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Abstract

Hansen (Appl. Algebra Eng. Comm. Comput. 14 (2003) 175) uses cohomological methods to find
a lower bound for the minimum distance of an evaluation code determined by a reduced complete
intersection inP2. In this paper, we generalize Hansen'’s results fidfto P"*; we also show that
the hypotheses of Hansen (2003) may be weakened. The proof is succinct and follows by combining
the Cayley—Bacharach Theorem and the bounds on evaluation codes obtained in Hansen (Zero-
Dimensional Schemes (Ravello, 1992), de Gruyter, Berlin, 1994, pp. 205-211).
© 2004 Elsevier B.V. All rights reserved.

MSC:Primary: 14G50; secondary: 94B27

1. Introduction

In [3], Duursma, Renteria, and Tapia-Recillas compute the block length and dimension
of the Reed—Muller (or evaluation) code determined by a zero-dimensional complete inter-
sectionl” c P™. The words of the cod€'(I"), are obtained by evaluating homogeneous
polynomials of degrea at the points ofl. WhenI is determined by two polynomials
of degreesis, d2 in R = K[x, y, z], Hanser8] obtains a lower bound for the minimum
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distance of the code. In particulardf> 3 and
max{di — 2,d> — 2}<a<di+dy -3,

then the codeC(I"), has minimum distancé >d; + d» — a — 1. The key point is the

observation that when one evaluates polynomials of degwéth a <dj + d2 — 3, then the

resulting evaluation vectors will be linearly dependent. In algebraic—geometric terms, this

reflects the fact that the points bffail to impose independent conditions on polynomials

of degreea. It turns out that this failure gives one some room to correct transmission errors.
The main theme of this paper is that using the modern Cayley—Bacharach Theorem due

to Davis, Geramita, and OreccH®| streamlines the proof if8] substantially, and makes

it easy to generalize the results frd® to P, In them = 2 case, the Cayley—Bacharach

Theorem also allows us to drop the hypotheses{ahax 2, d> — 2} <a andd; > 3 of [8], so,

in particular, our result applies to Reed—Solomon codes. We start off with a quick review of

evaluation codes, and a discussion of residual schemes and the Cayley—Bacharach Theorem.

1.1. Background on evaluation codes

LetV be a variety inP™ defined over the finite field,, with I' = {p1, ..., p,} a set
of I, -rational points ofV. Let R = [ [xo, ..., x;s], and letR, denote the vector space of
homogeneous polynomials of degee€hoose a degreeandfo € R, suchthatfo(p;) # 0
foralli € {1, ..., n}. The evaluation mag, (I') is defined to be the linear map

eq(I) : Ry — [FZ

<f(p1) f(pn) >
f e .
fo(p1) Sfo(pn)

The image ok, (I') is a linear code of block length which we will denote a€' (I'),,. The
codesC(I'), are callecevaluation codeassociated td'. The minimum distance af (I'),,
is

d=d(C(I),)=  min w1 — wal,
wiFw2eCI),
where| - | denotes the norm corresponding to Hemming distancehat is, the number of
nonzero entries in a word. Sin€&I"), is closed under sums, the minimum distance is also
equal to the minimum over all the nonzero codewords of the number of nonzero entries, or
equivalently the length of the words minus the largest number of zero entries in any nonzero
codeword.
The Singleton bound implies that the minimum distadcéhe block lengtim, and the
dimensionk of a linear code satisfy <n — k + 1. Codes for which the upper bound are
achieved are known as maximum distance separable, or MDS, codes.

1.2. Background on the Cayley—Bacharach Theorem

Let K be afield and suppode={p1, ..., p,} is a set of distinct points if?j¢. As above,
let ¢, be the evaluation map from the vector spateof homogeneous polynomials of
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degreea to IK". The kernel of this map consists of polynomials of degaeehich vanish
on I', so the kernel is simply the degraeiece of the ideal;. Hence, we have an exact
sequence of vector spaces

0 — (Ir), — R4 —% K" —> cokel(e,) —> O.

