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We construct zero-temperature solutions of supergravity theories in five and four dimensions which in-
terpolate between two copies of anti-de Sitter space, one of which preserves an Abelian gauge symmetry
while the other breaks it. These domain wall solutions can be lifted to solutions of type IIB string theory
and eleven-dimensional supergravity. They describe quantum critical behavior and emergent relativistic
conformal symmetry in a superfluid or superconducting state of a strongly coupled dual gauge theory.
We include computations of frequency-dependent conductivities which exhibit power law scaling in the
infrared, with exponents determined by irrelevant perturbations to the symmetry-breaking anti-de Sitter
background.
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1. Introduction

In [1,2], explicit examples of superconducting black holes were
exhibited in type IIB supergravity and M-theory, respectively. These
works follow the general scheme of [3,4] for constructing super-
conducting black holes: a complex scalar charged under an Abelian
gauged field condenses outside the horizon when the charge of
the black hole is big enough. The constructions of [1,2] draw upon
advances including [5–8] in the understanding of how to embed
solutions of gauged supergravity into ten- and eleven-dimensional
supergravity.

In [9] it was suggested that emergent conformal symmetry
should emerge in the zero-temperature limit of superconducting
black holes, provided the scalar potential has a symmetry-breaking
minimum. It was further suggested that if there was no such mini-
mum, the zero-temperature limit should involve emergent Lorentz
symmetry. In [10], strong numerical evidence was provided that
Lorentzian symmetries do emerge on the thermodynamically fa-
vored branch of superconducting black hole solutions to simple
theories in AdS4. It is not hard to produce similar numerical ev-
idence in favor of emergent conformal symmetry when there is
a symmetry-breaking minimum in the scalar potential; also, do-
main wall solutions were constructed in [9] which are, plausibly,
the zero-temperature limits of the thermodynamically favored su-
perconducting black holes.

In the current Letter, we apply the techniques of [9] to the the-
ories discussed in [1,2] to construct domain wall geometries which
are candidate ground states for finite-density matter in the gauge
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theories dual to the AdS5 and AdS4 geometries we consider. While
we would like to go further and claim that the geometries we
construct are the genuine ground states of the theories under con-
sideration at finite density, such claims are difficult to establish
without knowing the full spectrum of supergravity deformations.

We start in Section 2 with the AdS5 example, and continue
in Section 3 with the AdS4 example. We finish in Section 4 with
a brief discussion and a conjecture about the relation between
renormalization group flows and emergent conformal symmetry in
finite-density systems.

The authors of [2] anticipated the quantum critical nature of
the zero-temperature limit of the superconducting black holes they
studied.

2. A string theory example

Consider the action

S = 1

2κ2

∫
d5x

√−gL (1)

with

L = R − 1

4
F 2
μν − 1

2

[
(∂μη)2 + sinh2 η

(
∂μθ −

√
3

L
Aμ

)2]

+ 3

L2
cosh2 η

2
(5 − coshη) + (Chern–Simons), (2)

where η is the magnitude of the complex scalar and θ is its phase.
The kinetic terms come from the non-linear sigma-model over the
Poincaré disk, parametrized by z = eiθ tanh η

2 . The lift of this La-
grangian to a class of solutions of type IIB supergravity, based on
D3-branes at the tip of a Calabi–Yau cone, was described in [1].
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The domain wall geometry takes the form

ds2 = e2A(r)[−h(r)dt2 + d�x2] + dr2

h(r)
, (3)

and has non-zero gauge field Aμ dxμ = Φ(r)dt and η. As in four
dimensions [9], any such domain wall supported by matter obey-
ing the null energy condition must have A concave down; and it
also follows from the null energy condition that if h is constant in
both the infrared (r → −∞) and the ultraviolet (r → +∞), then
hIR < hUV.

