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Abstract

An anisotropic elasto-plastic constitutive model of paper material is presented. It is formulated in a spatial setting in
which anisotropic properties are accounted for by use of structural variables. A multiplicative split of the deformation gra-
dient is employed to introduce plasticity. A similar approach is used to model the plastic deformation of the substructure.
The yield surface adopted is based on the Tsai–Wu failure criterion, used previously to model failure of paper material. A
non-associated plasticity theory is employed to calibrate the model to experimental data. It turns out that a multi-axial
loading situation is needed to calibrate the model and here a biaxial tension test is audited. The model was implemented
into a finite element environment and the creasing process of a corrugated board panel is investigated.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Packaging paper is a generic name for paper material of all types used for packaging goods. The material
known as corrugated board is produced by a converting process in which two or more layers are laminated, cf.
Fig. 1. The flat top and bottom layers are called liners and the corrugated core is referred to as fluting. Cor-
rugated board is frequently used for making boxes for the transport of goods and the like, is one of the most
used packaging material. Its low cost per unit weight, the possibility of recycling and the high stiffness per unit
weight makes it an attractive material. During the lifetime of a package, the material of which it is constructed
will be exposed to mechanical loading during for instance transportation and storage. In the past, attempts
have been made to predict the load-carrying capacity of corrugated box, cf. the pioneer work by McKee
et al. (1963). More recent work addressing this problem can be found in Patel et al. (1997), Nyman (2000)
and Nordstrand et al. (2003). Still more recently in the work of Biancolini (2005) and Isaksson and Hägglund
(2005) the finite element method was used to gain better understanding of how a corrugated board panel
deforms during sever mechanical loading. It has been found that even during the box manufacturing process
itself the corrugated board may be severely deformed, particularly in the folding areas. The modeling of this
process will be considered here and therefore a material model for paper will be the main concern in this paper.
0020-7683/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Single wall corrugated board panel. The material directions of the paper are indicated.
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The main building blocks of packaging paper are cellulose fibers, consisting primary of wood fibers,
although other materials are sometimes employed as well. The manufacturing process usually involves the
dewatering of a cellulose fiber suspension on a web. The fibers have the inherent capability of bonds being
formed between them without the use of any additives. Due to the manufacturing of the separate paper layers,
the fibers tend to become aligned to the direction in which the web is running. This direction is usually referred
to as the machine direction (MD). The direction perpendicular to this direction in the plane of the web is called
the cross direction (CD). The third direction is the out-of-plane direction (ZD), cf. Fig. 2. The strength of the
bonds and the longitudinal properties of the fibers are the main factors for the in-plane mechanical properties
of the paper sheet. The mechanical properties in the out-of-plane direction are related to the fiber properties
perpendicular to the longitudinal direction and the bond strength. Due to the orientation of the fibers in the
paper material, the mechanical response will differ depending upon the loading direction. Since the fibers tend
to become oriented in the MD direction this direction also is the ‘strongest’ direction, i.e. higher Young’s mod-
ulus, yield stress etc. The material properties in CD are about two to four times lower than in MD. Since the
in-plane and out-of-plane mechanical properties are governed by rather different physical mechanisms, the
mechanical out-of-plane properties are very different from the in-plane properties. Stiffness and yield stress
are of the order of two lower than the in-plane properties.

As known from material testing, cf. Steenberg (1949), paper show a highly non-linear response even when
exposed to only moderate deformations. One can note as well that unloading from the non-linear region intro-
duces non-recoverable strains. Such observations motivate the use of plasticity theory. Further and very
important factor when modeling paper material are the directional dependent properties. Attempts to model
the mechanical properties of paper material have been made recently by Castroa and Ostoja-Starzewski (2003)
as well as Xia et al. (2002) and Mäkelä and Östlund (2003) who considered elasto-plastic properties of paper
and Isaksson et al. (2004) how also considered damage.

The present study takes up a large strain elasto-plastic material model of paper based on an orthotropic hyper-
elastic model, orthotropic yield surface and hardening model. To account for the different yield stresses in tension
and compression, an approach similar to that of Shih and Lee (1978) has been adopted. However, since paper do
Fig. 2. Illustrations of the different material directions of a single material layer due to manufacturing process. Here v
ð1Þ
0 , v

ð2Þ
0 and v

ð3Þ
0

denotes the base vectors defining the directions corresponding to MD, CD and ZD, respectively.
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not show proof of plastic incompressibility, the calibration becomes much more involved. For introducing ortho-
tropic material properties into the constitutive model, here, use has been made of structural tensors, cf. Boehler
(1987). This approach has been used in connection with both the elastic and the plastic part of the model. The
framework will in addition allow for evolving anisotropy, but this subject will not be pursued further.

Before development of the model itself is taken up, experimental findings obtained for the paper material
that was investigated will be presented. Then the theoretical foundation of the proposed model will be dis-
cussed as well as the corresponding calibration procedure. Finally, numerical examples will be presented where
the creasing operation of a corrugated board will be considered.

1.1. Experimental evidence

Experiments on a material with grammage of 150 g/m2 and thickness of 0.32 mm where conducted in a con-
trolled environment held at a temperature of 23 �C and a relative humidity of 50%. The curves represents
mean values from test samples containing five tests in every test case. Furthermore, a low strain rate of
0.8 mm/min was used. The different uniaxial stress–strain curves for the in-plane loading of paper in MD,
45� and CD are shown in Fig. 3(a). The curves terminate at the point where fracture has taken place. The
stress–strain relation is rather linear during the first, elastic, part of the deformation, but after a certain stress
value has been reached, the response becomes non-linear. The different loading directions clearly reveals the
strong anisotropy that is present in paper. The result from successive loading and unloading are shown in
Fig. 3(b). It is clear that some part of the deformation do not recover, motivating the need of modeling plastic
behavior. The response also reveals a Baushinger effect to be present. This is known to exist for this type of
material, cf. Sawyer et al. (1996). Furthermore, regarding physical explanation of the plastic behavior, Seth
and Page (1983) showed experimentally that the plasticity of paper is mainly caused by the plasticity of fibres
and the effect of bond breakage is usually small. From Fig. 4 it is observed that the ratio axial/lateral strain
can be considered as constant during uniaxial tension loading conditions. Furthermore, this also indicated
that the ratio of axial/lateral plastic strain is constant. The response of biaxial proportional tension loading
is shown in Fig. 5. There the forces, FMD and FCD acting in MD and CD, respectively, are equal in these
two to each other perpendicular directions. A compression test was performed to evaluate the properties con-
nected with the out-of-plane direction of the paper. The result can be seen in Fig. 6. As already indicated, and
evident from Fig. 3(b), both elastic and plastic deformations are present. As noted in experiments, the out-of-
plane deformation is both elastic and plastic, cf. Stenberg et al. (2001b). In the corrugated board applications
considered here it is sufficient to assume, however, that the out-of-plane deformation is purely elastic.