Using sheaf cohomology and writing for the sheaf of ideals corresponding e, we
can identify cokefe,) = H(#r(a)). Similarly, the kernel ok, can be identified with
HO% 7 r(a)). We will write h%(#(a)) to denote the dimension of the kernel gf as a
vector space ovék. In similar fashion, the dimension of the vector spat¥.7 r(a)) will
be denoted byi'(. r(a)). The set of pointd” is said toimpose independent conditioos
polynomials of degrea if the rank ofe, is n, that is, if dim cokefe,) = h*(Jr(a)) = 0.

The classical Cayley—Bacharach Theorem deals with the following situation. Suppose that
Y1, Yo C P?are plane curves of degrég anddo, which intersect in a sdft of d1d» distinct
points. Writel'=T"UT"” with I'" andI"”’ disjoint. If a < d1 +d> — 3 is a nonnegative integer,
then the classical Cayley—Bacharach Theorem asserts that the dimension of the vector space
(Ir)a/ (1), is equal toh (F p# (dy + do — 3— a)), ameasure of the failure éf’ to impose
independent conditions in degrée + d> — 3 — a. For instance, il =d, = 3,a = 3,
andI'=T"uUTI”, with degI”’) =8 and degl"’) = 1, then the classical Cayley—Bacharach
Theorem says that di), /(I1), = h*(S +(0)). Sincer’(.# 1+ (0)) =0, every cubic that
vanishes at the 8 points iif also vanishes at the point if{’.

To formulate the modern version of the Cayley—Bacharach Theorem, we need to use
the language of schemes. For background on schemes we refer the rgaglearnd for a
thorough discussion of the Cayley—Bacharach Theorem we recomdlend

Definition 1.1 (Residual schemgd]). Let I" be a zero-dimensional scheme with coor-
dinate ringA(I'). Let I C I be a closed subscheme ahd C A(I') be its ideal. The
subscheme of residualto I is the subscheme defined by the ideal
II‘W = Al’li'l(ll"//I[‘).

When T is a complete intersectiod,’ is residual tol” in I" iff I"” is residual tol”’
in I’ (this need not be the case in general). We are now ready to state the version of the
Cayley—Bacharach Theorem that we will use to extend the minimum distance bound.
Theorem 1.2 (Davis—Geramita—Orecchig2]). LetI’ ¢ P™ be a complete intersection of

hypersurface(i, Xo, ..., X, of degreesly, do, ..., d,, respectivelyand letl", I'" c I
be closed subschemes residual to one another. Set

m
s=(2di> —m—1.

i=1
Then for anya >0, we have

ho(I 1 (a)) — hO(I (@) = (I (s — ).
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In [2], this theorem is proved with the assumption that the ground field is infinite. When
I" is composed of,-rational points, the statement holds by interpreting the dimensions
over[F_q. If we use the monomial basis fat,, then it is easy to see that the matrix of
the evaluation map,: R, — [F_q" has entries irf,, so the dimensions of the kernel and
cokernel will be the same whether we work over the infinite figabr the finite fieldF,,.

2. Review ofP? result

Let I’ c P2 be a reduced complete intersection of two curves of degtees defined
overlF,. Theorem 4.4 of8] tells us that ifd; > 3 and maxd; — 2} <a <di + d> — 3, then
the evaluation cod€ (I"), has minimum distancé >d1 + d> — a — 1. The proof in[8]
uses Serre duality to compute the dimension of a certain cohomology group, which is why
the hypothesia > maxX{d; — 2} is needed; also useful is the following lemma (2.63}):

Lemma 2.1. LetI" be a finite set of points i?", with |I'| = deg I". Then forj > |I'| — 1,
h (I (j)) =0.