The scalar potential in (2) has two extrema, η = 0 and η =
ηIR ≡ log(2 + √

3 ), and to each of these corresponds an AdS5 ex-

tremum of (2) with radius of curvature L and LIR ≡ 2
3
2 L/3, respec-

tively. The domain wall solution interpolates between these two
AdS5 geometries, similarly to the one found in [11]. It differs in
that we insist that as r → +∞ (the ultraviolet),

η ∝ e−�η A = e−3A, (4)

corresponding to an expectation value for the dimension 3 oper-
ator dual to η, but no deformation of the CFT Lagrangian by it.
Instead, denoting the conserved current dual to Aμ in the ultra-
violet CFT by Jμ , we consider states with finite 〈 J0〉 and finite
chemical potential μ. In other words, we add μ J0 to the CFT
Lagrangian, which does not by itself break the U (1) symmetry as-
sociated with Jμ . Non-zero η does break this symmetry.

We can choose coordinates such that as r → −∞

A ∼ r

LIR
, h ∼ 1, η ∼ ηIR, Φ ∼ 0, (5)

with exponentially suppressed corrections, which can be obtained
from the equations of motion linearized around (5). Of particular
interest are the first corrections to the scalar and gauge field,

η ≈ ηIR + aηe(�IR−4)r/LIR , Φ ≈ aΦe(�Φ−3)r/LIR , (6)

where �IR = 6 − √
6 and �Φ = 5. A formal series solution for A,

h, η, and Φ may be developed in the infrared, in powers of er/LIR ,
with all coefficients determined in terms of aη and aΦ .

By shifting r, we can set aΦ to 1 without loss of generality. Such
a shift adds a constant to A, but this constant can be absorbed by
rescaling t and �x by a common factor. (See [9] for a more detailed
analysis of a similar case.) To fix aη , one must impose the ultra-
violet boundary condition (4). There can be several values of aη

that satisfy this condition. We will consider the solution for which
η has the least number of nodes, since this is the solution most
likely to be stable.

By numerically integrating the equations of motion with the
boundary conditions described above we find a nodeless domain
wall solution for aη ≈ 2.134 (see Fig. 1). The relative speed of
propagation of lightlike signals in the ultraviolet and the infrared
is given by the “index of refraction” n ≡ √

hUV/hIR, and for this
solution we have n ≈ 2.674. More complete numerical results are
available [12].

One can define a “normalized” order parameter through the dif-
feomorphism invariant formula

〈Ôη〉 ≡ lim
r→∞

η(r)e3A(r)h(r)3/2

Φ(r)3
. (7)

In terms of field theory quantities, 〈Ôη〉 is proportional to
〈Oη〉/μ3, where Oη is the operator dual to η and μ is the chem-
ical potential. The proportionality constant depends on the precise
normalization one chooses for Oη and μ. For our domain wall

solution, we find 〈Ôη〉 ≈ 0.322.
Fig. 1. The string theory domain wall.

It is interesting to note that the ten-dimensional geometry in
the far ultraviolet is AdS5 times a Sasaki–Einstein five-manifold
(SE5), supported by five-form flux only, whereas in the far-infrared
it is of the form first studied in [13], where a U (1) fiber of the SE5
has been stretched and a combination of the Neveu–Schwarz and
Ramond–Ramond two-form gauge potentials have been turned on.
These are not supersymmetric compactifications, so demonstrating
stability is non-trivial.

Having obtained the domain wall solution, we can compute its
frequency-dependent conductivity. To this end, we add a time-
dependent perturbation to the gauge field, Ax = e−iωtax(r) and
linearize its equation of motion, obtaining

a′′
x +

(
2A′ + h′

h

)
a′

x +
(

ω2 − hΦ ′2

e2Ah2
− 3 sinh2 η

h

)
ax = 0, (8)

with primes denoting d/dr. If we solve (8), with infalling boundary
conditions in the infrared, the conductivity can then be computed
from the ultraviolet behavior of the perturbation. For large r,

ax ≈ a(0)
x + a(2)

x e−2A + a(L)
x A(r)e−2A . (9)

The Ae2A term introduces some ambiguity in this computation:
it gives a logarithmically divergent contribution to the conductiv-
ity [14]. However, since a(L)

x /a(2)
x can be shown to be a real num-

ber, this issue only affects the imaginary part of the conductivity,
and the real part is unambiguously given by

Reσ = 1

2κ2L

2a(2)
x

iωa(0)
x

hUV

ΦUV
. (10)

Here, the factor of hUV/ΦUV, where ΦUV = Φ(+∞), was introduced
to render the conductivity invariant under diffeomorphisms that
preserve the form of the metric (3). Numerical results for the real
part of the conductivity are shown in Fig. 2. At large frequencies,
we recover the AdS5 behavior, Reσ = Lπω/4κ2. At low frequen-
cies, we can also obtain the scaling analytically, using the method
of matched asymptotic expansions, as in [9].