A glance of the results of the uniaxial tests reveals no clear yielding point can be identified. To locate the
yielding point, the assumption of linear-elastic behavior is used. This allows the yielding point to be located at
the point where the stress–strain curve deviates from the linear stiffness found initial. For orthotropic mate-
rials the initial flexibility matrix, given in Voigt notation, can be written as
Fig. 3. Results of uniaxial tension loading: (a) in MD, CD and 45� and (b) testing in CD direction under successive loading and unloading.



Fig. 4. Axial vs. lateral strain during uniaxial tension loading in MD and CD.

Fig. 5. Result from biaxial tension testing, loading ratio FMD/FCD = 1.

Fig. 6. Result from compression test in ZD.
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where the components are ordered according to ½11 22 33 12 13 23� . The indices on the material
properties are related to the bases v

ðaÞ
0 , cf. Fig. 2. Assuming the existence of a strain energy function, the rela-

tions m12/E1 = m21/E2, m13/E1 = m31/E3 and m23/E2 = m32/E3 hold, i.e. C is symmetric. From Figs. 3 and 4 it is
concluded that the in-plane symmetry condition is fulfilled.

The in-plane elastic properties of the paperboard examined here are categorizes by standard quantities
(Young’s modulus, Poisson’s ratio and shear modulus). Young’s modulus can be determined from Fig. 3(a)
and Poisson’s ratio can be established from Fig. 4. Unfortunately, the shear modulus cannot easily be mea-
sured directly. However, since data in 45�-direction exist, using Young’s modulus obtained from an uniaxial
test in 45�-direction, the in-plane shear modulus, G12 can be calculated using a coordinate transformation. The
elastic constant related to out-of-plane direction, i.e. E33, G13 and G23 and Poisson’s ratios m13 and m23 are not
straightforward to measure, cf. Stenberg (2003). Therefore the values obtained by Baum (1985) will be used. In
summary the elastic properties are given as
E11 ¼ 3050 MPa; E22 ¼ 1172 MPa; E33 ¼ 35 MPa

G12 ¼ 720 MPa; G13 ¼ 10 MPa; G23 ¼ 10 MPa

m12 ¼ 0:3; m13 ¼ 0:01; m23 ¼ 0:01

ð2Þ
Considering properties related to initial yielding, analysing the experimental data discussed earlier, the follow-
ing data related to initial yielding can be found (all in MPa)
sMD;t ¼ 7; sMD;c ¼ 4; sCD;t ¼ 3

sCD;c ¼ 3; s45 ¼ 7; sb ¼ 3:3
ð3Þ
Here sMD,t, sMD,c, sCD,t, sCD,c, s45 and sb are the yield stresses in MD tension/compression and CD tension/
compression, yield stress in 45� and in biaxial loading situation, respectively. To obtain the data related to
compression an investigation of the response during compression loading is called for. The standard short
compression test (SCT), cf. Cavlin and Fellers (1975), was used in these investigations. Data from the SCT,
which only provided the ultimate load level, were used to estimate the initial yield stresses in compression.
To estimate the initial yield stresses a simple scaling of the SCT values by a factor 1/4 was used. Moreover,
due to lack of stress–strain curves in compression, it will be assumed that after yielding takes place in com-
pression an ideal plastic response is obtained.

2. Model development

2.1. Kinematic description

Consider first a brief description of the kinematic quantities. Let X0 � R3 denote the reference configura-
tion of a body and let a particle be identified via its position vector X 2 X0. At time t 2 R a smooth deforma-
tion is a one-to-one mapping (generally non-linear) u : X0 � t! X � R3. The motion of the particle labeled
X 2 X0 is then identified via x = u(X, t), x 2 X, is the position vector of a particle in the current configuration
X. The deformation of the body at a fixed time can be identified by reference to the linear map of a vector in
the tangent space TX0 to a vector in the tangent space TX, i.e. F = oXut where F is known as the deformation
gradient. To make the map unique, it is required that J = det(F) > 0. From this assumption, it follows that the
deformation gradient is non-singular.

Time derivation of the deformation gradient allows the spatial velocity gradient to be defined, such that
_F ¼ LF ð4Þ

The spatial velocity gradient may be split into a symmetric and a skew-symmetric part according to
L ¼ sym½L� þ skew½L� ¼ DþW ð5Þ

Here sym½�� ¼ 1

2
ð½�� þ ½��TÞ and skew½�� ¼ 1

2
ð½�� � ½��TÞ, denote the symmetric and skew-symmetric part of a sec-

ond-order tensor, respectively, and D and W are known as the rate of deformation tensor and the spin tensor,
respectively.
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So far, no specific quantity has been introduced for describing any directionally dependent properties of the
material, i.e. the substructure of the material which for this particular material is defined by the fiber orien-
tation. Following Harrysson and Ristinmaa (2007), for this purpose, a set of vectors v

ðaÞ
0 is introduced in

the reference configuration, cf. also Fig. 2. These vectors describe in a phenomenological sense the direction-
ally dependent properties of the material. A similar set of vectors v(a) is introduced in the current configuration
and the two sets of vectors are related according to the linear map
vðaÞ ¼ DðaÞvðaÞ0 ð6Þ
Here the superscript (a) indicate different director vectors and it is noted that the linear maps D(a) may be dif-
ferent for each director vector. From (6) it is clear that D(a) represents a linear map in the same sense as the
deformation gradient, but acting on the substructure and not on the continuum. This quantity is called sub-
structural deformation gradient.

