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a b s t r a c t

In this work, we provide a necessary and sufficient condition for the existence of a pure-
strategy Nash equilibrium for non-cooperative games in topological spaces.
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1. Introduction

In mathematical economics, the main problem in investigating various kinds of economic models is showing the
existence of an equilibrium, and already, a number of equilibrium existence results in economic models have been
investigated by many authors (e.g., see, [1–7]).
The purpose of this work is to present a theorem that completely characterizes the existence of a pure-strategy Nash

equilibrium for non-cooperative games in topological spaces.Wedo so by introducing theC-quasiconcavity conditionwhich
unifies the diagonal transfer quasiconcavity (weaker than the quasiconcavity) due to Baye et al. [5] and the C-concavity
(weaker than concavity) due to Kim and Lee [6].
For the remainder of this section we give some definitions and notations.
Throughout this work, all topological spaces are assumed to be Hausdorff.
Let A be a subset of a topological space X . We denote by clXA the closure of A in X . Let∆n be the standard n-dimensional

simplex in Rn+1. If A is a subset of a vector space, we denote by coA the convex hull of A.
Let I be a finite set of players. A non-cooperative game is a family of ordered tuples Γ = (Xi, ui) where the non-empty

set Xi is the ith player’s pure strategy space, and ui : X =
∏
i∈I Xi → R is the ith player’s payoff function. The set X is the

Cartesian product of the individual strategy spaces. Denote by X−i the product
∏
i∈I\{i} Xi. Denote by xi and x−i an element

of Xi and X−i, respectively. Denote an arbitrary point of X by x = (xi, x−i), with xi in Xi and x−i in X−i. Moreover, (xi, z−i)
denotes the point y in X with yi = xi and y−i = z−i. A point x∗ ∈ X is said to be a pure-strategy Nash equilibrium for Γ if
ui(x∗i , x

∗

−i) ≥ ui(xi, x
∗

−i) for all xi ∈ Xi and for all i ∈ I .

2. Characterization of a pure-strategy Nash equilibrium

Definition 1. Let X be a topological space, and A, Y ⊆ X . A function f : X × Y → R is called C-quasiconcave
on A if, for any finite subset {x0, x1, . . . , xn} of A, there exists a continuous mapping φn : ∆n → Y such that
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f (φn(λ0, λ1, . . . , λn), φn(λ0, λ1, . . . , λn)) ≥ min{f (xi, φn(λ0, λ1, . . . , λn)) : i ∈ J} for all (λ0, λ1, . . . , λn) ∈ ∆n, where
J = {i ∈ {0, 1, . . . , n} : λi 6= 0}.

For the C-quasiconcavity, we have the following two propositions that show that the C-quasiconcavity unifies the
diagonal transfer quasiconcavity (weaker than the quasiconcavity) due to Baye et al. [5] and the C-concavity (weaker than
concavity) due to Kim and Lee [6].

Proposition 1. Let X be a convex subset of a topological vector space. Let us have ∅ 6= A ⊆ X, C a non-empty convex subset of
X, and f : X × C → R a function. If f is diagonally transfer quasiconcave on A,1 then f is C-quasiconcave on A.

Proof. Let {x0, x1, . . . , xn} be a finite subset of A. Since f is diagonally transfer quasiconcave on A, there exists a finite
subset {y0, y1, . . . , yn} of C such that for any subset {yk0 , yk1 , . . . , yks} ⊆ {y0, y1, . . . , yn}, 0 ≤ s ≤ n, and any y∗ ∈
co{yk0 , yk1 , . . . , yks}, we have min0≤l≤s f (xkl , y∗) ≤ f (y∗, y∗). Now we define the mapping φn : ∆n → C as follows:

φn(λ0, λ1, . . . , λn) = λ0y0 + λ1y1 + · · · + λnyn,

for all (λ0, λ1, . . . , λn) ∈ ∆n.
Obviously, φn is continuous. Let (λ0, λ1, . . . , λn) ∈ ∆n and J = {i ∈ {0, 1, . . . , n} : λi 6= 0}. Then∑

j∈J

λjyj ∈ co{yj : j ∈ J} and φn(λ0, λ1, . . . , λn) =
n∑
i=0

λiyi =
∑
j∈J

λjyj.

Consequently,

f (φn(λ0, λ1, . . . , λn), φn(λ0, λ1, . . . , λn)) = f

(∑
j∈J

λjyj,
∑
j∈J

λjyj
)

≥ min

{
f

(
xj,
∑
j∈J

λjyj
)
: j ∈ J

}
= min{f (xj, φn(λ0, λ1, . . . , λn)) : j ∈ J}.

