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DAZING the 1950’s a number of 

(Receiued 9 March 19 73) 

50. INTRODUCTIO;‘; 

ideas were developed relating topological groups and 

monoids to loop spaces. James [8] showed that the free monoid on a pointed connected 

space serves as a model for the loop space of the suspension of the space. Then 1Milnor 

[16] and Kan [9] showed that by using the free group the restriction to connected spaces is 

overcome. Milnor also showed [18] that a topological group is a loop space, and Kan [9] 

(also Milnor [17]) showed that a loop space is always homotopy equivalent to a topolo- 

gical group. Later, Dold and Lashof [5] showed that here “ group ” could be replaced by 

“monoid with monoid of components a group “. 

We have here been working in an appropriate topological category (see note at the end 

of 94 and remarks at the beginning of 92). We shall continue to do so. 

This is the first of three papers in which we present the analogous theory for infinite 

loop spaces. We define a functor Tf from pointed spaces to topological monoids whose 

rale is analogous to that of the free monoid functor in the above. In particular, corres- 

ponding to James’ theorem we have 

THEOREM A. If X is a pointed connected space of the homotopy type of a CW-complex, 

then F’X is naturally homotopy equivalent to R”C” X. 

Here R”C”X means lim R”C”X where the maps of the directed system are given by 
- 

n 

nnix,x : R”C”X - Q”QCC”_y zz gy+ly+‘x 

where i, : X+ RCX is the adjoint of the identity map of the suspension IX--+ X.X. 

Again, the connectivity restriction may be avoided by using the corresponding group 

functor. Thus we define a functor I- from pointed spaces to topological groups whose r61e 

is analogous to that of the free group. Corresponding to the Milnor-Kan theorem we obtain 

THEOREM B. If X is a pointed space of the homotopy type of a CW-complex, then TX 

is naturall,v homotopy equivalent to R”E.“X. 

The free monoid and free group on X appear naturally as a submonoid of Tf X and 

subgroup of I’X, respectively. 
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The proof of Theorem A has been outlined in [2]. A proof of Theorem B is given here. 

Theorem A follows from Theorem B since the natural inclusion I--.Y- FX is a homotopy 

equivalence if X is connected (Corollary 5.4). 

In the second paper we shall give results involving F- and infinite loop spaces ana- 

logous to those of Dold and Lashof on monoids and loop spaces. In the third paper we 

prove that R “Z”X is stably homotopy equivalent to a bouquet of spaces. &lost of the 

material in these papers is in [7]. 

The basic idea in what follows is implicit in the work of Dyer and Lashof on homo- 

logy operations on infinite loop spaces [6]. This work may be thought of as an appendix to 

theirs. 

Milgram [lj] has also given a model for R”Z” X but we have not considered the re- 

lationship between his model and TX. Also. the related work of May and Segal must be 

mentioned. Segal has obtained (as [23; Proposition 3.51) Theorem B in the case of ,Y = S 

(the most interesting case) by quite different means. May’s work is perhaps closer to ours. 

His original paper ([13]) was restricted to connected spaces, but also dealt with nth loop 

spaces for all nonnegative integers n. But he has now removed [LJ] the connectivity con- 

dition in the case of infinite loop spaces. Thus he has obtained a result [14; Theorem 3.71 

which is equivalent to Theorem B. However, May’s approach and ours are at opposite 

extremes: he works in as general a settin, 0 as possible, whereas we work with one parti- 

_ cular example of his ‘. E,-operads ” and we show [3] that this is sufficient. 

The plan of this paper is as follows. We work in the category of simplical sets. The 

reasons for this are referred to in $2 which also contains a few well-known results which 

we need later. This is preceded by $1 containin, 0 notation in finite set theory which is used in 

subsequent definitions. In $3 the functor F + is defined and discussed. The functor F is 

defined and Theorem B proved in $4, subject to certain lemmata. These lemmata are pro- 

ved in the last three sections using a theorem on the homology of the universal group of a 

monoid which is given in $5. Lemma 7.1 proved in $S may be of interest in its own right. 

51. PRELTMIXARIES: THE FINITE PERMUTATIOX GROUPS 

The basic construction (of FfX for a pointed space .r) involves the finite permutation 

groups. In order to deal with this we need some notation which we present in this section. 

The results stated are all trivial and are stated explicitly simply for clarity. 

Definition I.1 For n a positive integer we write S, for the group of permutations of the 

set n = {I, 2, . . . , n> written on the left, i.e. 

(a. r)(i) = G(T(~)) for G, t E S,, i E n. 

When necessary, we regard S, as the trivial group. 

Definition 1.2. For M and n positive integers, we write Ci for the set of strictly mono- 

tonically increasing maps m -+ n: thus Ct has only one element and, if m > n, Cz is the 

empty set. We note that C$ may be identified canonically with the set of subsets of n of 

order M, i.e. given r E Cz, this corresponds to {z(i), , z(m)] c n. 
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Definition I .3. r E Ci induces a group monomorphism r* : S, -4 S, defined by 

r*(a)(r(i)) = 440)? 

r*(M) = it 

foriEm,jEn-r(m),aES,. 

PRoPosrTio~ 1.4. Suppose r E Cl, p E C,P. Then 

(/I. r)* =p*. s(*: S,+S,. 

Definition 1.5. Suppose r~ E S, and 2 E Ci. Then the image of the map O. cx: m --+ n is 

a subset of n of order m and so, by the identification of Definition 1.2, corresponds to an 

element of CE which we write U*(X). In general a,(r) # cr.% since c.z $ C:. However, there 

is a unique map r*(a) E S, such that the following diagram commutes. 

m ‘,n 

Thus we have defined a reduction map z*: S, --t S, for z E Cz. 

PROPOSITION 1.6. Suppose u E C;, /I E C$ Then 

(@)* = a*$*: s, -+ sm. 

cx* is not in general a homomorphism, rather the following. 

PROPOSITION 1.7. Suppose CI E C;, 0 E S, , 5 E S, Then 

cc*(a.s) = (r*(z))*(a).a*(r) E S, 

COROLLARY 1.8. Suppose c( E Ci, G E S, , v E S,,, . Then 

z’(a.a*(v)) = cc*(a).v. 

This corollary simply says that if we define a right action of S,,, on S, by composing 

the product in S, with (1 x a*): S, x S,,, --t S, x S,, then a* is a right S,,,-map. 

Example 1.9. Let p: n - 1 --+ n be the inclusion map P(i) = i for all i E n - 1. Then 

we shall think of the monomorphism p* as an inclusion and omit the symbol, i.e. write 

p*(a)=a~S, for dESn-r, thus S,_, c S,. We shall use the notation R: S, -+ SO_, for 

P*. 