The first step is to note that when r � −LIR, the corrections
to (5) are suppressed. When they are ignored, (8) can be solved
analytically. The infalling solution is

aIR
x = e−r/LIR H (1)

�Φ−2

(
ωLIRe

− r
LIR

)
, (11)

where H(1) is a Hankel function. The next step is to note that
when r � LIR logωLIR, one may drop ω from (8) altogether. The
resulting equation probably can’t be solved analytically, but the
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Fig. 2. The real part of the conductivity for string theory domain wall. The dots are
numerical results, the dashed line is a ω5 power law with the coefficient chosen
such that the line goes through the first dot in the plot and the solid line is the
AdS5 conductivity Reσ = π Lω/4κ2.

point is that the solutions to (8) which determine the conduc-
tivity don’t depend on ω in the region r � LIR logωLIR, except
for an overall multiplicative factor: they are given simply by the
zero frequency solution. Provided ωLIR � 1, there exists a win-
dow LIR logωLIR � r � −LIR where (11) may be matched onto the
zero-frequency solution. The result of this matching is that a(0)

x ∼
ω−�Φ+2. To extract the real part of the conductivity, first define

F = he2A

2i
ax

←→
∂ ra∗

x (12)

and note that F is independent of r. Inserting (9) into (12) it fol-
lows that F = σΦUVω|a(0)

x |2. On the other hand, inserting (11) into
(12) shows that F is ω-independent. So we find that

Reσ ∝ ω2�Φ−5 = ω5, (13)

where in the last step we used �Φ = 5. The result Reσ ∝ ω2�Φ−5

is clearly more general: it basically depends on having good control
over the series expansion of the background in the infrared.

As Fig. 2 shows, numerical evaluations of the conductivity inter-
polate quite smoothly between the infrared and ultraviolet limits
just discussed.

3. An M-theory example

The four-dimensional theory

L = R − 1

4
F 2
μν − 1

2

[
(∂μη)2 + sinh2 η

(
∂μθ − 1

L
Aμ

)2]

+ 1

L2
cosh2 η

2
(7 − coshη) (14)

derived as a consistent truncation of M-theory in [2,7], clearly is
nearly identical to (2).1 As mentioned in [2], this truncation is con-
sistent only when F ∧ F = 0.

This theory also admits a domain wall solution. The asymp-
totically AdS4 geometry is of the same form as (3), and now the
two extrema of the potential are at η = 0 and ηIR = log(3 + 23/2),
corresponding to AdS4 solutions with radii of curvature L and
LIR ≡ √

3L/2, respectively. If we assume the scalar goes to the sec-
ond fixed point in the infrared, then as r → −∞,

η ≈ ηIR + aηe(�IR−3)r/LIR , Φ ≈ e(�Φ−2)r/LIR , (15)

1 The notation of [2,7] is related to ours by Â1 = A and χ̂ = √
2eiθ tanh η

2 .
Fig. 3. The real part of the conductivity for M-theory domain wall. The dots are
numerical results, the dashed line is a ω4 power law with the coefficient chosen
such that the line goes through the first dot in the plot and the solid line is the
AdS4 conductivity σ = 1/2κ2.

with �IR = (3 + √
33 )/2 and �Φ = 4. Imposing no symmetry-

breaking deformation of the UV CFT means demanding that

η ∝ e−�η A = e−2A . (16)

We numerically found a solution for aη ≈ 1.256 with index of re-
fraction n ≈ 3.775. The normalized order parameter analogous to
(7) is in this case given by the diffeomorphism invariant formula

〈Ôη〉 ≡ lim
r→∞

η(r)e2A(r)h(r)

Φ(r)2
, (17)

and is proportional to 〈Oη〉/μ2. Our domain wall solution has

〈Ôη〉 ≈ 0.201. Again, more complete numerical results are avail-
able [12].