This completes the proof. �

Proposition 2. Let X be a topological space, and f : X × X → R a function. If f is C- concave on X,2 then f is C-quasiconcave
on X.

Proof. Let {x0, x1, . . . , xn} be a finite subset of X . Since f isC-concave on X , there exists a continuousmapping φn : ∆n → X
such that

f (φn(λ0, λ1, . . . , λn), y) ≥ λ0f (x0, y)+ λ1fU(x1, y)+ · · · + λnf (xn, y),

for all (λ0, λ1, . . . , λn) ∈ ∆n and all y ∈ X . In particular,

f (φn(λ0, λ1, . . . , λn), φn(λ0, λ1, . . . , λn)) ≥
n∑
i=0

λif (xi, φn(λ0, λ1, . . . , λn)).

Let J = {i ∈ {0, 1, . . . , n} : λi 6= 0}. Then

f (φn(λ0, λ1, . . . , λn), φn(λ0, λ1, . . . , λn)) ≥
n∑
i=0

λif (xi, φn(λ0, λ1, . . . , λn))

=

∑
j∈J

λjf (xj, φn(λ0, λ1, . . . , λn))

≥ min{f (xj, φn(λ0, λ1, . . . , λn)) : j ∈ J}
∑
j∈J

λj

= min{f (xj, φn(λ0, λ1, . . . , λn)) : j ∈ J}.

This completes the proof. �

1 Diagonal transfer quasiconcavity, due to Baye et al. [5], requires that for any finite subset {x0, x1, . . . , xn} of A, there exists a finite subset {y0, y1, . . . , yn}
of C such that for any subset {yk0 , yk1 , . . . , yks } ⊆ {y0, y1, . . . , yn}, 0 ≤ s ≤ n, and any y∗ ∈ co{yk0 , yk1 , . . . , yks }, one has min0≤l≤s f (xkl , y∗) ≤ f (y∗, y∗).
This is a weaker requirement than quasiconcavity and the diagonal quasiconcavity due to Zhou and Chen [11].
2 C-concavity, due to Kim and Lee [6], requires that for any finite subset {x0, x1, . . . , xn} of X , there exists a continuous mapping φn : ∆n → X such that
f (φn(λ0, λ1, . . . , λn), y) ≥

∑n
i=0 λif (x

i, y) for all (λ0, λ1, . . . , λn) ∈ ∆n and all y ∈ X . This is a weaker requirement than concavity and the CF-concavity
due to Forgö [9].



J.-C. Hou / Applied Mathematics Letters 22 (2009) 689–692 691

Let Γ = (Xi, ui) be a non-cooperative game. Following the method introduced by Nikaido and Isoda [8], the aggregate
function U : X × X is given by

U(x, y) =
∑
i∈I

ui(xi, y−i),

for any x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ X =
∏n
i=1 Xi.

Then we shall need the following:

Lemma 1 (See Proposition 1 of [7]). Let Γ = (Xi, ui) be a non-cooperative game, and x̄ ∈ X. Then x̄ is a pure-strategy Nash
equilibrium of Γ if and only if U(x̄, x̄) ≥ U(x, x̄) for all x ∈ X.

The following theorem states our main result.

Theorem 1. Let Γ be a non-cooperative game, and U : X × X → R be the aggregate function. Then Γ has a pure-strategy Nash
equilibrium if and only if there exists a non-empty compact subset C of X such that the following hold:
(i) C has the fixed point property3;
(ii) the restricted mapping U|X×C : X × C → R is diagonally transfer continuous on C4 and is C- quasiconcave on X.

Proof. Necessity. Suppose that the game Γ has a pure-strategy Nash equilibrium x∗ ∈ X . Let C = {x∗}. Obviously, C is
compact, and (i) is satisfied. The restricted mapping U|X×C clearly is diagonally transfer continuous on C . We want to show
that U|X×C is C-quasiconcave. Let {x0, x1, . . . , xn} be a finite subset of X . Now we define the mapping φn : ∆n → C by

φn(λ0, λ1, . . . , λn) = x∗,

for all (λ0, λ1, . . . , λn) ∈ ∆n. Obviously, φn is continuous. Let (λ0, λ1, . . . , λn) ∈ ∆n. By Lemma 1, we have

U(φn(λ0, λ1, . . . , λn), φn(λ0, λ1, . . . , λn)) = U(x∗, x∗) ≥ U(x, x∗),

for any x ∈ X . In particular, if we put J = {i ∈ {0, 1, . . . , n} : λi 6= 0}, then

U(φn(λ0, λ1, . . . , λn), φn(λ0, λ1, . . . , λn)) = U(x∗, x∗) ≥ U(xi, x∗)

for all i ∈ J , and thus

U(φn(λ0, λ1, . . . , λn), φn(λ0, λ1, . . . , λn)) ≥ min{U(xi, φn(λ0, λ1, . . . , λn)) : i ∈ J}.