Any element of CL can be expressed as the composition of an element of S, with n-m 

maps like p. Thus, although for convenience we use the general reduction maps in our 

definitions, for computations it is sufficient to know R. 

PROPOSITION 1 .lO. R: S, -+ S,_ 1 is characterised 6~ 

(a) it is a right S,,_,-map, i.e. R(u.T) = R(cT).T for ~7 E S,, 5 E S,_, c S,, . 

(b) R(s,.,)=lforl,<k<n,whereT,,,=(k,k+l,..., n-l,n)~S,. 

Finally, in this section, we give some notation involving the action of S,, on sets. 
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DeySrion 1.11. Gicen a jet X, the group S, acts on the right of the n-fold Cartesian 

product X” by 
(X-1. .rz , . 9”). G = (.Y,, , ) . . X~(“J, 

for Xi E X. G E S,. 

Similarly, r E Ci induces a map x*: X” --t A’” bq 

X*(.Ylr ., I”) = (_Y1(,,. . . .TIlnl). 

for si E X. Suppose further that Xhas a base point. *. Then we jay that r is entire for (x,, . , 

s,) if the coordinates it omits are the base point, i.e. .yi = * if i E n - I(m). In particular, 

p: n - 1 -+ n is entire for points of (Xn-’ x {*) c X” and R(.u,, . , .I-,_.~,*) = (xl. , x,_,). 

These definitions are related as follows (cf. Proposition I .7) 

PROPOSITION 1.12. Sz4ppose r E C;, G E S, , x E X”. Then 

r*(x.fJ) = (a*(r))*(x).r*(G), 

and r is entire,for X.G ifand only if a,(r) is entire for x. 

$2. PRELJMlX4RIES: THE SI&lPLICML CATEGORY 

In this section we collect together a few well-known ideas which we shall need. 

Firstly, let us clarify our category of operations. We shall work in the categories of 

pointed simplicial sets, simplicial monoids and simplicial groups. The basic ideas are 

collected together conveniently in [12]. We shall follow ths notations of that book for face 

and degeneracy maps. By a pointed simplicial set we mean a simplicial pointed set, 

i.e. for each non-negative integer n the set of n-simplices has a base point and these are 

preserved by the face and degeneracy maps. We denote all these base points by the same 

symbol, *, and refer to ” the base point” of the simplicial set. 

This choice of categories is for simplicity. When kvorking in the category of pointed 

topological spaces of the homotopy type of a CW-complex, consideration has always to be 

given as to whether a given construction remains within the category. For example pro- 

ducts of CCV-complexes must be given the compactly generated topology. These considera- 

tions are avoided by working with simplicial sets. The results obtained are easily translated 

into the topological category by using the realisation and singular complex functors and the 

equivalence of categories they induce (see [19], [12; 16.61). In fact, in an attempt to avoid 

excessive pedantry, we shall sometimes use topological language (space, subspace) when 

referring to simplicial objects. 

The following result will be useful. 

LEMMA 2.1. Suppose X is a pointed simplicial set hacity additior~al dointed structure 

maps a: X, --+Xn+l for all n 3 0 such that 

r7.g = s~.~J: X, + X.+? for n 3 0, 

o.sj = Sifl.G’: X” -+ x,+2 for n 3 0, 0 < i < n, 

d,.a = 1: X, -+ X, for n 3 0, 

diL7 = “.di_l : X” * X, for n31,l~i~nfl. 
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Then the discrete pointed simplicial set 8, with 8, = c?~~(X,), all structure maps equal to the 

identity map and the same base point as X, is a deformation retract of X. 

Proof In the simplicial set category the unit interval, I, has two vertices, 0 and 1, and 

one non-degenerate l-simplex, e, with tie = 0, 2,e = 1. We define a map h: X x I +‘X by 

Nx, 0) = Sgndl&“(X), 

h(x, 1) = .‘c, 

h(x, sOfsIn-r-‘e) = a”’ ?+‘(x), 0 6 t < n - 1, 

for ,Y E x,. Here 0 and 1 denote degeneracies of the vertices. It is mechanical to check that 

this is a pointed simplicial map. The inclusion i: X 4 X is given by i(x) = s,,“(x) for 

x E 2, = 3,a(X,) c x,. Thus if r: X + 8 is given by r(x) = d,ad,,“(x) for x E X,, 

r.i = 1: if -+ J? and h provides a pointed homotopy between i.r and 1: X + X showing 

that r is a pointed deformation retraction. 

Note. The conditions on the maps CJ require that they behave like extra face maps s_~. 

Next we recall MacLane’s definition for the classifying space of a group. 

Dejnirion 2.2. Given a discrete group G, we define a simplicial group WC by 

(WG), = G”+’ = {(90,91,....,9.)/SiEG} \ 
di(gO 7 . . Y S,> = (90 * . . ,Qi, , g,) (i.e. omit gi) 

si(SO* . . ..g.> =(90, . . ..Qi*Si. . . ..S.> (i.e. repeatgil 

for n 2 0, 0 < i < n. The usual direct sum product in G”+’ makes WG a simplicial group. 

G acts freely on WG by 

<% 7 . ‘I gnj.9 = (%& . . . 7 gk .g> 

for gi, g E G. It is straightforward to check that the necessary relations hold. 

PROPOSITION 2.3. The pointed simplicial set WG is contractible. 

Proof The identity of WG serves as a base point. For each n 3 0 we define a pointed 

map 0: (WGJ, -+ (WG),+t by 

a<g,, . . ..g.> = <l,g,, . . ..s.> 

where 1 is the unit of G. These maps satisfy the relations of Lemma 2.1 hence giving the 

result, since Z~G( WG), = {(l)}. 

Thus WG obtained from WG by factoring out by the action of G is a classifying space 

for G, i.e. an Eilenberg-MacLane space K(G, 1). 

We note that the discrete space G occurs naturally as a subspace of WG, namely as the 

set of vertices and their degeneracies. 

Note 2.4. In fact the above definition gives a functor W from pointed sets to pointed 

simplicial sets which respects products, i.e. W(A, x AZ) = WA, x WA, for sets A,, A,. 

So amapf:ii, x ,_. xA,-+Agivesrisetoamap Wf: WA, x . . . x WA,+ WAwhichwe 

shall also denote by f when there is no risk of confusion. In particular, given a E Ci we 

have maps a, : WS, -+ WS, and Q*: WS, -+ WS,,, coming from those of Definitions 1.3 

and I.5 and the results of $1 imply corresponding results for these maps. 



30 M. G. BfiUrr and PETER J. ECCLES 

Finally we consider the homotopy theory of simplicial groups. 