What Hansen actually shows in the proof of Theorem 4 @8]ris that if ' € P?is a
(d1,d2) complete intersection, and c I satisfies
|| >d1dz —dy — da +a + 4,

then the projection map: C(I"), — C("),, obtained by deleting the components of the
codewords ofC(I'),, corresponding to the points ifi’, is injective. We warm up by using
the Cayley—Bacharach Theorem to give a slight improvement.
Lemma 2.2. If I'" C I satisfies

[ >didy —d1— d2 +a + 2,
then the projection map : C(I"), — C(I"),, obtained by deleting the components of the
codewords of” (I),, corresponding to the points iR”, is injective

Proof. Sincerl is reduced|I’| = d1d>. Lets = dy + do» — 3 and letl” be any subset of the
points of I such thatI'’| > did> — s + a — 1. Then lettingl”” = I'\I"" be the subscheme
residual tol”’, we have

I <didp — (dido —s +a—1)=s —a+ 1

Sinces —a > |I'"| — 1, Lemma 2.1 tells us thdt” imposes independent conditions in degree
s —a, SOh* (S (s — a)) = 0. On the other hand,” andI"” are closed subschemesIof
residual to one another, so by Theorem 1.2 we know that fongn@,

hO(I 1 (a)) — KOS (@) = " (I (s — ).

The right-hand side is zero, $8(.# - (a)) = h°(# 1 (a)). In other words HO(.7 +(a)) ~
HO%J 1 (a)), that is,(I;),=r),.Hencethe projection map(l), BN C(I"),isinjective.
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Moreover, the map is injective f@il waysof splitting I as a union of " andI"” with the
same cardinality as above[]]

We claim that the result > s — a + 2 on the minimum distance now follows. To see this,
considerthe casd”| =didy —s +a—1and|[”|=s —a+ 1. Let0#£ f € R,. If fis
nonzero ak — a + 2 or more points in”, then we are done, so we assume ftiatonly
nonzero at points inI”" with

1<t<s —a+ 1

It suffices to see thdtmust be nonzero ats — a + 2 — ¢ points inI”. If not, thenf is
nonzero at<s — a + 1 — ¢ points inI"”, sof vanishes at> |I'"| — (s —a +1—1t) =t
points of I'”. Then we can subdividg into two new O—cyclesl_“/ andT"’ by exchanging
points fromI"” wheref vanishes witt points fromI” wheref is nonzero. We obtain a new
decompositior” =T° UT’ such thaf vanishes at all the points ifi . From the previous
proof, we know that (I'), SN C(T/)ais injective, sof must vanish on all of . It follows
thatd >s —a + 2. If [I'| > did> — s + a — 1, then we can apply the same argument to any
subset ofl’ of sizedid> — s + a — 1 to obtain the bound.

3. Main theorem

We are now ready to prove the main result of this paper: Hansen’s bound generalizes to
reduced complete intersections{ . This can be proved along the lines just sketched for
the P? case. However, the proof is shorter if we utilize the criterif7d{Proposition 6 and
Theorem 8). In the language of this paper, the result is:

Proposition 3.1. LetI" be a subset of points iR™, and letC(I"), be the evaluation code
defined in Sectiof. Fori >1,d(C(I),) >deg(I') —i + 1iff K9(F 1 (a)) = h°(SF [(a)) for
all I'" ¢ I with |I'| =i. Furthermore C(I'),, is an MDS code ift°(# 1 (a)) = h°(F [+ (a))
forall I" c I" such thatI”| = |I'| — hX(S(a)).

Combining the Cayley—Bacharach Theorem, Proposition 3.1 and Lemma 2.1 yields our
main result:

Theorem 3.2. LetI” ¢ P™ be areduced complete intersection of hypersurfaces of degrees
di,da, ...,dy,and lets = (31" ;d;) —m — 1 as in Theoreml.2.If 1<a<s, then the
evaluation code& (I),, has minimum distancé> (3" 1di) —a — (m — 1) =5 —a + 2.

