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Our study provides evidence for the existence of an acylhydrolase activity in Tetrahymena pyriformis cells, capable of hydrolizing the sn-2 ester

bond of the PAF molecule. This activity is mainly distributed in the microsomal fraction (76.5% of total) and has properties similar to the mamma-

lian PAF-acetylhydrolase since it is Ca? * -independent, acid-labile, is inhibited by DFP and PMSF but it is not affected by egg yolk phosphatidylcho-

line. This microsomal acylhydrolasc has apparent K, and V,,, values of 1.56 uM and 373 pmols - mg - min respectively. This is the first report
of the existence of a PAF-acetylhydrolase activity in 2 non-mammalian cell.

Platelet-activating factor; PAF; Phospholipase A,; PAF-acetylhydrolase; Lipid metabolism; (Tetraliymena pyriformis)

I. INTRODUCTION

Platelet Activating Factor (PAF) identified as 1-O-
alkyl-2-acetyl-sn-glycero-3-phosphocholine [1-3], is
one of the most potent mediators in inflammatory and
allergic reactions. PAF is synthesized and released by a
variety of cells and tissues and displays an impressive
spectrum of biological actions in vivo and in vitro (see
reviews [4,5]).

The intracellular or extracellular PAF levels are
mainly regulated by a specific hydrolase which degrades
PAF into the biologically inactive metabolite lyso-PAF,
removing the acetyl group from the sn-2 position. This
enzyme named as PAF-acetylhydrolase (PAF-AH) (EC
3.1.1.48), is an acid-labile enzyme with properties
distinct from the classic phospholipase A; (PLA;) and
is present in a variety of mammalian cells and tissues as
well as in plasma and serum [6-11].

Studies in our laboratory have shown that PAF is a
minor lipid component in Tetrahymena pyriformis
cells, this being the first report for the natural occurence
of PAF in a non-manunalian cell [12]. Moreover, ex-
ogenously added PAF is taken up rapidly by 7. pyrifor-
mis and stimulates Ca?* influx into the cells [13,14].
Recently we have shown that the intact cells of this pro-
tozoan can rapidly metabolize exogenous PAF to 1-O-
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alkyl-2-acyl(long chain)-sn-glycero-3-phosphocholine,
suggesting a PAF deacetylation reaction as the in-
termediate step in this metabolic route {15]. In the pre-
sent study we describe the existence of an acylhydrolase
activity in T pyriformis capable of hydrolyzing the su-2
acetyl moiety of PAF. The properties of this enzyme,
similar to those of mammalian PAF-AH, are also
discussed.

2. EXPERIMENTAL

2.1. Materials

Diisopropylfluorophosphate (DFP), phenylmethylsulfonylfluoride
(PMSF), essentially fatty acid-free bovine serum albumin (BSA),
Tris-HCI, standard lipids and other chemicals (analytical grade), were
purchased from Sigma (St. Louis, USA). 1-O-hexadecy! 2-[*H]acetyl-
sn-glycero-3-phosphocholine ([*H]JPAF), (10 Ci/mmol) and 1-0-
{1',2'-*H]hexadecyl-2-acetyl-sn-glycero-3-phosphocholine
(["H]alkyl-PAF), (59.5 Ci/mmol) were from New England Nuclear
(Boston, MA), and solvents (analytical grade) were from Fluka
(Switzerland). [*H]PAF or [*H]alkvl-PAF was dissolved in a solution
of BSA in 10 mM Tris-HCI, 1 mg/ml, pH 7.4 (BSA/Tris-HCI). Egg
phosphatidylcholine was prepared from cgg yolk after total lipid ex-
traction by the Bligh and Dyer method [16] followed by TLC with
chlioroform/methanol/water (65:35:6, by volume) as a solvent
system, Lipid phosphorous was determined using the method of
Bartlett [17), as modified by Marinetti [18).

2.2, Culture conditions and cell fractionation

T. pyriformis strain W was grown axcnically at 25°C in a culture
medium consisting of 2% (w/v) proteose-peptone, 0.5% (w/v)
D(+ )glucose and 0.2% (w/v) yeast extract. Cells were fractionated
into pellicles, mitochondria, microsomes and cytosol at 4°C essential-
Iy accarding to the procedure of Nozawa and Thompson [19] with the
following exceptions, The fractionation buffer consisted of 0.25 M
suerose and 10 mM Tris-HCI, pH 7.4, and cells were homogenized by
nilrogen cavitation using a pressure of 40 bar after | min equilibra-
tion. Light microscopic observation indicated that almost all cells
were disruprted by this procedure. Total protein concentration in each
fraction was determined by the method of Lowry et al. {20]. All frac-
tions were stared in small aliquots at ~ 20°C, PAF-AH activity was
stable for at least 1 month under these conditions,
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Fig. 1. PAF-AH activity in homogenate and various cell fractions of
T. pyriformis. Incubations were performed with 125 ug of cell frac-
tion protein and 72 nM [*H]PAF at 37°C, pH 7.4. Values represent
the mean +SD for 4 differemt cell preparations.