PRo~osrr!o~ 2.5. (J. C. P.loore [I 2; 17.3 and 17.-l]) Suppose that G is a simplicial 

group. Let G,, = h ker [Zi : G n -+ G,_,] for n 3 1, G, = G,. Then 
i=l 

(9 d,(G,) = G,-,, 
(ii) a,((?,+,) c ker [ZO : G, - G,_,], 

(iii) d&G,) is a normal subgroup of G, _ 1, 

for n 3 1, i.e. (G, II?,) is a non-abelian chain complex. There is a natural isomorphism H,(G) g 

n,(G) for all q 3 0. 

COROLLARY 2.6. A short exact sequence of simplicial groups 

I-G’-+G+G”-1 

gives rise to a natural long exact sequence of homotopy groups 

. . --* rri+l(G”) “pi -*ni(G) ---) rri(G”) --t 

xi- ,(G’) -+ . --+ n,(G’) - n,(G) + z,(G”) + 1. 

Proof. This is simply the homology lon g exact sequence of a short exact sequence of 

chain complexes. 

We shall use this corollary frequently. 

$3. THE FREE MONOID FUNCTOR r+ 

In this section we define a functor r’ from the category of pointed simplicial sets to 

the category of simplicial monoids. We show that, for all simplicial sets X, I-+X is a free 

monoid. 

Definition 3.1. Suppose X is a pointed simplicial set. Then the following relations 

generate an equivalence relation on 

(a) 

(b) 

the disjoint union 4?(X) = u WS, x X”. 

(w, x) - (w.cJ, x.0), 

(by, x) - (r*(W), a*(x))> 

for w E WS,, x E X”, c7 E S,, c[ E Ci which is entire for x, II 3 m 2 0. On factoring out by 

this equivalence relation, which respects the face and degeneracy maps, we obtain a simpli- 

cial set which we write rt X. We denote the equivalence class of (bv, x) E WS, x X” as 

[w, x] E rt X. Clearly (1, 0) E WS, x X0 provides a canonical base point [ 1, 01 E I- + X 

which we write 1 (in anticipation of the monoid structure). 

I-+ is a functor from pointed simplicial sets to pointed simplicial sets, for if f:X --t Y 

is a pointed simplicial map, then r+f: l-+X+ I’-’ Y given by 

I- +f[w, x1, 1 -%I = [N’, f (XI ), 7 f (-%)I, 

w E WS,, xi E X, n > 0, is a well-defined pointed simplicial map with the required pro- 

perties. 
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Remarks 3.2. By the remarks in Example 1.9 we may replace (b) in the above definition 

by 
(b’j(w, xl, . . . , x,_ 1, .) - (R(w), -yl, . , -G-A 

forwE WS”,XiEX,r161. 

We have remarked in $2 that the discrete space S, occurs naturally as a subspace of 

WS,, and so the disjoint union u S, x X” as a subspace of%(X). The image of u S, x X” 
“30 flL0 

in r+ X is simply the free monoid on the pointed space X which we write F+ X, 1.e. the re- 

duced product space X, of James [S]. This may be thought of as motivating the equiva- 

lance relation of Definition 3.1. 

We now define two natural transformations involving I-+ leading to the definition of a 

V-structure on a space. 

Definition 3.3. Given a pointed space X, there is a natural embedding I,~: X+ T’+X 

given by lx(x) = [1,x] for all x E X. Here 1 E S, c WS,. 

When we refer to “the pair (l-+X, X)” we mean Xembedded in T+X by rx. 

Secondly, we recall that T’+X is intended to serve as a model for R”C”x. There is a 

natural map R” Z” R” Cm X + R” C” X defined using the evaluation C RA --) A. There 

is an obvious candidate as a model for this map which we now give. To motivate the 

details we remark that the obvious map F+F+X + FfX (of which the following is an 

extension) provides a model for R C f2 CX -+ R CX in the theory of James. 

Definition 3.4. Let k and n be non-negative integers. For integers i such that 1 < i 6 k 

we define i+ : n -+ kn by 

r,,(j) = (i - 1)n +j 

for jE n, i.e. ,Ii maps n to the ith block of n elements of km By Definition 1.3 and Note 2.4 

this gives rise to a homomorphism 

(&)* : WS” -+ ws,, 

which we also denote by Ii with no risk of confusion. 

Also, given ~7 E S, we define ,~(a) E Sk, as the element which permutes k blocks of n 

elements by 6, i.e. 

p(u>((i - 1)n + j) = (a(i) - 1)n + j, 

for 1 < i < k, 1 <j < n. This defines a homomorphism Sk + S,, and so a homomorphism 

,l1: ws, --) ws,, . 

With this notation we may define a map 

A,: u u wskx(Ws”xX”)k_*qX). 
kB0 n3-O 

Suppose (w, a) = (w, xl, . . ., rk) E WS, x (WS, x X”)k where ai = (wi, xi) E WS, x X”. 

Then we define A,(w, a) E WS,, x Xk” by 

&(w7 a) = (p(w).&(wr). . .lktwk), x1, . . . , x”) 

where we identify (Y’)k with Xk” in the obvious way. 
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PROPOSITION 3.5. A, induces a natural map h,y : r-I--X- r-x. 

Proof: We omit the details of the proof vvhich is straightforward and tedious (they are 

given in [7; Proposition 1.1.61). It simply consists of the verification of the following. 

(a) Given M’ E II’S,, z, Z’E (LVSn x A’“)’ such that x, - I~’ by 3.1(a) for 1 < i ,< k. then 

R,(w, z) - 4,X(“, z’) by 3.1(a). 

(b) Given u’ E WS,, a E (WS, x Xn)k, z’ E (WS, x X”)’ such that xi - xi’ by 3.1(b) 

for 1 d i < k, then A,(rv, a) - d,Y(~c, 2’) by 3.1(b). 

Hence AK induces a map %(I+X) -+ l-+X. 

(c) Given (M., z) E WS, x (WS, x X”)‘, CT E S,, then dY(rr,g, (x.G) - k,Y(\~, z) by 3.1(a). 

(d) Given (I&*, a) as in (c) and /I E Cy which is entire for the image of z in (T+X)k 

(i.e. if iE k - b(j), then xi = (*, . , *) E Xn), then L,(,O*(~~). p*(z)) - Ax(w, a) by 3.1(b). 

Thus, from Definition 3.1, a map /z,~ : T+r-X- r’ Xis induced. Its naturality for maps of 

X follows from that of d,Y. 

It is in checking the details of this sort of argument that the simple results of $1 are 

useful. We notice also that the use of 3.1(b) rather than 3.2(b’) makes the details less cum- 

bersome. 