In modeling large strain plasticity, the deformation gradient and the substructural deformation gradient
need to be investigated further to be able to distinguish between elastic and plastic deformation. For this pur-
pose, the multiplicative split of the deformation gradient is adopted, cf. Kröner (1960) and Lee (1969). The
elastic and plastic parts of the deformation are then identified as
F ¼ FeFp ð7Þ
where Fe and Fp denote the elastic and plastic parts of the deformation gradient, respectively. More precisely, a
line segment is first mapped into an unstressed intermediate configuration, denoted X, by the plastic part, Fp of
the deformation gradient. This line segment is then subsequently mapped from the unstressed configuration to
the current configuration by the elastic part of the deformation gradient, Fe. Hence, a geometrical decoupling
between elastic and plastic deformation is achieved. A similar approach can be taken for the substructure
according to
D ¼ bðaÞaðaÞ ð8Þ
where a(a) maps the director vectors from the reference configuration, v
ðaÞ
0 , to the intermediate configuration,

�vðaÞ, and b(a) subsequently maps the director vectors from the intermediate configuration to the current con-
figuration, v(a), see Fig. 7. In this sense a(a) is related to the plastic deformation and b(a) is related to the elastic
deformation. Note that some additional assumption is required concerning a link between (7) and (8), the con-
tinuum and the substructure, respectively, a matter that will be discussed later. Since an arbitrary rotation may
be added to the intermediate configuration, and still be stress free, this configuration is not uniquely deter-
mined, cf. Dafalias (1986) or the discussion of Harrysson and Ristinmaa (2007). However, if a spatial setting
Fig. 7. Deformation of the (a) continuum and (b) the substructure.
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is adopted, the arbitrary orientation of the intermediate configuration will not enter the model description as
shown in Harrysson et al. (2007)

Returning to the continuum, the evolution of the elastic and the plastic deformation gradient can be estab-
lish in a similar manner as (4), i.e.
_Fe ¼ LeFe; _Fp ¼ lpFp ð9Þ
where Le is the elastic velocity gradient and lp is the plastic velocity gradient, respectively. The total velocity
gradient can be constructed using (9) as
L ¼ Le þ FelpFe�1 ¼ Le þ Lp ð10Þ
where Le is a spatial quantity and Lp is the spatial representation of lp. For the substructure, similar expres-
sions can be established for the elastic and plastic part of the substructural velocity gradient. Following the
approach of Harrysson and Ristinmaa (2007) gives
_bðaÞ ¼ CðaÞbðaÞ; _aðaÞ ¼ KðaÞaðaÞ ð11Þ
where C(a) is the elastic velocity gradient and K(a) is the plastic velocity gradient acting on the substructure,
respectively. In analogy to (10) a total velocity gradient acting on the substructure can be established accord-
ing to
_DD�1 ¼ CðaÞ þ bðaÞKðaÞbðaÞ�1 ð12Þ
Next a connection between the continuum and the substructure must be introduced. From a physical point of
view, it is assumed that the substructure and the continuum deforms together in a convected sense if purely
elastic deformation is considered. This leads to the constitutive assumption that
bðaÞ ¼ Fe ð13Þ
For use further on the evolution equations are established in a spatial setting. Consider first the elastic defor-
mation of the continuum. This can be represented by the elastic Finger deformation tensor
be ¼ FeFeT ð14Þ
Time differentiation of (14), with use of (10) results then in
_be ¼ Lbe þ beLT � ðLpbe þ beLpTÞ ð15Þ
Proceeding in a similar fashion with the substructure, evolution equation for the preferred directions has to be
established. Starting with the assumption of elastic convectivity (13), it follows that �vðaÞ ¼ aðaÞv

ðaÞ
0 and

vðaÞ ¼ Fe�vðaÞ. Time differentiation of latter relation with use of (10) and (11) then gives
_vðaÞ ¼ LvðaÞ þ ðkðaÞ � LpÞvðaÞ ð16Þ
where a spatial representation of K(a) was introduced in the form of k(a) = FeK(a)Fe�1 To proceed, evolution
laws needs to be assigned to Lp and k(a) in a consistent fashion. This is done in the section that follows, by
use of thermodynamic relations.

2.2. Thermodynamic relations

The second law of thermodynamics introduces a formal requirement placed on the constitutive model
describing the material behavior. The second law of thermodynamics is usually transformed into the dissipa-
tion inequality, cf. Truesdell and Noll (1965), which for isothermal conditions is given by,
c ¼ s : D� q0
_w P 0 ð17Þ
where w is the Helmholtz free energy function and qo is the mass density in the reference configuration. Fur-
thermore, s is the Kirchhoff stress tensor and D is the rate of deformation tensor introduced earlier. The pro-
cess is called reversible if c = 0 (for instance elastic deformation) and irreversible if c > 0 (for instance plastic
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deformation). Thus for isothermal processes (17) should be fulfilled irrespective the material model
considered.

Two ingredients are needed to characterize the state of the material which has undergone a plastic defor-
mation: an elastic strain measure and the history of the plastic loading that has occurred. If both of these are
known, the state of the material is likewise known. Returning to the Helmholtz free energy, it follows that
w ¼ wðbe;mðaÞ; jbÞ; b ¼ 1; 2; . . . ; n ð18Þ
is a possible representation where jb are some internal variables that describe the history of plastic loading. In
general, these can be tensors of different orders. For the situation considered here, however, it is assumed that
jb are scalars. This is sufficient for describing the hardening of the material. In (18) m(a) is used for describing
the anisotropic properties of the material and is constructed using the director vectors according to
m(a) = v(a) � v(a), cf. Liu (1982), Boehler (1987) and Spencer (1987). It is also noted that due to objectivity rea-
sons it is required that w is an isotropic function of its argument, i.e. w can only be a function of invariants of
be and m(a) and the joint invariants of be and m(a). Taking advantage of (18), the dissipation inequality can be
rewritten as
c ¼ s : D� q0

ow
obe : _be �

X
q0

ow
omðaÞ

: _mðaÞ �
X

Rb _jb P 0 ð19Þ
where the conjugated forces Rb have been introduced according to
Rb ¼ q0

