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Abstract

Hansen (Appl. Algebra Eng. Comm. Comput. 14 (2003) 175) uses cohomological methods to find
a lower bound for the minimum distance of an evaluation code determined by a reduced complete
intersection inP2. In this paper, we generalize Hansen’s results fromP2 to Pm; we also show that
the hypotheses of Hansen (2003) may be weakened. The proof is succinct and follows by combining
the Cayley–Bacharach Theorem and the bounds on evaluation codes obtained in Hansen (Zero-
Dimensional Schemes (Ravello, 1992), de Gruyter, Berlin, 1994, pp. 205–211).
© 2004 Elsevier B.V. All rights reserved.

MSC:Primary: 14G50; secondary: 94B27

1. Introduction

In [3], Duursma, Rentería, and Tapia-Recillas compute the block length and dimension
of the Reed–Muller (or evaluation) code determined by a zero-dimensional complete inter-
section� ⊂ Pm. The words of the codeC(�)a are obtained by evaluating homogeneous
polynomials of degreea at the points of�. When� is determined by two polynomials
of degreesd1, d2 in R = K[x, y, z], Hansen[8] obtains a lower bound for the minimum

∗ Corresponding author.
E-mail addresses:lgold@math.tamu.edu(L. Gold), little@mathcs.holycross.edu(J. Little),

schenck@math.tamu.edu(H. Schenck).

0022-4049/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2004.08.015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82559331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jpaa
mailto:lgold@math.tamu.edu
mailto:little@mathcs.holycross.edu
mailto:schenck@math.tamu.edu


92 L. Gold et al. / Journal of Pure and Applied Algebra 196 (2005) 91–99

distance of the code. In particular, ifdi�3 and

max{d1 − 2, d2 − 2}�a�d1 + d2 − 3,

then the codeC(�)a has minimum distanced�d1 + d2 − a − 1. The key point is the
observation that when one evaluates polynomials of degreea with a�d1 +d2 −3, then the
resulting evaluation vectors will be linearly dependent. In algebraic–geometric terms, this
reflects the fact that the points of� fail to impose independent conditions on polynomials
of degreea. It turns out that this failure gives one some room to correct transmission errors.

The main theme of this paper is that using the modern Cayley–Bacharach Theorem due
to Davis, Geramita, and Orecchia[2] streamlines the proof in[8] substantially, and makes
it easy to generalize the results fromP2 to Pm. In them = 2 case, the Cayley–Bacharach
Theorem also allows us to drop the hypotheses max{d1−2, d2−2}�a anddi�3 of [8], so,
in particular, our result applies to Reed–Solomon codes. We start off with a quick review of
evaluation codes, and a discussion of residual schemes and the Cayley–Bacharach Theorem.

1.1. Background on evaluation codes

Let V be a variety inPm defined over the finite fieldFq , with � = {p1, . . . , pn} a set
of Fq -rational points onV. LetR = Fq [x0, . . . , xm], and letRa denote the vector space of
homogeneous polynomials of degreea. Choose a degreeaandf0 ∈ Ra such thatf0(pi) �= 0
for all i ∈ {1, . . . , n}. The evaluation mapea(�) is defined to be the linear map

ea(�) : Ra → Fnq

f �→
(
f (p1)

f0(p1)
, . . . ,

f (pn)

f0(pn)

)
.

The image ofea(�) is a linear code of block lengthn, which we will denote asC(�)a . The
codesC(�)a are calledevaluation codesassociated to�. The minimum distance ofC(�)a
is

d = d(C(�)a)= min
w1 �=w2∈C(�)a

|w1 − w2|,

where| · | denotes the norm corresponding to theHamming distance, that is, the number of
nonzero entries in a word. SinceC(�)a is closed under sums, the minimum distance is also
equal to the minimum over all the nonzero codewords of the number of nonzero entries, or
equivalently the length of the words minus the largest number of zero entries in any nonzero
codeword.

The Singleton bound implies that the minimum distanced, the block lengthn, and the
dimensionk of a linear code satisfyd�n − k + 1. Codes for which the upper bound are
achieved are known as maximum distance separable, or MDS, codes.