The natural transformation h has very pleasant properties. 

PROPOSITION 3.6. Given a pointed space X, the fbllowing diagrams are commutative 

TfX T”X , r+r+x 
II-+X 

- r+x r+r*r+x 
hr+.c 
- r+rfx 

This simply says that (I’ , I, h) forms a triple (as defined in [J]). The name monad has 

also been used for such objects ([13]). 

Definition 3.7. A l-+-structure on a pointed space X is a pointed map f: T+X-+ X 

such that the following diagrams commute. 

X 
I x 

- I-+x 

11 / I 

,Y 

r+r+x hr r's 

I I-‘/ 
In the categorical language of [4] this says that X is a (I’, I, h)-algebra. 

Example 3.8. h, : r+r+X-+ T+X provides I+ X with a l-‘-structure by Proposition 

3.6. 

We have remarked (3.2) that FCX, the free monoid on X, sits inside I-+.X’ in a natural 

way. Further, on restriction h, provides a map F+F’X -+ F + X. So if X has a l-+-structure, 

: l-+X+ X, the restriction F 1 : F+X-+ X provides it with an F--structure (with the 

obvious meaning). However, it is clear that the condition that X has and F+-structure is 

just the same as the condition that it have the structure of a simplicial monoid; the map 
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F+X- X provides the product, the commuting triangle says that the base point acts as a 

unit and the commuting square that the product is associative. 

The extension of a monoid structure F“X + X on X to a r--structure implies that X 

is homotopy abelian in a very strong sense. In fact it has the structure of an infinite loop 

space (see [3]). Only a small part of the l-+-structure is needed to prove the following. 

PROPOSITION 3.9. If a pointed simplicial set has a l-+-structure, then it is a homotopy 

abelian simplicial monoid with base point as unit. 

Proof. Let f: Tc X -+ X be a T’-structure on X. Then the product on X is given by 

x.y = f ([l, x, y]) for x, y E X, where 1 E S, c WS, As we have remarked, the diagrams of 

Definition 3.7 ensure that this product is associative and has the base point as unit. The 

required homotopy is given by 

ax 1 f 
1xX’ - ws2 x x2 c qx) - r+ x - x 

where 2: I-+ WS, is given by a(e) = (1, (1, 2)) E ( WS2)1 for the non-degenerate e E 1,. 

COROLLARY 3.10. r+Xisahomotopy abelian monoid with 1 = [I, (zr] as unit. The natura- 

fity of h implies that I” is a functor to simplicial monoids. 

Finally, in our consideration of the structure of r’X, we prove the following. 

PROPOSITION 3.11. Tf X is afree monoid. 

Proof Let I, . . n + m+n be the map given by i,,,(i) = m + i for i E n. Then, by Defini- 

tion 1.3 and Note 2.4, we have a map 

(i,)* : WS, - w&l+*. 

Now, using Relation 3.1(b) enough times we see that any element of l-+X may be 

writtenintheform[w,x]withwEWS,,x=(Jc, ,..., ~,)EX”,.r~f*forl~i,<n,nLO. 

Then [w, x] is irreducible if and only if there does not exist G E S, SO that W.C E 

WS,.(i,), WS,_, c WS, for some r, 1 < r < n - 1. To show that T-Xis free we must show 

that each element of I-+ Xcan be written in a unique way as a product of irreducible elements. 

This follows (by induction) from and is equivalent to the following lemma. 

LEMMA 3.12. Given z, p, 5, q E l-+X with r, /I irreducible, if r.< = 8.r~ then a = /l and 

s’ = ?J. 

Proof Suppose a = [u, x], (v, x) E WS, x X”, p = [v’, x’], (c’, X’) E FvS” X p, t = 

[w, y], (w, y) E WS, x Xp, q = [w’, y’], (w’, y’) E WS, x X4, all in the form described above 

with no coordinates the base point. Then, since cr.< = p.~, there is a c E S,+, such that 

(x, Y) = (x’, Y’)JJ 

u.(i,),w = (v’.(i,),w’).o, 

by 3.1(a). Since no coordinate is the base point, 3.1(b) cannot arise. We consider two cases. 

Suppose m = n. Then c E S,,, . (i,,,), S, c S,,,,. For, if not, given 5 E S,,, . (i,,,), S,, 

it is clear that 7.~ $ S, (i,)* S,. So, by Note 2.4, v.(i,,,>* w = (v’.(i,),w’).a I WS,,, .(i,)* WS, 

which is a contradiction. 

TOP Vol. 13 No. I--c 



33 M.C. BXRRATT and PETER J. ECCLES 

So suppose d = or .(I& G:, or E S,, G? E S, Then 

I’ = 1.‘.G, and x = x’.~, 

IL‘ = N.‘.G., and y = y’.~: 

Thus, by 3.1(a), r = /9 and i’ = ‘I. 

On the other hand, suppose VI # n. Without loss of generality we may suppose m < n. 

CJ: m f p + n + q is a one-to-one map. Suppose that for some i E m c m + n, o(i) > n. 

If r E S, .(&S,, ro(i) > n > m. i.e. T.G $ S, .(i,).+ s,. Hence (r’,(i,)* ~,').a $ Cf"s,,,.(i,,,), WS, 

which is a contradiction. Hence c(m) c n c n + q. \ 

Thus we may define ~7 E S, c S,,, by 

O(i) = a(i) for 1 < i < ~2. 

5(i) = and k E n such that k $6(i - 1) for tn < i 6 n. 

Then (u’.(i,), w’).F E IQ’S,,, .(i,), WS,. So t,‘.C E WS, .(i,,,)* WS,_, c W’S,, which contra- 

dicts the irreducibility of p, showin g that this case is impossible. 

Thus we have proved Lemma 3.12 and so Proposition 3.11 

We conclude this section by identifying the monoid of components of TiX. 

PROPOSITION 3.13. GiGen a pointed space X, z,,(r+X) = Z’q(X), the free abelian 

monoid on the pointed set q,(X). 

ProoJ Since (CV’SJ, = S,, the vertices (T+X), = F’X, , the free monoid on the set 

of vertices of X. Novv, given a simplicial set il, z,(A) = ,+10/-, where - is the equivalence 

relation generated by ?,a - ?,a for a E A,. Any I-simples < E TfX may be written < = 

[(l,a),s ,,...,, r,], DES,, x~EX,. Then a,<= [a, c?,.Y ,,..., ?,,~,]=[l, ZOsb-l,,) ,..., 
4 
c,,x,-LCnJ], and arc = [I, c?,x,, . . . . d,s,]. Thus we see that for rrO(TfX) the order of the 

coordinates does not matter and so the result is as stated. 