2.3, Enzyme assay

PAF-AH activity was determined by the trichloroacetic acid (TCA)
precipitation method [21,22], using [*H]JPAF as a substrate and the
various cell fractions suspended in 10 mM Tris-HCI, pH 7.4, as the
source of the enzyme. For the routine assay, 0.5 ml of [*H]PAF solu-
tion in BSA/Tris-HCl, was incubated in a polypropylene tube with an
equal volume of each cell fraction suspension, at 37°C. The final BSA
and [*H]PAF concentraiions in the reaction mixture were 0.5 mg/ml
and 72 nM respectively while the final cell fraction protein concentra-
tion was 125 pg/ml, unless otherwise indicated. Aliquots of 50 ul of
the reaction mixture were taken at 1 min time intervals up to 10 min
and mixed with 50 ul of 20% TCA solution in microcentrifuge tubes
at 4°C. The mixture was allowed to stand for 15 min at 4°C and the
denatured protein was separated by centrifugation for 2 minin an Ep-
pendorf microcentrifuge. 50 ul of the supernatant were mixed with §
m! of the scintillation fluid (Ready Protein cocktail, Beckman, Fuller-
ton, CA) and the radioactivity determined in a liquid scintillation
counter (Tri-Carb 3255, Packard). The [*H] relcased in the superna-
tant was identified as [*H]acetic acid by the method of Blank et al. [6].
Moreover, when ['H]alkyl-PAF was used as a substrate, the {*H)
found in the supernatant after incubation for 10 min with the

Table |
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microsomal fraction, was less than 0.2% of total added [*H]alkyl-
PAF. The control values of the released [*H]acetic acid were obtained
by mixing 25 zl from the PH]PAF solution and 25 ul from the cell
fraction suspension with 50 ul of 20% TCA in a microcentrifuge tube
at 4°C, The [*H] found in the supernatant after the centrifugation
(tritiated acetate) was less than 2.5% of total added [*H]PAF. The
detection limit of this method is 0.3 pmol-mg'min.

3. RESULTS

PAF-AH activity was determined in all cell fractions
and cell homogenate. As shown in Fig. 1, PAF-AH ac-
tivity is mainly distributed in the microsomal fraction
(enzymatic activity, 28.3+2.3 pmols'mg-min, 76.5%
of total). Much lower activity is present in mitochon-
dria (7.1+1.2 pmols-mg-min, 19.2% of total) while
the pellicle and cytosolic fractions are almost inactive
(0.9+0.3 pmols°-mg-min and 0.7 £ 0.4 pmols- mg-min
respectively). PAF-AH activity in all fractions was not
markedly altered in the presence of 10 mM CaCl; or 10
mM K;EDTA but was completely and irreversibly in-
hibited after incubation of microsomes with 2 mM
PMSF for 1 h at 37°C (Table I). Further studies with
this enzyme were performed using the microsomal frac-
tion. PAF-AH activity in this fraction was linear with
protein concentration up to 250 pg/ml (range of protein
concentration tested, 50-1000 ug/ml) and with the time
of incubation up to at least 10 min. The activity profile
of the enzyme as a function of pH, showed a broad pH
optimum ranging between 7.4 and 8 (Fig. 2). PAF-AH
activity was slightly decreased (about 20%) when the
temperature of incubation was 25°C, conditions under
which 7. pyriformis is normally grown, but was com-
pletely and irreversibly inhibited after incubation of
microsomes with 10 mM DFP for 30 min at 37°C (Table
D). Treatment of microsomes with 1 N HCI, pH 3.5 for
1 h at 37°C, followed by pH adjustment to 7.4 with |
N NaOH, resulted also in a complete loss of the enzyme

Effect of various compounds on T. pyriformis microsomal PAF-AH activity

Compound added Concentration

% of control [*H]acetate released

None, 37°C - 100"
None, 25°C - 7945
Ca®* 10 mM 68+9°
EDTA 10 mM 113+£2°
DFP 10 mM 0
PMSF 2 mM 0¢

1 N HCI - 0
Ethanol $ plin 1 ml react. mixt, 9242
Egg phosphatidylcholine® 64 nM 9544

4 640 nM 83xl

Incubations were performed with 125 ug of microsomal protein and 72 nM ['H]PAF at pH 7.4,
25 ul of the egg phosphatidylcholine solutions in ethanol were added to 1 ml of the reaction

mixture,

"Control activity in these experiments was 26,5 pmols-mg - min,
“Similar results were obtained when other cell fractions or cell homogenate were used as the

source of the enzyme.

