. If $s^-(v) \geq 3$, then $k_4(T) \geq 9$.

Assume $s^-(v) \geq 3$. Suppose $s(v) = s(x_2)$. Then as $v \rightarrow x_i$ for all $i \neq 2$, $(V(H) \setminus \{x_2\} \cup \{v\})$ is an MS-tournament with v as a transmitter. By Claim 4, $|V_2 \cap K_4(T)| \geq 4$. Now as $|\{x_1, u\} \cup I(v)| \geq 5$, we have $k_4(T) \geq 9$. Assume now $s(v) < s(x_2)$. Since $v \rightarrow \{x_1, u\} \rightarrow x_2$ and x_1 lies on no 3-cycle in T, we have $|O(x_2) \cap I(v)| \geq 3$. By Claim 3, $O(x_2) \cap I(v) \subseteq V_1$. Suppose $I(x_1) \cap V_1 \setminus \{x_1\} \neq \emptyset$ for some $i \geq 3$. By Claim 1, $|I(x_1) \cap V_1 \setminus \{x_1\}| \geq 2$. Now as $I(x_1) \subseteq K_4(T)$, we have $|V_1 \cap K_4(T)| \geq 2$, and so $k_4(T) \geq 9$. Assume now $x_1 \rightarrow V_i$ for all $i \geq 3$. Then $v \rightarrow V_i$ for all $i \geq 3$; otherwise, x_1 lies on some 3-cycle in T. Thus $I(v) \subseteq V_1$. If $s^-(v) \geq 5$, then $k_4(T) \geq 9$. Assume now $3 \leq s^-(v) \leq 4$. Suppose $I(v) \cap I(x_2) \neq \emptyset$. Then as $|O(x_2) \cap I(v)| \geq 3$ and $s^-(v) \leq 4$, we have $|O(x_2) \cap I(v)| = 3$ and $|I(x_2) \cap I(v)| = 1$. Let $O(x_2) \cap I(v) = \{a, b, c\}$ and $I(x_2) \cap I(v) = \{e\}$. Note that $e \rightarrow v \rightarrow V(T) \setminus (V_2 \cup \{a, b, c, e\})$ and $e \rightarrow x_2 \rightarrow \{a, b, c\}$. By Lemma 8, $e \in K_3(T)$, a contradiction. Thus, $I(x_2) \cap I(v) = \emptyset$. Note that $x_2 \rightarrow I(v) \rightarrow v \rightarrow V(T) \setminus (V_2 \cup I(v))$.

By Lemma 8, $x_2 \in K_4(T)$. Now as $k_3(T) = 0$, there exists $z \in V_2 \setminus \{x_2\}$ such that $d(x_2, z) = 4$. Again, $O(x_2) \subseteq O(z)$. Note that $z \notin \{v, w\}$. By Lemma 10, $z \in K_4(T)$. Thus, $\{x_1, u, v, w, x_2, z\} \cup I(v) \subseteq K_4(T)$, and so $k_4(T) \geq 9$. This proves Claim 5.

We now consider $s^-(v) = 2$. Since $|O(x_2) \cap I(v)| \geq 2$, $I(v) = O(x_2) \cap I(v)$. Note that $x_2 \rightarrow I(v) \rightarrow v \rightarrow V(T) \setminus (V_2 \cup I(v))$.

By Lemma 8, $x_2 \in K_4(T)$. As $k_3(T) = 0$, there exists $c \in V_2 \setminus \{x_2\}$ such that $d(x_2, c) = 4$. Thus $O(x_2) \subseteq O(c)$. Since $x_2 \in M_2$, $O(c) = O(x_2)$. By Lemma 10, $c \in K_4(T)$, and so $k_4(T) \geq 8$. This proves part (i).