$4. THE FREE CROUP FUKCTOR 1‘ 

Proposition 3.13 tells us that in general, TfX cannot be a model for R”C”X, just as 

F+X is not for REX. In this section we define a free group functor I- and show, using 

results to be proved in subsequent sections, that TX and R”EmX are homotopy equivalent. 

Defnitiot14.1. Given a monoid IV by the universal group of M is meant a group UM 

which is universal with respect to homomorphisms from ?lf to groups, i.e. there is a natural 

monoid homomorphism U: M -+ UM such that, given a monoid homomorphism f: M-+ G 
to a group G, there is a unique group homomorphism F : U,L/ --t G such that F.u = f: ilf -+ G. 

The following result guarantees the existence of the universal group. It is unique up 

to isomorphism for the usual categorical reasons. 

PROPOSITION 4.2. Given a monoid M. let FM be the free group on the pointed (by the 

unit) set M and let IV be the normal subgroup of F,Lf generated by elements of the form 

m1.m2.m,-1 where mi E M and m,.mz = m, in M. Then the composite 

Al- FM-+ F,Cf/N 
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of the quotient map with the inclusion as generators is a monoid homomorphism satisfying 

the unicersal condition. 

The proof is straightforward. It should be noted that the inclusion Al-+ FM is not a 

homomorphism. 

By taking the universal group of the monoids and monoid homomorphisms involved 
we may define the universal simplicial group UM of a simplicial monoid M. 

Definition 4.3. Given a pointed simplicial set X we define TX to be the universal 

simplicial group of the free simplicial monoid I-+X. 

Of course, r is a functor from pointed simplicial sets to simplicial groups. There is a 

natural embedding 

ix: x+rx 

obtained by composing the universal group map u: I-+X --t TX with the natural embedding 

ix : X-+ lT’+X. This is an embedding for, as T’+X is a free monoid, TX is a free group on the 

same generators and so 11 is an embedding. When we refer to ‘*the pair (TX, X)” we mean X 

embedded in TX by zx. 

Definition 4.4. Given pointed spaces X and Y, there is a natural map 

$: (rx) x Y-+r(xx Y) 

given by 

ti([bV, x19 . . . > ~~“13 Y) = [w, (x,, Y>t . 2 (A I Y)l 
11/(5.v, Y) = $(L )‘Mb Y) 

@(r-l> Y) = i/V<, Y)_’ 

for WE WS,, X~E X,JJE Y, 5, q E rx. 

Similarly we may define a natural map 

rc/‘: (r-x) A y-,r(xA Y) 

In particular we have maps 

crx=(rx)~ z-r(cx) 

crx=(rqA s1-q~~) 

and so, on taking adjoints 

px: rx-+prcx 

'ix: rx42rx. 

Here I and S’ are simplicial set models for the unit interval and l-sphere. A possibility for 

1, in which we take the vertex 0 as base point, is given in the proof of Lemma 2.1 and the 

corresponding S’ is obtained by identifying the two vertices. For future use we define a map 

C:lAI-+I 

by (sO e, sre) hsO e, (s,e, s0 e)++s, e. This gives a natural transformation 

cx : ccx -+ cx. 
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In fact we replace I, S’ and c by their associated Kan complexes Lx”(Z), E?c”(S’) and ,5x”(c) 

(see [lo]) but still use the notations I, S’ and c. This means that, for example, RX = Xs’ 

does give a simplicial model for the loops on the pointed simplicial set X. We define the 

cone, suspension, path space and loop space functors in this way. rather than using the 

usual economical simplicial definitions, so that the natural transformations p and 7 are 

defined. They are clearly homomorphisms of simplicial groups. 

PROPOSITIOS 4.5. I- is a homotopy functor, i.e. $f and g: X- Y are homotopic pointed 

maps, then so are l-f and I-g: TX -+ r Y. Thus if X and Y are homotopy equicalent pointed 

Kan complexes, so are TX and r Y. 

Proof. This follows from the existence of a map (IX) x I- IY(X x I) by the above 

definition. 

In 57 we shall prove the following: 

LEMMA 4.6. Gicen a pointed space X, the natural simplicial group homomorphism yx : 

IX-+ RrCX is a homotopy equkalence. 

Given this, it is not difficult to obtain our theorem. For each integer n > 0 there is a 

natural homomorphism 

0”~~“~ : .wwx- .w+‘rzn+lx. 
Using these maps we define the direct limit lim R”E”X which we write R”I-x=X. But, by 

- 

the lemma, each map of the directed system is a (weak) homotopy equivalence and so the 

same is true of the natural homomorphism TX 4 R”E”X, using J. H. C. Whitehead’s 

theorem. Thus we have the following. 

COROLLARY 4.7. Given a pointed space X, the natural simplicial group homorphism 

TX -+ R”TZ.“X is a homotopy equivalence. 

This is halfway to the theorem. Now the adjoint of the identity map xX--+ EX gives a 

natural inclusion i,r : X-, RZX such that Y,~ .I,~ = Rr,,r .j., : X-, L2TI:X. Hence, for each 

n 2 0, 

(n”~~_,~, Pi,,,): (fn-znx, wPx> + (w+lrzn+lx, Rn+lrn+lx) 
is a map of pairs, thus giving (nl”EnX, nYZnX) as direct limit. However, in $6 we shall 

prove the following. 

LEMMA 4.8. If X is an (n - 1)-connected pointed space and n > 1, then the pair (TX, X) 

is (2n - I)-connected. 

Hence, if n > 1, the pair (rYX, PX) is (2n - I)-connected. It follows that the pair 

(f.YIZ”X, !2”YX) is (n - 1)-connected. and so the pair (nzlZzX, fiaZmX) is co-connected. 

Thus, using J. H. C. Whitehead’s theorem, we have proved the following: 

COROLLARY'~.~. If X is a pointed Kan complex, the natural inclusion map R”C”X-+ 

CF’Er”Xis a homotopy equivalence. 

Taking Corollaries 4.7 and 4.9 together we obtain our approximation theorem. 
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THEOREM 4.10. If X is a pointed Kan complex then TX and Q”E” X are naturally homo- 

topy equicalent. 

X = S’, the 0- sphere, is an important example. Then IiS’ = u[ v.S”. The monoid 
CT20 

structure is given by 

W& x I%+~ -+ IKS~.” 

coming from the obvious inclusion S,,, x S, -+ Smcn. This leads quickly to the following 

result (see [21] and [4; Theorem 4.11). 

COROLLARY 4.11. There is a map 

w: vs, -+ (Q”S”), 

which induces an isomorphism of integral homology. 