ow
ojb

ð20Þ
To further evaluate (19) the time differentiation of the elastic Finger tensor and the structural tensors has to be
introduced. The time differentiation of the Finger tensor are given by (15) and the time differentiation of the
structural tensors can be evaluated using (16) and the definition of the structural tensors according to
_mðaÞ ¼ LmðaÞ þmðaÞLT þ ðkðaÞ � LpÞmðaÞ þmðaÞðkðaÞ � LpÞ ð21Þ
Hence it follows that the dissipation inequality can be reformulated, yielding
c ¼ s� 2q0

ow
obe be � 2q0

X
a

ow
omðaÞ

mðaÞ

 !
: Lþ 2q0

ow
obe be þ 2q0

X
a

ow
omðaÞ

mðaÞ

 !
: Lp

� 2q0

X
a

ow
omðaÞ

mðaÞ : kðaÞ �
X

b

Rb _jb P 0 ð22Þ
Following the discussion in Harrysson et al. (2007) the symmetric Kirchhoff stress tensor can be introduced as
s ¼ 2q0

ow
obe be þ 2q0

X
a

ow
omðaÞ

mðaÞ ð23Þ
cf. also Menzel and Steinmann (2003). By use of this definition in (22) it follows that
c ¼ s : Dp �
X

rðaÞ : kðaÞ �
X

b

Rb _jb P 0 ð24Þ
where Dp = sym(Lp) is the plastic rate of deformation tensor and r(a) represents here a thermodynamic force,
conjugated to k(a), defined as
rðaÞ ¼ ow
omðaÞ

mðaÞ ð25Þ
It appears natural to divide the dissipation inequality into two separate parts, the one containing information
of the continuum and the other containing information of the substructure. This can be done according to
c ¼ cmech þ csub P 0 ð26Þ
where cmech and csub are introduced according to
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cmech ¼ s : Dp �
X

b

Rb _jb; csub ¼ �
X

rðaÞ : kðaÞ ð27Þ
Until this point, it has been stated that the dissipation inequality has to be satisfied for all loading conditions,
and this will put certain restrictions on the constitutive model that is used. Here a conservative approach is
used assuming that both parts of the dissipation inequality should be fulfilled separately, i.e. cmech P 0 and
csub P 0.

Consider first the mechanical part of the dissipation inequality, cmech. There are various ways for (27a) to be
fulfilled. First, in order to determine whether plastic deformation has occurred, an elastic domain is introduced
according to
E ¼ fðs;mðaÞ; �Þjf ðs;mðaÞ; �Þ 6 0g ð28Þ
where (�) denote additional quantities of relevance for the description, such as the effective plastic strain. The
boundary of this domain is termed the yield surface.

The evolution laws are then found by considering a convex potential function, having the properties
g(s,m(a),Rb) � g(0,m(a), 0) P 0. It then follows that cmech P 0 if the following evolution laws are given by
Dp ¼ k
og
os

_jb ¼ �k
og
oRb

ð29Þ
where k is a positive plastic multiplier. In addition it is assumed that the loading conditions f 6 0, k P 0 and
fk = 0 holds. The evolution laws given in (29) is usually referred to as non-associated plasticity. The specific
choice of g = f results in the associative plasticity theory, consistent with the postulate of maximum plastic
dissipation. It is also noted that different quantities can be used in the potential function and the yield func-
tion, advantage of this fact will be used later on in the calibration procedure, cf. also Ristinmaa et al. (2007). It
is possible to use the same approach for fulfilling the dissipation inequality for the substructure csub where a
potential function gsub = gsub(r(a)) with the same properties as above is introduced, i.e. the following evolution
law is obtained
kðaÞ ¼ k
ogsub

orðaÞ
ð30Þ
2.3. Specific model

The elastic part and the plastic part of the model are based on the concept of invariants formed by using
structural tensors to describe the directional dependency of the material. To model the orthotropic behavior it
is used that three orthogonal material directions are introduced in the reference configuration. These direc-
tions are described by MD, CD and ZD for the paper material, cf. Fig. 2. In addition to the assumption in
(18) an additive split of Helmholtz’ free energy is used according to
w ¼ weðbe;mðaÞÞ þ wpðjbÞ ð31Þ
where jb are, as described previously, scalar internal variables used to incorporate hardening. The specific def-
inition of the internal variables will be discussed in the sequel. The elastic part of the free energy is taken as
q0w
e ¼ K

J e2 � 1

2
� lnðJ eÞ

� �2

þ
X3

a¼1

aa

2
Ie2
a þ baIe

aIe
aþ1 þ caJ e

a ð32Þ
where it for simplicity was introduced that Ie
4 ¼ Ie

1, and the following invariants are used
Ie
a ¼

1

2
ðtr½mðaÞ� � 1Þ; J e

a ¼
1

4
be : mðaÞ � 2tr½mðaÞ� þ 1
� �

J e ¼ detðbeÞ1=2
ð33Þ
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It is noted that the first term of the free energy function is a function describing the isotropic properties of the
model. The reason for introducing this first term in (32) is to obtain a reasonable response in compression. It is
emphasized that without this term, we ?1 as Je ? 0 is not fulfilled, which is a growth condition of the strain
energy function, here given by we, cf. Ciarlet (1988). The quadratic format is chosen such that it will not influ-
ence upon the initial tangent stiffness. Furthermore, it is here assumed that this term is only active during com-
pression, i.e.
K ¼
Kb if J e < 1

0 otherwise

�
ð34Þ
Taking advantage of (32) in (23) it follows that the Kirchhoff stress tensor takes the form
s ¼ K
J e2 � 1