Proof. Putdedl’)—i+1=s—a+2,sothat =dedq ") — (s —a+1). Applying Proposition

3.1, we see that the theorem is trudif(.# ;- (a)) — h°(. 1 (a)) = O for all subsetd” with

degI”) =degI') — (s — a + 1). The modern Cayley—Bacharach Theorem tells us that
WS (@) = (I (@) = W' (I pr(s — a)).

But for any subsef” c I of s + 1 — a points, Lemma 2.1 implies that (. .+ (s — a))
=0. O
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Corollary 3.3. An evaluation cod€ (1), obtained from a reduced complete intersection
I'is MDS iff

hY(I (s —a)) =0 for all I such that |I'"| = h*(I(a)).

Proof. By Proposition 3.1¢ (I'),, is an MDS code ith°(.# (a)) =h%(F [+ (a)) forall I’ ¢
I' such thatI”’| = |I'| — hX(#(a)). By the Cayley—Bacharach Theoreh®(# r(a)) =
hO(S 1+ (a)) for all subsetd™ of cardinalityi iff 21(# _ (s — a)) = 0 for all subsetd™
of cardinalityi. Hence,C(I), is MDS iff h'(.# j»(s — a)) = O for all subsetd™ with
|\ =T — (' -h(Ir@). O

Write o for the largest such that:'(# (i) # 0. A zero-dimensional schenié such
thath(S (o1)=h°(F (o)) forall I’ T, |I'|=|I'| - 1is called eCayley—Bacharach
scheme. 7], Hansen showed thatif is a Cayley—Bacharach scheme, tit&i’),;,. is an
MDS code. Of course, a complete intersection is a Cayley—Bacharach schemexwith
so the complete intersection codegl’), are MDS. Are there other complete intersection
codes which are MDS? We know that(.# (s —a)) =0 if s —a>|I""| — 1; so we see
that a sufficient condition for the MDS property is

s —a=h'(Fr) — 1.

Lemma 3.4. If I' is a complete intersectiothen
h (I r@) =T = (I (s —a).

Proof. From the four term exact sequence of Section 1.2, it followsithaf - (a)) = |I'| —
dimy (R/Ir),. Thus, it suffices to show

dimy (R/I), + dimy(R/I)s_, = |T).
LetL € Ry be anonzerodivisor oR/ I (such arl exists sincer /I is Cohen-Macaulay).
We pass to the Artinian reductiad®/ (I + (L)). It is easy to see that

s+1
> dimy(R/(Ir + (L)); = T

i=0
Sincel is not a zero divisor, there is an exact sequence

0 — (R/IF) (=D -5 R/Ir — R/(IF + (L)) —> O.

From the exact sequence, it follows that

dimi (R/I1), = E dimy (R/(Ir + (L))
i=0
Similarly, we have

dimg (R/Ir)s—q = Y dimic(R/(Ir + (L)),).
i=0
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Now, sincel” is a complete intersection, the Hilbert function of the Artinian reduction is
symmetric. So

s—a s+1
> dimy(R/Ur + (L)) = Y dimg(R/Ur + (L)),
i=0 i=a+1

yielding the result. [J

Thus, a sufficient condition for the MDS property is that a + 1> degI’) — h1(S
(s —a))=dimk(R/I),_,. If I"is asetof collinear points, then digdR/I),, = min{m +
1, |I'|}, so a set of collinear points always gives an MDS code.

4. Examples

We now give several examples to illustrate our results. First, we quickly review the
notation from the previous sections. We consider cad@s), constructed by evaluating
the homogeneous polynomials of degaest the points of a complete intersectiba= X1 N
-+~ N X,,, whereX; has degreé;. As in Theorem 3.2, we write = (} /., d;) —m — 1.
Then the result of that theorem says that € 4 <s, then the minimum distanaz of the
evaluation code satisfies>s —a + 2.