Here WS, = lim VS” under the inclusion maps of Example 1.9 and (R”S”>o 
n 

is the connected component of the base point. 

The remainder of this paper is devoted to the proofs of Lemmata 4.6 and 4.8. 

A note on the topological version 

Of course, Theorem 4.10 is true in the category of compactly generated topological 

spaces of the homotopy type of a CW-complex [20], [25]. In this category products are given 

the compactly generated topology and the phrases “topological monoid ” and “ topolo- 

gical group ” adopt the corresponding meanings. Given a pointed space X in this category, 

a topological monoid Tf X and a topological group TX may be defined just as in the sim- 

plicial version above using the realizations of the simplicial sets WS,. The topological ver- 

sion of the theorem then follows from the simplicial version using the singular complex 

functor, since IY is a homotopy functor. 

§S. THE HOMOLOGY OF THE LJXIVERSAL GROUP OF THE hfONOID 

This section contains the statement of a theorem of Quillen’s which is used subse- 

quently in the proofs of Lemma to 4.6 and 4.8. This theorem includes the theorems of 

[4] and [7] as special cases. 

Throughout this section, A4 denotes a simplicial monoid and U: M-P UM the uni- 

versal group homomorphism. The problem is to determine the homology of UM knowing 

that of M. 

The product on M induces a product on n,(M) so that it forms a monoid with the 

component of the identity of M as identity. Similarly, z,(UM) is a group. Further, U* : 

n,(M) -+ rr,(UM) is a monoid homomorphism and so by the universal property has a 

unique natural extension 

U7T&4) -+ no(UM). 
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PROPOSITIOX 5.1. This map is a group isomorphism 

The proof is straightforward. W’e identify these two groups by this isomorphism. 

Suppose now that k is a commutative ring. Then, for any space X. there is a natural 

inclusion 

no(X) C kn,(X) z H,(X; k) C H*(X; k). 

H,(M; k) is a A-n,(.V) - module and we may define a natural map 

&f : H*(Jf; k) Okno kUn,(M) --t H*( UJ!!; k) 

by @,(a, j.2;) = b,(a).< for a E H,(M), i. E k and < E Urc,JM) z E&I/M). 8.\-! composed with 

the natural inclusion of H,(M) in H,(M)@kUx,(~~~) is the map induced by U, the universal 

group homomorphism. 

Quillen has proved the following [22]. 

THEOREM 5.2. If(a) M is free, and(b) xi,(M) zs in the centre of the ring H, (M;k), then 

0, is a ring isomorphism. 

We shall use the following implication of this theorem. 

COROLLARY 5.3. Supposef: #I, + M, is a homomorphism of simplicial monoids satis- 

fying (a) and (b) of the theorem. Then tff induces an isomorphism of homology rings with 

coefficients in some commutatil:e ring k, so does the simpiicial group map Uf : Uhf, -+ UM, 

This follows by the naturality of 8. 

The theorem also shows that II-+X is equivalent to R”C”X for a connected pointed 

space X as follows. 

COROLLARY 5.4. If X is a connected pointed space, the inclusion 

I-+x+l-x 

is a homotopy equivalence. 

Proof By Proposition 3.13, f+Xis connected. So, by the theorem, the naturai inclusion 

induces an isomorphism of homology groups. Hence, by the bar spectral sequence, the 

natural inclusion 

m-+x+ WI-X 
of classifying spaces induces an isomorphism of the homology groups of simply connected 

spaces and so is a homotopy equivalence. The result follows on taking loop spaces (using 

[51). 

56. A FILTRATION OF I-+X: THE PROOF OF LEMMA 4.8 

Definition 6.1. For each integer m > 0, we write I-:X for the subspace of T+X which 

is the image of 5 WS,, x A’” c 9(X) under the identification map of Definition 3.1. 
n=O 

Then, if m < n, there is a natural inclusion l-:X c I-,+X and l-+X = lim r:X. 
- m 
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We refer to the filtration 

{I) = r;Xc lx(X) = r;xc . . . c T,‘XC c r+x 

as the filtration of TAX by M’OTCI length, by analogy with the corresponding filtration of FCX. 

For each M > 1 the quotient space T~X/T, _,X, which we write G,,, X, is known as the 

m-adic construction. The usual definition of 9, X is as the identification space obtained by 

factoring out by the obvious free action of .S,,, on KS, x Xcm’/ WS,,, x I*), where X(“’ 

denotes the m-fold smash product of Xwith itself. This is clearly homeomorphic to the above 

definition. These constructions have been useful in homotopy computations. 

The filtration of TfX by word length gives rise to a spectral sequence Ez, conver- 

ging to the homology of Tf X (e.g. [24; p.4691). This spectral sequence has 

E’ p,4 = ffp+q(r;x, r-;_,x) = i7r,+,(~,x) forp > 0. 

But if X is (n - I)-connected, Qp X is clearly (np - I)-connected. Hence the convergence of 

the spectral sequence implies the following result. 

PROPOSITION 6.2. If X is an (n - I)-connected pointed Kan complex, then Hi(TCX, X) 

= Ofor i < 2n. 

Now T+X is free (Proposition 3.11) and homotopy abelian (Corollary 3.10) and so 

Theorem 5.2 applies giving the following result. 

PROPOSITION 6.3. If X is an (n - I)-connectedpointed Kan complex, then H,(rX, X) = 0 

for i < 2n. 

Lemma 4.8 follows from this when n > 1 by the relative hurewicz isomorphism theorem. 

To show that TX is l-connected (which we need to apply the hurewicz theorem) we need 

only to replace X by its minimal complex which has only one (degenerate) l-simplex [12; 

Lemma 9.21, so that the same is true of TX. We can do this since I- is homotopy invariant 

(Proposition 4.5). 

57. THE PROOF OF LEMMA 4.6 

This follows easily from the following result which is proved in the next section. 

LEMMA 7.1. Let T be a functor from the category of pointed simpliciaf sets to the category 

of simplicial groups which is given in each dimension (Definition 7.2). Suppose that T has the 

property that, for any two pointed spaces A, and A,, the homomorphism 

Ti, x Ti, : TA, x TAI -+ T (A, v AZ) 

is a homotopy equivalence, where the ii (j = 1,2) are the inclusion maps. Then, if(A,B) is a 

pair of pointed spaces and q: A + A/B denotes the map identifving B to the base point, the 

natural map 

is a homotopy equivalence. 

TB + ker [Tq : TA -+ T(A/B)] 
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This says that if T turns trivial cotibrations into fibrations up to homotopy then it 

does the same to all cofibrstions. 