Sufficiency. Let C be a compact subset of X satisfying (i) and (ii). We show that Γ has a pure-strategy Nash equilibrium.
For typographical reasons, we use H to denote the mapping U|X×C . For each x ∈ X , let

G(x) = {y ∈ C : H(x, y) ≤ H(y, y)}.

We first prove ∩x∈X clCG(x) = ∩x∈X G(x). It is clear that ∩x∈X clCG(x) ⊇ ∩x∈X G(x). So we only need to show ∩x∈X clCG(x) ⊆
∩x∈X G(x). Let y ∈ (C \ ∩x∈X G(x)). Then there is an x ∈ X such that y 6∈ G(x), i.e., H(x, y) > H(y, y). By the diagonal transfer
continuity ofH , there exist some x′ ∈ X and some neighbourhoodN(y) of y in C such thatH(x′, z) > H(z, z) for all z ∈ N(y).
Thus y 6∈ clCG(x′).
Now we show that the family {clCG(x) : x ∈ X} has the finite intersection property.
Suppose, by way of contradiction, that {clCG(x) : x ∈ X} does not have the finite intersection property, i.e., there exists

some finite subset {x0, x1, . . . , xn} of X such that ∩ni=0 clCG(x
i) = ∅. Then ∪ni=0(C \ clCG(x

i)) = C . Since C is compact, there
is a partition of unity {αi : i = 0, 1, . . . , n} subordinate to {C \ clCG(xi) : i = 0, 1, . . . , n}, i.e., for each i = 0, 1, . . . , n, there
exists a continuous function αi : C → [0, 1] such that (1) α−1i (0, 1] ⊆ C \ clCG(x

i); (2) for each x ∈ C ,
∑n
i=0 αi(x) = 1.

Since H is C-quasiconcave in X , there exists a continuous mapping φn : ∆n → C such that

H(φn(λ0, λ1, . . . , λn), φn(λ0, λ1, . . . , λn)) ≥ min{H(xj, φn(λ0, λ1, . . . , λn)) : j ∈ J}, (3)

for all (λ0, λ1, . . . , λn) ∈ ∆n, where J = {i ∈ {0, 1, . . . , n} : λi 6= 0}.
Now consider the map ψ : C → C , defined by

ψ(x) = φn(α0(x), α1(x), . . . , αn(x)), for each x ∈ C .

Since φn and all αi are continuous, ψ also is continuous. By the condition (i), there exists an element x̄ of C such that
ψ(x̄) = x̄, and thus φn(α0(x̄), α1(x̄), . . . , αn(x̄)) = x̄.

3 The fixed point property, due to Granas and Dugundji [10], requires that every continuous mapping f : C → C has a fixed point.
4 Diagonal transfer continuity, due to Baye et al. [5], requires that for every (x, y) ∈ X × C , U(x, y) > U(y, y) implies that there exist some point x′ ∈ X
and some neighbourhood N(y) of y in C such that U(x′, z) > U(z, z) for all z ∈ N(y). This is a weaker requirement than continuity in X × C .
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Let J = {i ∈ {0, 1, . . . , n} : αi(x̄) 6= 0}. Then J 6= ∅ by (2). By (1), for any j ∈ J , we have x̄ ∈ α−1j (0, 1] ⊆ C \ clCG(x
j), and

therefore, x̄ 6∈ G(xj), and thus H(xj, x̄) > H(x̄, x̄). Therefore,

min{H(xj, x̄) : j ∈ J} > H(x̄, x̄).

Combining this fact and (3), we have

H(x̄, x̄) = H(ψ(x̄), ψ(x̄))
= H(φn(α0(x̄), α1(x̄), . . . , αn(x̄)), φn(α0(x̄), α1(x̄), . . . , αn(x̄)))
≥ min{H(xj, φn(α0(x̄), α1(x̄), . . . , αn(x̄))) : j ∈ J}
= min{H(xj, x̄) : j ∈ J} > H(x̄, x̄).

This is a contradiction. Since C is compact, ∩{clCG(x) : x ∈ X} 6= ∅. Pick out an element x∗ ∈ ∩{clCG(x) : x ∈ X}. Then by
the previous arguments, we have x∗ ∈ ∩{G(x) : x ∈ X}. It is easy to see that x∗ is a pure-strategy Nash equilibrium of Γ .

�
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