2
� lnðJ eÞ

� �
ðJ e2 � 1ÞI þ ða1Ie

1 þ b1Ie
2 þ b3Ie

3 � c1Þmð1Þ

þ ðb1Ie
1 þ a2Ie

2 þ b2Ie
3 � c2Þmð2Þ þ ðb3Ie

1 þ b2Ie
2 þ a3Ie

3 � c3Þmð3Þ

þ 1

2
c1ðbemð1Þ þmð1ÞbeÞ þ 1

2
c2ðbemð2Þ þmð2ÞbeÞ þ 1

2
c3ðbemð3Þ þmð3ÞbeÞ ð35Þ
It is noted that (35) result in a stress free intermediate configuration, i.e. when Fe = I. The calibration of the
model to experimental data is done by considering the initial tangential stiffness. The tangential stiffness in the
spatial setting is defined by a push forward operation of the tangential stiffness in the material setting, accord-
ing to
L ¼ 2ðF�FÞ :
oS

oC
: FT

�FT
� �

ð36Þ
where in Cartesian components ðA�BÞijkl ¼ 1
2
ðAikBjl þ AilBjkÞ is introduced. Furthermore S = F�1sF�T is the

second Piola Kirchhoff stress tensor defined in the reference configuration and C = FTF is the Cauchy-Green
deformation tensor, also defined in the reference configuration. Taking advantage of the following expression
oS

oF
FT ¼ 2

oS

oC
: ðFT

�FTÞ ð37Þ
and the definition of the second Piola Kirchhoff stress tensor will result in the spatial representation of the
tangent stiffness
L ¼ �I�s� s�I þ sym4

os

oF
FT

� �
ð38Þ
where sym4(�) indicates minor symmetry of the fourth-order tensor. In addition, (38) can be rewritten using the
relationship s = s(be,ma). Taking advantage of the fact that Fp = I initially, the initial tangent stiffness is then
obtained
L0 ¼
os

obe ðI�be þ be
�IÞ þ

X3

a¼1

os

oma
ðI�mðaÞ þmðaÞ�IÞ

" #
Fe¼I

ð39Þ
For the calibration process it is assumed that all components are given with respect to the material directions
v
ðaÞ
0 . From this assumption it follows that the matrix representation, in Voigt notation, of the initial tangent

stiffness is given by
½L0� ¼

a1 þ 2c1 b1 b3 0 0 0

b1 a2 þ 2c2 b2 0 0 0

b3 b2 a3 þ 2c3 0 0 0

0 0 0 c1þc2

2
0 0

0 0 0 0 c1þc3

2
0

0 0 0 0 0 c2þc3

2

2
666666664

3
777777775

ð40Þ
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where the same stacking sequence as in (1) has been used. This expression may then be compared to the clas-
sical formulation of orthotropy, where the flexibility matrix is given by (1), i.e. ½L0��1 ¼ ½C�.

By comparing (40) and (1), the involved elastic material parameters can be calculated. It is noted that the
parameter related to the first term in (32) is not present in the initial tangent stiffness. The experimental data
from out-of-plane compression test is used to calibrate this quantity. By comparing the result from the exper-
iment and a finite element simulation of the compression test, the remaining parameter Kb can be determined.
To conclude, taking advantage of (2) in (1) and (40) as well as the properties above, leads to the material
parameters related to the elastic properties being given by (all in MPa)
a1 ¼ 1719; a2 ¼ �226; a3 ¼ 1435

b1 ¼ 364; b2 ¼ 0:5; b3 ¼ 0:4

c1 ¼ 720; c2 ¼ 720; c3 ¼ �700

Kb ¼ 60
To model plasticity, as indicated previously, a non-associated plasticity model will be adopted.
As discussed initially, the mechanisms in the in-plane and out-of-plane are very different and it is therefore

advantageous to decouple the in-plane response and the out-of-plane response. This makes it possible to intro-
duce a separate plasticity model for the out-of-plane response. For simplicity, however, and to facilitate the in-
plane model to be discussed in detail it will be assumed that the out-of-plane response is elastic.

As already indicated, the evolution of the substructure also has to be considered. From (30) it follows that
the evolution of the substructure is guided by a potential function. Obviously, the specific choice of potential
function for the substructure has to be based on experimental evidence. To the authors’ knowledge, such infor-
mation is not available and would be a very challenging task to obtain. Due to the lack of data it will be
assumed that no plastic evolution of the substructure will take place.

From the previous definitions it can be concluded that both the yield function and the potential function
were introduced in terms of Kirchhoff stress tensor and structural tensors and were required to be isotropic
functions of its arguments. For this purpose the following two types of joint invariants of the Kirchhoff stress
tensor and structural tensors are introduced:
Ia ¼ mðaÞ : s

J a ¼ mðaÞ : ðs2Þ
ð41Þ
First it is noted that the criterion by Tsai and Wu (1971) has previously been used by de Ruvo et al. (1980) and
Suhling et al. (1985) with great success to predict failure of paper based materials. It was also shown by Try-
ding (1994) that the prediction capabilities could be enhanced if the original Tsai–Wu criterion was modified.

The yield surface is assumed to be of the format given by the Tsai–Wu failure criterion and yield function
by Shih and Lee (1978), i.e. to be a linear combination of a quadratic and a linear function in stress
f ¼ ay
1ðI1 � I2Þ2 þ ay

2ðI1 � I3Þ2 þ ay
3ðI2 � I3Þ2 þ by

1ðJ 1 � I2
1Þ þ by

2ðJ 2 � I2
2Þ þ by

3ðJ 3 � I2
3Þ

þ cy
1I1I2 þ cy

2I1I3 þ cy
3I2I3 þ dy

1I1 þ dy
2I2 þ dy

3I3 � 1 6 0 ð42Þ
where the linear term is used to distinguish the behavior in tension and compression Here ay
i ; by

i ; cy
i and dy

i ,
i = 1,2,3 are assumed to be functions of the internal scalar variables jb.