As already noted in [2], the infrared geometry in eleven dimen-
sions is an AdS4 compactification of the form studied in [15,16].
The whole geometry is non-supersymmetric, so it is difficult to
definitely establish stability.

The computation of the conductivity is similar to before, so we
will be brief. The main difference is that the behavior of the solu-
tions as r → +∞ is

ax ≈ a(0)
x + a(1)

x e−A, (18)

and this time there is no ambiguity in the imaginary part, the con-
ductivity being given by

σ = 1

2κ2L

a(1)
x

iωa(0)
x

√
hUV. (19)

Numerical results are shown in Fig. 3. For high frequencies, the
conductivity asymptotes to the AdS4 value σ = 1/2κ2 [17] and for
low frequencies the behavior can be determined analytically with
an argument similar to the one described in the previous section.
As was shown in [9], in AdS4 the scaling is Reσ ∝ ω2�Φ−4 = ω4,
and this agrees with the numerical results.2

4. Discussion

The domain walls we have constructed can be fairly described
as superconductors because they spontaneously break the U (1)

gauge symmetry associated with the field strength Fμν in (1)

2 In [9], a �Φ was shifted by one unit relative to the definition used here. This
explains the apparent discrepancy in the power law.
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and (14). According to the arguments of [18], much of the ba-
sic phenomenology of superconductors, including infinite DC con-
ductivity, follows from this spontaneous symmetry breaking. The
domain walls can fairly be characterized as quantum critical be-
cause relativistic conformal symmetry emerges in the infrared, and
observables, in particular Reσ(ω), have power-law scaling in the
infrared with non-trivial exponents.

Clearly, the domain walls we have constructed are close rel-
atives to holographic renormalization group flows from one con-
formal field theory to another. The main qualitative difference is
that the breaking of the U (1) symmetry was soft in the RG flows,
whereas it is spontaneous in our domain walls. More explicitly: the
RG flows are triggered by adding a relevant operator, dual to the
scalar η in both cases, which breaks the U (1) symmetry; our do-
main walls, on the other hand, have by design no such relevant
deformation, but instead a spontaneously generated expectation
value of the symmetry breaking operator.

It is natural to ask how general the relation between renormal-
ization group flows and emergent conformal symmetry of finite-
density matter might be. Here is a conjecture which makes sense
to us:

• Assume that a field theory is well-defined in the ultraviolet
and possesses a continuous symmetry. This ultraviolet theory
need not be conformal.

• Assume also that if the ultraviolet theory is appropriately de-
formed, a renormalization group flow results whose infrared
limit is a fixed point which breaks the continuous symmetry.

Then the conclusion is:

• The ultraviolet theory, or some deformation of it by opera-
tors which do not break the continuous symmetry, has a fi-
nite density, zero temperature state whose infrared behavior
is governed by the same infrared fixed point. Finite density
means that the time component(s) of the Noether current(s)
associated with the continuous symmetry have finite expecta-
tion values.

We are aware of one way to break this conjecture [19]: it can hap-
pen that the conserved current of the ultraviolet theory flows to a
relevant operator at the infrared fixed point. When that happens,
it’s impossible (or at least fine-tuned) for the dynamics of finite-
density matter to flow to the fixed point. What we suggest as a
real possibility is that relevance of current operators with expec-
tation values in the finite-density state is the only obstacle to the
conjecture as we have phrased it. Since the idea is to systemati-
cally pair an RG flow to an infrared critical point with quantum
critical behavior of a finite-density state, let us refer to our sugges-
tion as the “Criticality Pairing Conjecture,” or CPC.

When applied to the gauge-string duality, the CPC implies
the existence of a number of domain wall solutions interpolating
among critical points of the scalar potential of gauged supergravity
theories. The CPC might also be tested in situations where some
non-string-theoretic approximation scheme can be found, like a
large N expansion with perturbative control; or, perhaps, it could
be investigated in the context of rational conformal field theories
in 1 + 1 dimensions.
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