Example 4.1. Letx;, 0< j <m be the homogeneous coordinatesif, and letXy, .. .,

Xu—1 be the hyperplaneX; = V(x;) for 1<j<m — 1. Let X,, be the hypersurface

Vxk —xg‘lxm). Then the intersection of th¥; is a complete intersectian, consisting of

the set of affinér, -rational points (i.e. points witlkg # 0) onthe lineL =X;N---N X, 1.

The evaluation codes in this case are just the usual extended Reed—Solomon codes, and
Theorem 3.2 yields the following. We have=m —14+q —m —1=¢q — 2. If a<s, then

we get that the minimum distance satisfies

d>q—2—a+2=q—a=n—k+1,

since the block length is g, and the dimensiok is @ + 1. Thus we have recovered the
well-known fact that the extended Reed—Solomon codes are MDS codes.

Example 4.2. Second, consider the usual Reed—Muller evaluation codes as in Example 4.5
of [8], where the casa = 2 is studied. The set of all affirlg, -rational points inA™ is the
projective complete intersection

F:V(x?—nglxj:j=1,...,m).

Hence we have = mg —m — 1 =m(q — 1) — 1. Our Theorem 3.2 implies that for the
C(I'), code witha <, the minimum distance is bounded below by

d>zs—a+2=m(@—-21) —a+1

We note that this example shows the type of bound we are considering here is likely to
be of interest in general only whenis relatively large compared ® For instance, it is
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known thatifa =a(q — 1) + 5, where < f < g — 2, then the exact minimum distance of the
Reed-Muller code ig=(q — f)g™ 1% (sed1], Corollary 5.5.4, for instance). #f < m — 1,

then our lower bound will be considerably smaller than the actual minimum distance. On the
other hand, if, for example,= (m — 1)(¢ — 1), soa=m — 1 andf =0, the actual minimum
distance is/ = ¢, while our bound also give$>m(g — 1) +1— (m — (g — 1) =q.

Example 4.3. For our final example, we consider codes related to Hermitian codes. The
evaluation geometric Goppa codes ofgr are defined using the Hermitian curvks =

V()ci’Jrl — xdx0 — xpx¢) C P?, and the divisor& = u Q, whereQ = [0, 0, 1] is the unique
point at infinity onX,. There are precisely® affine F,2-rational points onx,. However

theI consisting of all of them is not a projective complete intersection. To construct codes
for which our main results apply, we let

F(x0, x1, x2) = l_[ (x2 — 0xQ).
{xe[quzoc‘l +0#0}

ThenI'= X, N V(F) consists of thg® — ¢ [F,2-rational points onX, with x1 # 0 (allin

the affine part of the plane). In a very precise sense[@ggethe evaluation codeS (1),

are related to the usual Hermitian codes constructed using the divisonsisting of all

[ 2-rational points in the same way that Reed—Solomon codes are related to the extended
Reed-Solomon codes.

As in the Reed—Muller case, our bound only gives sharp results when the déglame
relative tos. Since the equations definidghave degreeg; = ¢ + 1 andd»> = ¢2 — g, we
haves = g2 — 2. For example, witlx = g% — ¢, our Theorem 3.2 yieldd>s +2 —a =q.

By way of comparison, the usual Hermitian evaluation code constructed Lgin@) for
u=a(q + 1) = g% — ¢ (the maximum pole order & of the functions corresponding to
the elements oR,) also has! = ¢ — (¢ — g) = ¢ by [10], Proposition VI1.4.3. Note that
our code has block length = ¢3 — ¢ rather thary2, and the dimension is also one less
than the dimension of the corresponding usual Hermitian code because the polyRomial
has degree = g% — g.

There is an extension of the notion of a residual scheme from the case Wien
complete intersection to the case wheérs arithmetically Gorenstein. It seems reasonable
to expect that similar methods would yield bounds on the minimum distance in this case;
we hope to study this question in a future paper. We note tHé} jicisenbud and Popescu
use the (local) Gorenstein property to give a proof of Goppa duality.
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