Based on the discussion above, to obtain an in-plane yield surface the following reduction of parameters is
used ay

3 ¼ �ay
2, cy

3 ¼ 2ay
3, cy

2 ¼ 2ay
2, by

1 ¼ �by
3, by

2 ¼ �by
3 and dy

3 ¼ 0.
The yield function (42) reduces to
f ¼ ðay
1 þ ay

2 þ by
3ÞI2

1 þ ða
y
1 � ay

2 þ by
3ÞI2

2 � by
3I2

3 þ by
3ðJ 3 � J 1 � J 2Þ þ ðcy

1 � 2ay
1ÞI1I2 þ dy

1I1 þ dy
2I2 � 1 6 0

ð43Þ
To calibrate the material parameters to initial yielding, uniaxial tests can be used as a starting point. Assuming
for simplicity that kmak can be taken as unity in the uniaxial tension/compression tests. Loading in MD is
given by s = ±sMDm(1) and in CD by s = ±sCDm(2), the corresponding yield stresses can be found in (3). Tak-
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ing advantage of the above loading situations in (43) the parameters ay
1; ay

2; dy
1 and dy

2 are found in accordance
with
Fig. 8.
points.
ay
1 ¼

1

2

1

sMD;tsMD;c
þ 1

sCD;tsCD;c

� �
; dy

1 ¼
1

sMD;t
� 1

sMD;c

ay
2 ¼

1

2

1

sMD;tsMD;c
� 1

sCD;tsCD;c

� �
; dy

2 ¼
1

sCD;t
� 1

sCD;c

ð44Þ
As evident from (43), additional loading situations need to be considered in order to calibrate the remaining
part of the yield function, i.e. cy

1 and by
3. Considering biaxial loading, s = sb(m(1) + m(2)) it follows from (43)

that
cy
1 ¼

1

s2
b

� ðd
y
1 þ dy

2Þ
sb

ð45Þ
The remaining calibration of initial yielding involve a shear loading condition. Unfortunately, a pure shear
test in the MD–CD plane is not an easy task to perform due to the small thickness of the paper. Instead, uni-
axial test in 45� to the MD direction is used. For this loading situation s = s45(e1 � e1), where
e1 ¼ ðvð1Þ þ vð2ÞÞ=

ffiffiffi
2
p

and the last parameter can be found as
by
3 ¼ �

2

s2
45

þ dy
1 þ dy

2

s45

þ cy
1

2
ð46Þ
It should be emphasized that the 45� loading situation needs to be treated with care since rotation of the pre-
ferred directions might take place. Taking advantage of the data from (3), (44)–(46) gives the following initial
values for the material parameters in the yield function
ay
1 ¼ 0:034

1

MPa2
; ay

2 ¼ �0:022
1

MPa2
; dy

1 ¼ �0:060
1

MPa

dy
2 ¼ �0:17

1

MPa
; by

3 ¼ �0:039
1

MPa2
; cy

1 ¼ 0:053
1

MPa2
The shape of the initial yield function is shown in Fig. 8 for the biaxial loading situation. The remaining part is
to calibrate the model during plastic loading. Here, two parts are involved; the calibration of the hardening
function and the calibration of the potential function. The calibration of the potential function will be ad-
dressed first, since the result from this calibration will also influence upon the calibration of the hardening.
From (29a) it follows that the plastic part of the rate of deformation tensor is given by the gradient of a po-
Initial shape of the yield surface. The solid line represent the initial yield function given by (43) and stars represent the calibration
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tential function. The potential function guiding the plastic flow direction is based on the yield function and
chosen as
g ¼ ðap
1 þ ap

2 þ bp
3ÞI2

1 þ ða
p
1 � ap

2 þ bp
3ÞI2

2 � bp
3I2

3 þ bp
3ðJ 3 � J 1 � J 2Þ þ ðcp

1 � 2ap
1ÞI1I2 þ dp

1I1 þ dp
2I2 � grðRbÞ

ð47Þ
where ap
i ; bp

i , cp
i and dp

i are material parameters that have to be determined from experimental data. The func-
tion gr will be discussed in the sequel.

As noted in (29) the evolution equations are consistent with the thermodynamic framework if g is a convex
function. Hence one needs to establish the restrictions put on the parameters in (47). For this purpose, (47) is
written in a coordinate system that is aligned to the material directions. This will result in the following form
using matrix representation
g ¼ �sT

ap
1 þ ap

2 ðcp
1 � 2ap

1Þ=2 0

ðcp
1 � 2ap

1Þ=2 ap
1 � ap

2 0

0 0 �2bp
3

2
64

3
75�sþ ½dp

1 dp
2 0 ��s� grðRbÞ ¼ �sTA�sþ dp�s� grðRbÞ ð48Þ
where �s ¼ ½s11 s22 s12 �T. For the function to be convex in stresses, all eigenvalues to A must be positive, i.e.
it follows that
bp
3 < 0; ap

1 >
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ap

1 � cp
1Þ

2 þ 4ðap
2Þ

2
q

must be fulfilled. These constrains must be checked when the parameters are found from the calibration
procedure.

Consider next the uniaxial tension tests in MD and CD and the components given in the bases of the mate-
rial directions. It follows that the plastic part of the rate of deformation can be computed in matrix format as
½Dp� ¼ k

2ðap
1 þ ap

2ÞsMD þ dp
1 0 0

0 ðcp
1 � 2ap

1ÞsMD 0

0 0 0

2
64

3
75 ð49Þ
when loaded in MD and for uniaxial loading in CD results in
½Dp� ¼ k

ðcp
1 � 2ap

1ÞsCD 0 0

0 2ðap
1 � ap

2ÞsCD þ dp
2 0

0 0 0

2
64

3
75 ð50Þ
This allows the following important relations to be established:
Dp
11

Dp
22

¼ 2ðap
1 þ ap

2Þ
cp

1 � 2ap
1

þ dp
1

ðcp
1 � 2ap

1ÞsMD

¼ H 1

Dp
22

Dp
11

¼ 2ðap
1 � ap

2Þ
cp

1 � 2ap
1

þ dp
2

ðcp
1 � 2ap

1ÞsCD

¼ H 2

ð51Þ
where H1 and H2 are given from experimental tests and are referred to as the axial to lateral plastic strain
ratios when loaded in MD and CD, respectively. In general, H1 and H2 might depend upon the loading. How-
ever, a glance of the experimental results shown in Fig. 4, indicate that H1 and H2 can be taken as constants
for uniaxial loading. Similar experimental findings was found by Stenberg et al. (2001a). As a result, the mate-
rial parameters dp

1 and dp
2 related to the linear terms in (47) must vanish. Since the potential function is cali-

brated using axial/lateral plastic ratio, one possible way to calibrate the model is to choose cp
1 ¼ 1:0. It is

possible in this way to calibrate the remaining two constants ap
1 and ap

2 to the experimental values H1 = �3
and H2 = �9.1. The non-associated format is revealed by comparing the ratio ap