1.2. Background on the Cayley–Bacharach Theorem

Let K be a field and suppose�={p1, . . . , pn} is a set of distinct points inPmK. As above,
let ea be the evaluation map from the vector spaceRa of homogeneous polynomials of
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degreea to Kn. The kernel of this map consists of polynomials of degreea which vanish
on �, so the kernel is simply the degreea piece of the idealI�. Hence, we have an exact
sequence of vector spaces

0 −→ (I�)a −→ Ra
ea−→ Kn −→ coker(ea) −→ 0.

Using sheaf cohomology and writingI� for the sheaf of ideals corresponding toI�, we
can identify coker(ea) ∼= H 1(I�(a)). Similarly, the kernel ofea can be identified with
H 0(I�(a)). We will write h0(I�(a)) to denote the dimension of the kernel ofea as a
vector space overK. In similar fashion, the dimension of the vector spaceH 1(I�(a)) will
be denoted byh1(I�(a)). The set of points� is said toimpose independent conditionson
polynomials of degreea if the rank ofea is n, that is, if dim coker(ea)= h1(I�(a))= 0.

The classical Cayley–BacharachTheorem deals with the following situation. Suppose that
Y1, Y2 ⊂ P2 are plane curves of degreed1 andd2 which intersect in a set� of d1d2 distinct
points. Write�=�′ ∪�′′ with �′ and�′′ disjoint. If a�d1+d2−3 is a nonnegative integer,
then the classical Cayley–Bacharach Theorem asserts that the dimension of the vector space
(I�′)a/(I�)a is equal toh1(I�′′(d1 +d2 −3−a)), a measure of the failure of�′′ to impose
independent conditions in degreed1 + d2 − 3 − a. For instance, ifd1 = d2 = 3, a = 3,
and� = �′ ∪ �′′, with deg(�′)= 8 and deg(�′′)= 1, then the classical Cayley–Bacharach
Theorem says that dim(I�′)a/(I�)a=h1(I�′′(0)). Sinceh1(I�′′(0))=0, every cubic that
vanishes at the 8 points in�′ also vanishes at the point in�′′.

To formulate the modern version of the Cayley–Bacharach Theorem, we need to use
the language of schemes. For background on schemes we refer the reader to[5], and for a
thorough discussion of the Cayley–Bacharach Theorem we recommend[4].

Definition 1.1 (Residual schemes[4] ). Let � be a zero-dimensional scheme with coor-
dinate ringA(�). Let �′ ⊂ � be a closed subscheme andI�′ ⊂ A(�) be its ideal. The
subscheme of� residualto �′ is the subscheme defined by the ideal

I�′′ = Ann(I�′/I�).

When� is a complete intersection,�′ is residual to�′′ in � iff �′′ is residual to�′
in � (this need not be the case in general). We are now ready to state the version of the
Cayley–Bacharach Theorem that we will use to extend the minimum distance bound.

Theorem 1.2(Davis–Geramita–Orecchia[2] ). Let� ⊂ Pm be a complete intersection of
hypersurfacesX1, X2, . . . , Xm of degreesd1, d2, . . . , dm respectively, and let�′, �′′ ⊂ �
be closed subschemes residual to one another. Set

s =
(
m∑
i=1

di

)
−m− 1.

Then, for anya�0, we have

h0(I�′(a))− h0(I�(a))= h1(I�′′(s − a)).
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In [2], this theorem is proved with the assumption that the ground field is infinite. When
� is composed ofFq -rational points, the statement holds by interpreting the dimensions
over Fq . If we use the monomial basis forRa , then it is easy to see that the matrix of
the evaluation mapea : Ra → Fq

n
has entries inFq , so the dimensions of the kernel and

cokernel will be the same whether we work over the infinite fieldFq or the finite fieldFq .

2. Review ofP2 result

Let � ⊂ P2 be a reduced complete intersection of two curves of degreesd1, d2 defined
overFq . Theorem 4.4 of[8] tells us that ifdi�3 and max{di − 2}�a�d1 + d2 − 3, then
the evaluation codeC(�)a has minimum distanced�d1 + d2 − a − 1. The proof in[8]
uses Serre duality to compute the dimension of a certain cohomology group, which is why
the hypothesisa� max{di − 2} is needed; also useful is the following lemma (2.6 of[8]):

Lemma 2.1. Let� be a finite set of points inPm, with |�| = deg�. Then forj� |�| − 1,
h1(I�(j))= 0.