(ii) The sufficiency is obvious. We shall prove the necessity. Assume that $k_3(T) = 0$ and $k_4(T) = 8$. By Theorem 1, we may assume that every MS-tournament of T has a transmitter. Let x_1, x_2, u, v, w be the vertices as described in the proof of part (i). Then $\{x_1, u, v, w\} \subseteq K_4(T)$. Since $k_4(T) = 8$, it follows from the proof of part (i) that $s^-(v) = 2$, $x_2 \in K_4(T)$, and that there exists $c \in K_4(T) \cap V_2 \setminus \{x_2\}$ such that $d(x_2, c) = 4$. Again, $O(x_2) \subseteq O(z)$. Note that $z \notin \{v, w\}$. By Lemma 10, $z \in K_4(T)$. Thus, $\{x_1, u, v, w, x_2, z\} \cup I(v) \subseteq K_4(T)$, and so $k_4(T) \geq 9$. This proves Claim 5.

We now consider $s^-(v) = 2$. Since $|O(x_2) \cap I(v)| \geq 2$, $I(v) = O(x_2) \cap I(v)$. Note that $x_2 \rightarrow I(v) \rightarrow v \rightarrow V(T) \setminus (V_2 \cup I(v))$. By Lemma 8, $x_2 \in K_4(T)$. As $k_3(T) = 0$, there exists $c \in V_2 \setminus \{x_2\}$ such that $d(x_2, c) = 4$. Thus $O(x_2) \subseteq O(c)$. Since $x_2 \in M_2$, $O(c) = O(x_2)$. By Lemma 10, $c \in K_4(T)$, and so $k_4(T) \geq 8$. This proves part (i).
and \(O(c) = O(x_2) \). Now as \(x_2 \in M_2 \), we have \(s^-(x_2) = 2 \) and \(x_2 \rightarrow V(T) \backslash (V_2 \cup \{x_1, u\}) \).

Since \(|O(x_2) \cap I(v)| \geq 2 \), we have \(I(v) = O(x_2) \cap I(v) \). Let \(O(x_2) \cap I(v) = \{a, b\} \). Then \(\{v, w\} \rightarrow V(T) \backslash (V_2 \cup \{a, b\}) \). By Claims 2 and 3 in (i), \(\{a, b\} \subseteq K_4(T) \cap V_1 \). Thus, \(K_4(T) = \{x_1, u, v, w, x_2, a, b, c\} \). Since \(I(x_1) \subseteq K_4(T) \), we have \(s^-(x_1) = s^-(u) = 2 \) and \(\{x_1, u\} \rightarrow V(T) \backslash (V_1 \cup \{v, w\}) \). Note that \(\{a, b\} \rightarrow \{v, w\} \rightarrow V(T) \backslash (V_2 \cup \{a, b\}) \) and \(\{a, b\} \rightarrow v \rightarrow x_1 \rightarrow V_2 \backslash \{v, w\} \). Thus, \(d(a, x) \leq 3 \) for all \(x \in V(T) \backslash \{b\} \) and \(d(b, x) \leq 3 \) for all \(x \in V(T) \backslash \{a\} \). Now as \(k_3(T) = 0 \), we must have \(d(a, b) = d(b, a) = 4 \). Thus \(O(a) = O(b) \). Suppose \(s^-(a) \geq 3 \). Let \(z \in I(a) \backslash \{x_2, c\} \). Then \(z \rightarrow \{a, b\} \rightarrow \{v, w\} \rightarrow V(T) \backslash (V_2 \cup \{a, b\}) \). By Lemma 8, \(z \in K_4(T) \), a contradiction. Thus, \(s^-(a) = s^-(b) = 2 \) and \(\{a, b\} \rightarrow V(T) \backslash (V_1 \cap \{x_2, c\}) \). Combining the above results, we conclude that \(T \) is isomorphic to an \(n \)-partite tournament of Fig. 1. \(\square \)

Acknowledgements

We would like to express our sincere thanks to the referees for their helpful suggestions. One of the referees even helped simplify the proof of Theorem 2.

References