Definition 7.2. .A functor T from simplicial %,-objects to simplicial %,-objects is 

gicen in each dimension if there are functors T, : ??, + ‘6’: for each integer n 3 0 such that 

(TX), = Tn (X,1. CT/-L = T, (J,, 

for simplicial %,-objects X and simplicial %,-mapsf. 

The functor I- clearly has this property. Further, 

LEMXA 7.3. Given pointed spaces A, and AZ, the homomorphism of simplicial groups 

l-i, x i-i, : rA, x rAr -+ r(AL v AZ) 
is a homotopy equicalance, bvhere the ij are the inclusion maps. 

So Lemma 7.1 applies to the functor I-. 

COROLLARY 7.3. If (A,B) is a pair of pointed spaces and q: A -+ A/B denotes the map 

identifying B to the base point, then the natural map 

I-B + ker [rq: TA -+ T(AjB)] 

is a homotopy equicalence. 

This is just what is needed to prove Lemma 4.6. For consider the following commuta- 

tive diagram 

- ker(Tq) - r-c/Y L rcx - i 

Px 
I 
I 

- frzx - rzx - 1. 

Here q: CX -+ XX is the map collapsing the base X c CA’ of the cone to the base point, 

the bottom row is the obvious short exact sequence of simplicial groups, and the natural 

map flX is 

(prq). (~rc,).pCx : rcx + prccx+ prcx -+ mu 
where /I’ and c are the natural transformations of Definition 4.4. Then, since both rows 

are exact, zX is induced such that the triangle commutes. By Corollary 2.6 and J. H. C. 

Whitehead’s theorem, z,~ is a homotopy equivalence. But TX- ker (l-q) is a homotopy 

equivalence by Corollary 7.4. Hence so is ‘ix. 

So the proof of Lemma 4.6 is complete (apart from 7.1) when we have proved Lemma 

7.3. This follows from a corresponding result for monoids, namely 

LEMMA 7.5. The homomorphism of monoids 

lI+il x T’i, : riAl x r+Az + lI+(Al v A,) 

induces an isomorphism of homology groups. 

For Proposition 3.11 and Corollary 3.10 ensure that conditions (a) and (b) of $5 are 

satisfied for the monoids involved. Since U(T*At x TAAiz) = I-A, x I-AZ, Corollary 5.3 
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ensures that l-i, x l-i2 of Lemma 7.3 induces an isomorphism of homology groups. But 

by J. H. C. Whitehead’s theorem such a homomorphism of simplicial groups is a homotopy 

equivalence as required. 

Proof of Lemma 7.5. The filtration of I’ by word length was described in Definition 

6.1. If riAl x I’A1 is filtered by the corresponding product filtration then (T+i,) x (r+iJ 

is filtration preserving and so induces a map of quotient spaces 

ptO (QpA,) A@,-,Az) + B”(A, ” A,) 

for each n > 0, where \se write !ZZO A i = S’. 

P~o~osnros 7.6. For each n >, 0 this map is a homotopy equivalence. 

Hence the map (I-‘&) x (T+iz) induces an isomorphism of the El-terms of the homo- 

logy spectral sequences of I’A, x I&A, and T+(A, v A2) with respect to these filtrations. 

Since the filtrations are bounded below the spectral sequences converge and so Lemma 7.5 

folIows. 

Proof of-Proposition 7.6. We write X, for the bouquet of copies of A,(P) A A2(n-P) 

in (A, v A,)(“’ so that 

(A, v A,)‘“’ = il J-P. 
p=o 

The subspaces X, are invariant under the action of .S, and so 

gk‘t, ” Al) = I+‘% KS, ( + x,) = 9 (II’% KS_ x,). 
p=o p=o 

The map of the proposition restricts to an embedding of gp A, A 9n_p A, in WS, K s, X: . 

So the proposition is proved when a deformation 

r: ws,Ksnxp + w(s, X &_,> KS,xS,_p(-‘fl(P) A zd2’n-p)) z gpA, A 9n-pA2 

is given. 

The inclusion S, x S,_, + S, induces an equivariant (S, x &-,)-map W(S,, x S,_,) 

--f ws,. On factoring out by the action we obtain a homotopy equivalence of two 

Eilenberg-Maclane spaces K(S, x S, -p, 1) and so there is an equivariant deformation 

retract d: WS,, --t W(S, x S,_,). 

Suppose 5 = [w,al ,..., up, b,,, ,..., b,,]E WS, K~,X~, where WE WS,, a,EA, 

bj E B. Then we define r(i) = [d(w), a,, . . . , b,]. This is well-defined and is the required 

deformation retract, thus proving Proposition 7.6 and so Lemma 7.3. 

$8. A GENERriLISATION OF A THEOREM OF KAN AND WHITEHEAD 

In this section we prove Lemma 7.1. On the way we obtain a long exact sequence 

associated with a group valued functor which has previously been obtained by Kan and 

Whitehead in the abelian case. 

To begin with, suppose T is a functor from the category of pointed sets to the category 
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of groups. Let (.+Q) be a pair of pointed sets and write i : B - .-I for the inclusion map. 

Then we define a pointed simplicial set L = L(A,B) ;is follows. 

For n > 0, L, = .-I v B, v v B, where Bi = B. 

d, : L, + L,_, (n 3 1) is given by 

s, I.4 = 1,: ‘4 --) ,4 CL,_,, 

?, jB, =i: B, -+ A CL,_,, 

2, / Bj = 1,: B, --t Bj_l c L,_,, 1 <j G n. 

~?~:L,+L,_,(n>l,O<i<n)isgivenby 

i-i 1.4 = 1,‘: ,-I + A c L,_,, 

Zi(Bj=l,:Bj -+ B,cL,_,, I<j<i, 

SJB,=l,: Bj --t B,_,cL,_,, i<j<n. 

d, : L, -+ L,_ 1 (n 3 1) is given by 

d, jA = l,4 : A -+ A cL,el, 

?,jBj= 1,: Bj --* BjcL,-1, 1 <<j < II, 

2, jB, = * : B, + {*> c L,_,. 

si : L, --) L,,, (n 3 0) is given by 

silA= 1,:A -+ AcL,_,, 

si/Bj= 1,: Bj + BjCL,+1, 1 <i<i. 

siIBj= 1,: Bj + Bj+l CL,+,, i<jdn. 

It is tedious but straightforward to check that these face and degeneracy maps make L 

a simplicial set. 

From L(A,B) we obtain a simplicial group K = K(A,B) by composing L, thought of as a 

contravariant functor from the simplicial category A (e.g. [13; 5.61) to the category of 

pointed sets, with the functor T, i.e. K. = T(L,) and similarly for the face and degeneracy 

maps which are also written Zi and si in K. 