What Hansen actually shows in the proof of Theorem 4.4 in[8] is that if � ⊆ P2 is a
(d1,d2) complete intersection, and�′ ⊂ � satisfies

|�′|�d1d2 − d1 − d2 + a + 4,

then the projection map� : C(�)a → C(�′)a , obtained by deleting the components of the
codewords ofC(�)a corresponding to the points in�′′, is injective. We warm up by using
the Cayley–Bacharach Theorem to give a slight improvement.

Lemma 2.2. If �′ ⊂ � satisfies

|�′|�d1d2 − d1 − d2 + a + 2,

then the projection map� : C(�)a → C(�′)a , obtained by deleting the components of the
codewords ofC(�)a corresponding to the points in�′′, is injective.

Proof. Since� is reduced,|�| = d1d2. Let s = d1 + d2 − 3 and let�′ be any subset of the
points of� such that|�′|�d1d2 − s + a − 1. Then letting�′′ = �\�′ be the subscheme
residual to�′, we have

|�′′|�d1d2 − (d1d2 − s + a − 1)= s − a + 1.

Sinces−a� |�′′|−1, Lemma 2.1 tells us that�′′ imposes independent conditions in degree
s − a, soh1(I�′′(s − a)) = 0. On the other hand,�′ and�′′ are closed subschemes of�
residual to one another, so by Theorem 1.2 we know that for anya�0,

h0(I�′(a))− h0(I�(a))= h1(I�′′(s − a)).
The right-hand side is zero, soh0(I�′(a)) = h0(I�(a)). In other words,H 0(I�′(a)) �
H 0(I�(a)), that is,(I�′)a=(I�)a . Hence the projection mapC(�)a

�−→C(�′)a is injective.
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Moreover, the map is injective forall waysof splitting� as a union of�′ and�′′ with the
same cardinality as above.�

We claim that the resultd�s− a+2 on the minimum distance now follows. To see this,
consider the case|�′| = d1d2 − s + a − 1 and|�′′| = s − a + 1. Let 0 �= f ∈ Ra . If f is
nonzero ats − a + 2 or more points in�′, then we are done, so we assume thatf is only
nonzero att points in�′ with

1� t�s − a + 1.

It suffices to see thatf must be nonzero at�s − a + 2 − t points in�′′. If not, thenf is
nonzero at�s − a + 1 − t points in�′′, so f vanishes at� |�′′| − (s − a + 1 − t) = t
points of�′′. Then we can subdivide� into two new 0-cycles�

′
and�

′′
by exchangingt

points from�′′ wheref vanishes witht points from�′ wheref is nonzero. We obtain a new
decomposition� = �

′ ∪ �
′′

such thatf vanishes at all the points in�
′
. From the previous

proof, we know thatC(�)a
�−→C(�

′
)a is injective, sof must vanish on all of�. It follows

thatd�s − a+ 2. If |�′|>d1d2 − s + a− 1, then we can apply the same argument to any
subset of�′ of sized1d2 − s + a − 1 to obtain the bound.

3. Main theorem

We are now ready to prove the main result of this paper: Hansen’s bound generalizes to
reduced complete intersections inPm. This can be proved along the lines just sketched for
theP2 case. However, the proof is shorter if we utilize the criteria of[7] (Proposition 6 and
Theorem 8). In the language of this paper, the result is:

Proposition 3.1. Let� be a subset of points inPm, and letC(�)a be the evaluation code
defined in Section1.For i�1,d(C(�)a)�deg(�)− i+1 iff h0(I�(a))=h0(I�′(a)) for
all �′ ⊂ � with |�′|= i. Furthermore,C(�)a is an MDS code iffh0(I�(a))=h0(I�′(a))
for all �′ ⊂ � such that|�′| = |�| − h1(I�(a)).

Combining the Cayley–Bacharach Theorem, Proposition 3.1 and Lemma 2.1 yields our
main result:

Theorem 3.2. Let� ⊂ Pm be a reduced complete intersection of hypersurfaces of degrees
d1, d2, . . . , dm, and lets = (∑m

i=1 di) − m − 1 as in Theorem1.2. If 1�a�s, then the
evaluation codeC(�)a has minimum distanced�(∑m

i=1 di)− a − (m− 1)= s − a + 2.