1=ap
2 to ay

1=ay
2. Furthermore,

since the remaining parameter, bp
3 is related to shear deformation, and noting the difficulty to preform exper-

iments in shear, this parameter is estimated. Taking advantage of the ratio by
3=ay

1 which indicate that magni-
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tude of bp
3 should be slightly larger than ap

1, it will here be assumed that bp
3 ¼ �1:0. Using the experimental data

discussed earlier, the following values of the material parameters was found
ap
1 ¼ 0:60

1

MPa2
; ap

2 ¼ �0:31
1

MPa2

cp
1 ¼ 1:0

1

MPa2
; bp

3 ¼ �1:0
1

MPa2

dp
1 ¼ 0:0

1

MPa
; dp

2 ¼ 0:0
1

MPa
The final part of the calibration process concerns the strain hardening of the model. Let us therefore, finally,
consider the second term in (31) which is related to the mechanical dissipation. This part becomes important
when considering, eg. thermodynamically coupled problems where self heating is of major importance, cf.
Håkansson et al. (2005). The thermodynamic format for non-associated plasticity was considered in Risti-
nmaa et al. (2007) where also the format of Helmholtz’ free energy is discussed for isotropic hardening. In this
investigation is was conclude that the thermodynamical force is not uniquely defined by only considering the
stress–strain response, additional experimental tests were required, such as measure of the stored energy of
cold work. As these data are not available and that a thermodynamically coupling is not considered here it
will here for simplicity be assumed that gr = 0. This also indicates that wp does not have to be considered.

In Ristinmaa et al. (2007) it was also shown that, as indicated previously, the non-associated format allows
the yield function to depend on a very general set of variables. Based on these observations it will here be
assumed that the yield function depends on the effective plastic strain, where the evolution of this quantity
is introduced according to
_�p
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp : Dp
p

ð52Þ
The hardening functions are then chosen here as
sb ¼ sb
0 þ kb

1 tanhðkb
2�

p
effÞ þ kb

3�
p
eff ð53Þ
where b = 1,2, . . . , 6 are referring to the functions for sMD,t, sMD,c, sCD,t, sCD,c, s45 and sb, respectively, and
kðbÞ1 , kðbÞ2 and kðbÞ3 are constants. Noted that sðbÞ0 corresponds to the initial yield stresses found in (3). To calibrate
the hardening behavior, consider first tension loading in MD. From (49) it follows that
Dp
11 ¼ 2kðap

1 þ ap
2ÞsMD ¼ km1sMD ð54Þ
For the loading situation considered the effective plastic strain rate can be computed from (52) and using (49)
as
_�p
eff ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðap

1 þ ap
2Þ

2 þ ðcp
1 � 2ap

1Þ
2

q
jsMDj ¼ km2jsMDj ð55Þ
Since no rotation of the principal axes take place during the loading it follows that F = V, where V is the left
stretch tensor in the same manner it is concluded that Fe = Ve and Fp = Vp when the intermediate configura-
tion is selected as an isoclinic configuration. From (54) and (55) it then follows that the plastic multiplier can
be eliminated and from time integration it follows that
m1

m2

�p
eff ¼ lnðV p

11Þ ð56Þ
Finally it is noted that the plastic part of the right stretch tensor has to be related to the total stretch tensor
since this quantity can be obtained from experimental tests. This can be done by using the definition of the
multiplicative split of the deformation gradient. This result in
m1

m2

�p
eff ¼ lnðV 11Þ � lnðV e

11Þ ð57Þ
The elastic part of the left stretch tensor can be establish since the Kirchhoff stress is related to elastic defor-
mation. Thus (53) can be curve fitted to the experimental uniaxial tests. The calibration process for the other
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loading directions follows in a similar manner as above. For the biaxial loading situation a choice of calibra-
tion curves has to be made. Here, the CD curve is selected.

Using the experimental data, the following material parameters was found
kb
a (MPa)
Fig. 9. Comparison of experimental d
in all figures. (a) Uniaxial tension tes
b = 1
ata and the response by the mod
t. (b) Axial–lateral strain. (c) Bia
3

el. Solid line represent experim
xial test using FMD/FCD = 1. (
5

ents and dots represent simula
d) Compression test in ZD.
6

a = 1
 9.1
 3.2
 4.1
 4.0

a = 3
 997
 190
 351
 214
b
ka
 b = 1
 3
 5
 6
a = 2
 573
 366
 298
 477
Note that the hardening parameters related to compression are not listed since it is assumed that the response
in compression is ideal plastic.

3. Numerical examples

Some of the capabilities of the proposed model is demonstrated in this section. The model has been imple-
mented in the finite element code ABAQUS Explicit using the VUMAT interface. The numerical implemen-
tation follows within the lines discussed in Harrysson et al. (2007). The calibration procedure of the model is
investigated by simulating the experimental setup of the different tests. The results are displayed in Fig. 9. It is
clear that the response in the uniaxial tension tests are well captured by the model. Furthermore, the axial–
lateral strain is also well captured as evident from Fig. 9(b). When calibration the model to biaxial tension
tests, one particular direction has to be chosen in the calibration. As mentioned earlier, here the model is cal-
ibrated to CD. Finally, a compression test in ZD is utilized to calibrate the bulk parameter of the elastic
tions



Fig. 10. Simulation of biaxial tension test using (a) FMD/FCD = 2, (b) FMD/FCD = 0.5 and (c) simulation of MD–CD strain under different
biaxial loading situations. Solid line represent experiments and dots represent simulations in all figures.
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model. As can be seen in Fig. 9(d), the response is captured well by the model. In addition, simulations of the
biaxial tension tests using different loading ratios were carried out. In Fig. 10 additional biaxial tension tests
are considered. The two biaxial loading ratios are given by FMD/FCD = 2 and FMD/FCD = 0.5. Evidently the
model does capture the response quite well. To evaluate the model further, the strain components in MD and
CD are plotted for the different biaxial load ratios. The results can be seen in Fig. 10(c) which indicates that
the strain response to be captured rather well, at least for small strains. Note that for the strain in MD the
scale in Fig. 10(c) is exaggerated.
3.1. Creasing of a corrugated board panel