Now, for n > 0, we write M, = M”(A,B) for i\ ker [Zi : Kn - Km_,]. In particular, 
i= 1 

M,, = K, = T(A). It is a simple implication of the relations between degeneracy maps that 

d,(M,) c M,_i. The first step in the proof of Lemma 7.1 is 

LEMMA 8.1. There is a natural long exact sequence of groups 

20 20 
. . . - M,(A,B) L IV”._~ (A,B) -% - M,(A,B) = T(A) 

Tq 
* T(AIB) + 1, 

where q: A -+ A/B is the map identifving B to the base point. 

In the case of T a functor from pointed sets to abelian groups this is the exact sequence 

of Kan and Whitehead [II; Proposition 16.11. 

Proof: We have defined the natural sequence and it remains to check exactness. In L 

we may define further maps cr: L, -+ Ln+, for all n 3 0 as follows. 
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rlil-B=l,_,:A-B + A-BcAcL,+t, 

rjB(cA) = 1,: B -+ B, cL,_~, 

rj Bj = 1, : Bj --f Bj,, c Lmil. 

So there are maps T(r): K, + K,,I for all n 2 0 and it is again straightforward to check 

that these maps satisfy the conditions of the additional structure maps d in Lemma 2.1. 

Thus the map r: K--f t?, where R, = ZrT(r) K, , given by r(k) = ?rT(r)ii,” (k), for k E K., is a 

deformation retract. But a,T(r)K, = 8,T(r)T(L,) = T(d,crL,) = T(qA) = T(A/B) and r is 

given by r(k) = T(q) 2,” (k) for k E K, 

However, Proposition 2.5 provides a means of computing the homotopy groups of a 

simplicial group. For G = K, G, = ;Ci, and for G = I?, G, = 1 for n > 0 and G, = 2, = 

T (A/B). By the naturality of Proposition 2.5 the map r gives rise to a map of chain comp- 

lexes 

20 
- M” - lV,-I 

*I ao I 

20 20 
- . - M, = T(A) w 1 

I 
T(q) 

1 -1 - . . . . . - T(A/B) - 1 

and since r is a deformation retract, this induces an isomorphism of homology groups 

proving Lemma 8.1. 

Now we turn to the situation of Lemma 7.1. Suppose T is given by T,,, in dimension m. 

Then the above lemma applies in each dimension m to the functor T,,, and the pair of pointed 

sets (A, ,B,) to give a long exact sequence. By naturality these fit together to give 

COROLLARY 8.2. There is a natural long exact sequence of simpliciai groups 

20 
. . - M,(A,B) do M_,(A,B) co . . . 

JO 
. - M,(A,B) = T(A) Tq T(A/B) - I 

Now we consider the following commutative diagram 

I- T(B) A T(A) x T(B) A T(A) - 1 

1 - M,tA,B) - T(AvB) - 

, 1 

where pi denotes projections onto the ith factor and ii injection as the ith factor in all cases. 

The two rows are short exact sequences of simplicial groups (the bottom one by the defini- 

tion of M,) and T(p,). T(i2) = T(*) = +: T(B) -+ T(A). Hence T(i2) may be factored through 

M,(A,B) by a unique map p(A,B): T(B) ---* M,(A,B). 

PROPOSITION 8.3. The natural map p(A,B): T(B) -+ M,(A,B) is a homotopy equivalence if 

T has the property assumed in Lemma 7.1. 

This follows by Corollary 2.6, the five lemma and J. H. C. Whitehead’s theorem. 
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Returning to the long exact sequence of Corollary 8.2. let C,, be the kernel of Tq : 

.1/, = T(A) - T(&,iB). Then Lemma 7.1 follows quickly from 

PROPOSITIOS 5.4. The natural map .\I, -+ C, is a /10motop>~ tyti~altwcr. 

For consider the following diagram. 

T(z4,‘B) - I. 

20 
ltl? - 

Here the bottom row is the sequence of Lemma 8.1. Clearly ?,, : .Il,(A,B) - Tt.4) factors 

through C, by a map i. and Ti factors through C, by a map V. Our aim is to prove v to be a 

homotopy equivalence. 

Zo.p(A,B) = 8,. T(i,): T(B) + T(A v B) - T(A) by the definition of AL, and ?,. T(iz) = Ti 

by the definition of a,. Hence, since Co -+ TA is a monomorphism, E..p = V. But i. and il are 

homotopy equivalences (by Propositions 8.4 and 8.3) and thus v is as required. 

It remains to give the 

Proof of Proposition 8.4. Firstly we prove that .l/,(A,B) is contractible for all n > 2 

and all pairs (A, B). The proof is by induction on n. 

Consider the pair (A v B, ,B) where B, s B and the inclusion is given by i:B -+ 

A c A v B, Then for n 2 1 there is a natural isomorphism 

L,(AvB,,B)=AvB,vB,v...vB,~AvBB,v...vB,~, =L,;,(A,B), 

with Bitt Bi+l for 0 < i < n, and thus a natural isomorphism 

K,(A v B, ,B) z K,,,(A,B). 
“+I 

Hence M,(A v B, ,B) E n ker [Zi : K,+,(A,B) + K,(A,B)]. 
i=2 

nil 

8,: (‘) ker [ai : K,+,(A.B) -+ K,(A,B)] -+ M,(A,B) is an epimorphism, for s0 j hI,(A,B) 
i=2 

provides a right inverse. The kernel of this map is IM,+~(A,B) by its definition. Thus we 

have a natural short exact sequence of simplicial groups 

1 -+ hI,,,(A,B) + M,(A v B, ,B) + .CI,(A,B) + I. (8.5) 

Now consider the following diagram. 

The triangle is commutative from the definition of its maps. Hence, since both maps p are 

homotopy equivalences by Propositions 8.3, so is the other map of the triangle. Thus, 

using Corollary 2.6, M2(A,B) is contractible (for all pairs (A,B)-in particular the pair 
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(A v B,, Ir)). Then the short exact sequences 8.5 provide the inductive steps required. 

sow, for i > 0, let C, be the kernel of the map i-, : Mi + :LZi_l. Then the long exact 

sequence of Corollary 8.2 breaks up into short exact sequences. 

l+ci-+.~li+ci_l+l, for i > 0. (8.6) 

Since :Lfi is contractible for all i > 1, if Ci is m-connected then Ci _ 1 is (m + 1)-connected, 

and so C, is (m f i - 1)-connected. again using Corollary 2.6. But for m = - 1, this is 

true for all i > 1, i.e. C, is (i - 2)-connected for all i. The result follows on applying 

Corollary 2.6 to 8.6 for i = 1, by J. H. C. Whitehead’s theorem. 
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