Proof. Put deg(�)−i+1=s−a+2, so thati=deg(�)−(s−a+1).Applying Proposition
3.1, we see that the theorem is true iffh0(I�′(a))− h0(I�(a))= 0 for all subsets�′ with
deg(�′)= deg(�)− (s − a + 1). The modern Cayley–Bacharach Theorem tells us that

h0(I�′(a))− h0(I�(a))= h1(I�′′(s − a)).
But for any subset�′′ ⊂ � of s + 1 − a points, Lemma 2.1 implies thath1(I�′′(s − a))
= 0. �
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Corollary 3.3. An evaluation codeC(�)a obtained from a reduced complete intersection
� is MDS iff

h1(I�′′(s − a))= 0 f or all �′′ such that |�′′| = h1(I�(a)).

Proof. By Proposition 3.1,C(�)a is an MDS code iffh0(I�(a))=h0(I�′(a)) for all �′ ⊂
� such that|�′| = |�| − h1(I�(a)). By the Cayley–Bacharach Theorem,h0(I�(a)) =
h0(I�′(a)) for all subsets�′ of cardinalityi iff h1(I�−�′(s − a)) = 0 for all subsets�′
of cardinality i. Hence,C(�)a is MDS iff h1(I�′′(s − a)) = 0 for all subsets�′′ with
|�′′| = |�| − (|�| − h1(I�(a))). �

Write �� for the largesti such thath1(I�(i)) �= 0. A zero-dimensional scheme�′ such
thath0(I�(��))=h0(I�′(��)) for all �′ ⊂ �, |�′|=|�|−1 is called aCayley–Bacharach
scheme. In[7], Hansen showed that if� is a Cayley–Bacharach scheme, thenC(�)��

is an
MDS code. Of course, a complete intersection is a Cayley–Bacharach scheme, withs=��,
so the complete intersection codesC(�)s are MDS. Are there other complete intersection
codes which are MDS? We know thath1(I�′′(s − a)) = 0 if s − a� |�′′| − 1; so we see
that a sufficient condition for the MDS property is

s − a�h1(I�(a))− 1.

Lemma 3.4. If � is a complete intersection, then

h1(I�(a))= |�| − h1(I�(s − a)).

Proof. From the four term exact sequence of Section 1.2, it follows thath1(I�(a))=|�|−
dimK(R/I�)a . Thus, it suffices to show

dimK(R/I�)a + dimK(R/I�)s−a = |�|.
LetL ∈ R1 be a nonzero divisor onR/I� (such anL exists sinceR/I� is Cohen-Macaulay).
We pass to the Artinian reductionR/(I� + 〈L〉). It is easy to see that

s+1∑
i=0

dimK(R/(I� + 〈L〉))i = |�|.

SinceL is not a zero divisor, there is an exact sequence

0 −→ (R/I�)(−1)
·L−→R/I� −→ R/(I� + 〈L〉) −→ 0.

From the exact sequence, it follows that

dimK(R/I�)a =
a∑
i=0

dimK(R/(I� + 〈L〉)i).

Similarly, we have

dimK(R/I�)s−a =
s−a∑
i=0

dimK(R/(I� + 〈L〉)i).
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Now, since� is a complete intersection, the Hilbert function of the Artinian reduction is
symmetric. So

s−a∑
i=0

dimK(R/(I� + 〈L〉)i)=
s+1∑
i=a+1

dimK(R/(I� + 〈L〉)i),

yielding the result. �

Thus, a sufficient condition for the MDS property is thats − a + 1� deg(�) − h1(I�
(s−a))=dimK(R/I�)s−a . If � is a set of collinear points, then dimK(R/I�)m=min{m+
1, |�|}, so a set of collinear points always gives an MDS code.

4. Examples

We now give several examples to illustrate our results. First, we quickly review the
notation from the previous sections. We consider codesC(�)a constructed by evaluating
the homogeneous polynomials of degreeaat the points of a complete intersection�=X1∩
· · · ∩ Xm, whereXi has degreedi . As in Theorem 3.2, we writes = (∑m

i=1 di) − m − 1.
Then the result of that theorem says that if 1�a�s, then the minimum distanced of the
evaluation code satisfiesd�s − a + 2.