Values represent the mean + SD for 4 different microsomal preparations.
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Fig. 2. pH-activity profile of 7. pyriformis microsomal PAF-AH. In-
cubations were performed with 125 ug of microsomal protein and 72
nM [*HIPAF at 37°C, pH 7.4. Values represent the mean +SD for
4 different microsomal preparations.
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Fig. 3. Lineweaver-Burke double-reciprocal plot of T. pyriformis
microsomal PAF-AH. Each point represents the mean value of
duplicate experiments.

activity (Table I). Finally, this microsomal PAF-AH ac-
tivity was not affected or was slightly inhibited when 3
ul of egg yolk phosphatidylcholine solution in ethanol
were added to the reaction mixture in final concentra-
tion of 64 nM or 640 nM respectively (Table I). Kinetic
~::a depicted in the Lineweaver-Burke double reci-
proca! plot shi'wed that this microsomal hydrolase has
apparent Ky nd Vpax values of 1.56 uM and 373
pmols-mg-min respectively (Fig. 3).

4. DISCUSSION

T. pyriformis is considered to be a favorable organ-
ism for studying membrane structure, function and
metabolism within the cukariotic cell {23]). The micro-
somal fraction of this protozoan plays an important
role in the phospholipid metabolism and a series of dif-
ferent enzymatic activities has been reported in th.,
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subcellular fraction. Some of these are: an alkylglycerol
monooxygenase that catalyzes the cleavage of the ether
bond in alkylglycerols [24,25]; a direct phospholipid
desaturation system that catalyzes the conversion of
oleoylphosphatidylcholine to linoleoylphosphatidyl-
choline [26]; and various acyltransferase activities that
catalyze the acylation of glycerophosphate, monoacyl-
glycerophosphate and 1-acylglycerophosphocholine
[27].

Our study provides evidence for the existence in T.
pyriformis cells of an acylhydrolase activity capable of
hydrolizing the sn-2 acetyl moiety of the PAF molecule.
It is mainly distributed in microsomes and has proper-
ties similar to those of mammalian PAF-AH, an en-
zyme totally different to the typical PLA; [6-11]. This
acylhydrolase activity is acid-labile, Ca?*-independent
and is completely inhibited by DFP and PMSF. Also it
seems to be specific for phosphatidates having sn-2
short chain acyl groups since egg yolk phosphatidyl-
choline (long chain diacyl type) fails to inhibit PAF
hydrolysis. This inhibitory study further supports the
premise that this acylhydrolase activity differs from the
typical PLA; that utilizes long chain diacylphospho-
lipids as substrates. This observation is in accordance
with the results of other investigators who reported the
absence of any PLA; activity capable of hydrolizing
phosphatidylcholine or phosphatidylethanolamine
(long chain diacyl types) in the microsomal fraction of
T. pyriformis [28].

The distribution of 7. pyriformis PAF-AH activity,
mainly in microsomes, is in contrast to the distribution
of PAF-AH in mammalian cells, which is mainly found
in the cytosolic fraction [6]. On the other hand, the pro-
found hydrophobicity of the protozoan PAF-AH
resembles that of the plasma PAF-AH which is assoc-
iated with lipoproteins [11]. Also, the properties of 7.
pyrijormis PAF-AH activity seem to be similar to the
short chain specilic microsomal acylhydrolase reported
by Wykle and Schremmer in Fischer R-3259 sarcoma
cells [29].

The existence of a PAF-AH activity in the protozoan

~ cells further supports our previous observation that the

first step of the metabolism of exogenous PAF by T.
pyriformis is a rapid deacetylation reaction. Moreover,
the enzyme distribution in the internal cell compart-
ments and the absence from the pellicle fraction, could
explain the small unmetabolized portion of the ex-
ogenous PAF that remains even after 1 h incubation
with T, pyriformis cells [15].

This is the first report of the existence of a PAF-AH
activity in a non-mammalian cell, It is also the first
study that provides evidence for the existence of a short
chain specific acylhydrolase in T. pyriformis cells. The
biological role of this acylhydrolase could be the regula-
tion of the endogenous PAF levels in this protozoan,
The enzyme purification as well as the substrate
specificity arc in further investigation in our laboratory.
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