This example is taken from an industrial application involving the creasing of a corrugated board panel.
Creases are introduced to achieve a local reduction of the bending stiffness and thus simplify the folding oper-
ation and make the corners more clearly distinguish. The creasing of a corrugated board panel is done by let-
ting a punch deform the liner and fluting. A certain force needs to be applied to the punch to be able to
perform this crease. In this investigation, a CD crease operation is studied of a corrugated board geometry
where the material directions of the paper material are consistent with Fig. 1. The geometry is shown in
Fig. 11 where the following geometric data, taken from Nordstrand and Carlsson (1997), is adopted
k ¼ 7:26 mm; a ¼ 1 mm; tl1 ¼ 0:211 mm

tl2 ¼ 0:169 mm; tf ¼ 0:185 mm; tb ¼ 3:91 mm
Furthermore, the fluting is assumed to be sinusoidal shaped and the same material properties is assigned to the
whole model. During the creasing operation the punch is moved down into the corrugated board panel. To



Fig. 11. Geometry of a period of a single wall corrugated board panel.

Fig. 12. The overall geometry of a corrugated board panel, together with a punch and rigid holders.

3350 A. Harrysson, M. Ristinmaa / International Journal of Solids and Structures 45 (2008) 3334–3352
prevent the corrugated board panel to fold during the creasing operation, two rigid holders are placed above
the top liner. Here, a board consisting of four wavelength was used, see Fig. 12. The total simulation time was
0.1 s and the punch, 0.5 mm in radius, was moved a distance of dpunch = 3.20 mm down into the corrugated
board panel. Four quadrilateral elements, ABAQUS element type CPE4R, in the thickness direction was used
and the total number of elements was 3968. Due to symmetry, only half the structure was modeled. The local
behavior of the board during the creasing operation can be seen in Fig. 13. Here the effective plastic strain is
plotted to indicate what part on the material undergoes plastic deformation. As expected, the most of the plas-
tic deformation will take place in the fluting. Furthermore, the removal of the punch after the creasing oper-
ation results in permanent deformation of the corrugated board panel. The resulting force on the punch
during the creasing operation is shown in Fig. 14, where the plateau around 1 mm is due to forming of yield
Fig. 13. Local deformation of corrugated board during creasing. Dark areas indicates regions where plastic strain exists. The total
duration of the creasing process is 0.1 s and the vertical displacement of the punch, dpunch, at the different stage are shown in the figure.
Note that in the last stage, the punch has been completely removed.



Fig. 14. Force action on the punch during the creasing process. The positions indicated by (a) to (e) corresponds to the deformation
patterns in Fig. 13.
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hinges in the fluting, cf. also Fig. 13(b). The zero force at the beginning of the loading curve is due to the initial
gap between the punch and the board.

4. Conclusion

A large strain orthotropic elasto-plastic model was presented, applicable to corrugated board. It was
assumed that the elastic part of the Helmholtz free energy function is described by the elastic part of Finger
deformation tensor and the director vectors which represent the preferred directions of the material in the cur-
rent configuration. To model the anisotropic plastic properties of the material, an yield surface inspired by the
Tsai–Wu failure criterion was introduced. This to allow for different yield stresses in the different material
directions, but also in tension and compression. Moreover, distortion hardening was utilized to consider dif-
ferent hardening behavior in different material directions. The calibration of the model was also studied in
detail. It was found that the model could not be properly calibrated by use of uniaxial tests alone. Thus, biax-
ial tension tests where preformed using a force controlled setting. The model proposed was implemented into
the commercial finite element code ABAQUS/Explicit using the VUMAT interface. To verify the calibration
of the model, single element tests were performed for uniaxial loading situations and biaxial loading situa-
tions. It was concluded that the calibration procedure worked satisfactorily. Furthermore, simulation of biax-
ial tests where performed using different loading ratios and the comparison with experimental data show good
agreement. A simulation of an industrial application was also preformed were a creasing operation of a cor-
rugated board panel was studied. The result showed considerable plastic deformation of the fluting during the
creasing operation. This is also indicated by the remaining deformation of the corrugated board panel, after
the removal of the punch.
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Mäkelä, P., Östlund, S., 2003. Orthotropic elastic–plastic material model for paper materials. International Journal of Solids and

Structures 40 (21), 5599–5620.
McKee, R., Gander, J., Wachuta, J., 1963. Compression strength formula for corrugated boxes. Paperboard Packaging 40, 149–159.
Menzel, A., Steinmann, P., 2003. On the spatial formulation of anisotropic multiplicative elasto-plasticity. Computer Methods in Applied

Mechanics and Engineering 192 (31–32), 3431–3470.
Nordstrand, T., Carlsson, L., 1997. Evaluation of transverse shear stiffness of structural core sandwich plates. Composite Structures (37),

145–153.
Nordstrand, T., Blackenfeldt, M., Renman, M., 2003. A strength prediction method of corrugated board containers. Technical Report

TVSM-3065, Div. of Structural Mechanics, Lund University, Sweden.
Nyman, U., 2000. Material and structural failure criterion of corrugated board facings. Composite Structures 50, 79–83.
Patel, P., Nordstrand, T., Carlsson, L., 1997. Local buckling and collapse of corrugated board under biaxial stress. Composite Structures

(39), 93–110.
Ristinmaa, M., Wallin, M., Ottosen, N., 2007. Thermodynamic format and heat generation of isotropic hardening plasticity. Acta

Mechanica (194), 103–121.
Sawyer, J., Jones, R., McKinlay, P., 1996. An experimental description of the response of paper. Composite Structures (36), 101–111.
Seth, R.S., Page, D.H., 1983. The stress–strain curve of paper. The Role of Fundamental Research in Papermaking – Transactions of the

Seventh Fundamental Research Symposium. Mechanical Engineering Publications, Ltd., Cambridge, London, UK, p. 421.
Shih, C.F., Lee, D., 1978. Further developments in anisotropic plasticity. Transactions of the ASME 100, 294–302.
Spencer, A., 1987. Theory of invariants. International Center for Mechanical Sciences, no 282. Springer Verlag, Udine..
Steenberg, B., 1949. Behavior of paper under stress and strain. Technical Section of the Canadian Pulp & Paper Association..
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