Example 4.1. Let xj , 0�j�m be the homogeneous coordinates onPm, and letX1, . . . ,

Xm−1 be the hyperplanesXj = V (xj ) for 1�j�m − 1. Let Xm be the hypersurface

V (x
q
m−xq−1

0 xm). Then the intersection of theXi is a complete intersection�, consisting of
the set of affineFq -rational points (i.e. points withx0 �= 0) on the lineL=X1∩· · ·∩Xm−1.
The evaluation codes in this case are just the usual extended Reed–Solomon codes, and
Theorem 3.2 yields the following. We haves =m− 1+ q −m− 1= q − 2. If a�s, then
we get that the minimum distance satisfies

d�q − 2 − a + 2 = q − a = n− k + 1,

since the block lengthn is q, and the dimensionk is a + 1. Thus we have recovered the
well-known fact that the extended Reed–Solomon codes are MDS codes.

Example 4.2. Second, consider the usual Reed–Muller evaluation codes as in Example 4.5
of [8], where the casem= 2 is studied. The set of all affineFq -rational points inAm is the
projective complete intersection

� = V (xqj − xq−1
0 xj : j = 1, . . . , m).

Hence we haves = mq − m − 1 = m(q − 1) − 1. Our Theorem 3.2 implies that for the
C(�)a code witha�s, the minimum distance is bounded below by

d�s − a + 2 =m(q − 1)− a + 1.

We note that this example shows the type of bound we are considering here is likely to
be of interest in general only whena is relatively large compared tos. For instance, it is
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known that ifa=�(q−1)+�, where 0���q−2, then the exact minimum distance of the
Reed–Muller code isd=(q−�)qm−1−� (see[1], Corollary 5.5.4, for instance). If�<m−1,
then our lower bound will be considerably smaller than the actual minimum distance. On the
other hand, if, for example,a= (m−1)(q−1), so�=m−1 and�=0, the actual minimum
distance isd = q, while our bound also givesd�m(q − 1)+ 1 − (m− 1)(q − 1)= q.

Example 4.3. For our final example, we consider codes related to Hermitian codes. The
evaluation geometric Goppa codes overFq2 are defined using the Hermitian curvesXq =
V (x

q+1
1 − xq2x0 − x2x

q
0 ) ⊂ P2, and the divisorsG=uQ, whereQ=[0,0,1] is the unique

point at infinity onXq . There are preciselyq3 affineFq2-rational points onXq . However
the� consisting of all of them is not a projective complete intersection. To construct codes
for which our main results apply, we let

F(x0, x1, x2)=
∏

{�∈F
q2 :�q+� �=0}

(x2 − �x0).

Then� =Xq ∩ V (F) consists of theq3 − q Fq2-rational points onXq with x1 �= 0 (all in
the affine part of the plane). In a very precise sense (see[9]), the evaluation codesC(�)a
are related to the usual Hermitian codes constructed using the divisorD consisting of all
Fq2-rational points in the same way that Reed–Solomon codes are related to the extended
Reed–Solomon codes.

As in the Reed–Muller case, our bound only gives sharp results when the degreea is large
relative tos. Since the equations defining� have degreesd1 = q + 1 andd2 = q2 − q, we
haves = q2 − 2. For example, witha= q2 − q, our Theorem 3.2 yieldsd�s + 2− a= q.
By way of comparison, the usual Hermitian evaluation code constructed usingL(uQ) for
u = a(q + 1) = q3 − q (the maximum pole order atQ of the functions corresponding to
the elements ofRa) also hasd = q3 − (q3 − q)= q by [10], Proposition VII.4.3. Note that
our code has block lengthn = q3 − q rather thanq3, and the dimension is also one less
than the dimension of the corresponding usual Hermitian code because the polynomialF
has degreea = q2 − q.

There is an extension of the notion of a residual scheme from the case when� is a
complete intersection to the case when� is arithmetically Gorenstein. It seems reasonable
to expect that similar methods would yield bounds on the minimum distance in this case;
we hope to study this question in a future paper. We note that in[6], Eisenbud and Popescu
use the (local) Gorenstein property to give a proof of Goppa duality.
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