Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/aml)

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Characterization of the existence of a pure-strategy Nash equilibrium α

Ji-Cheng Hou

Department of Mathematics, Beijing Information Technology Institute, Beijing 100101, PR China

a r t i c l e i n f o

a b s t r a c t

Article history: Received 1 February 2008 Received in revised form 29 June 2008 Accepted 26 August 2008

Keywords: Pure strategy Nash equilibrium Non-cooperative game C-quasiconcavity Diagonal transfer continuity In this work, we provide a necessary and sufficient condition for the existence of a purestrategy Nash equilibrium for non-cooperative games in topological spaces. © 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In mathematical economics, the main problem in investigating various kinds of economic models is showing the existence of an equilibrium, and already, a number of equilibrium existence results in economic models have been investigated by many authors (e.g., see, [\[1–7\]](#page-3-0)).

The purpose of this work is to present a theorem that completely characterizes the existence of a pure-strategy Nash equilibrium for non-cooperative games in topological spaces. We do so by introducing the C -quasiconcavity condition which unifies the diagonal transfer quasiconcavity (weaker than the quasiconcavity) due to Baye et al. [\[5\]](#page-3-1) and the C -concavity (weaker than concavity) due to Kim and Lee [\[6\]](#page-3-2).

For the remainder of this section we give some definitions and notations.

Throughout this work, all topological spaces are assumed to be Hausdorff.

Let *A* be a subset of a topological space *X*. We denote by cl_X*A* the closure of *A* in *X*. Let Δ_n be the standard *n*-dimensional simplex in \mathbb{R}^{n+1} . If *A* is a subset of a vector space, we denote by co*A* the convex hull of *A*.

Let *I* be a finite set of players. A *non-cooperative game* is a family of ordered tuples $\Gamma = (X_i, u_i)$ where the non-empty set X_i is the *i*th player's pure strategy space, and $u_i: X = \prod_{i \in I} X_i \to \mathbb{R}$ is the *i*th player's payoff function. The set *X* is the Cartesian product of the individual strategy spaces. Denote by X_{-i} the product $\prod_{i\in I\setminus\{i\}}X_i$. Denote by x_i and x_{-i} an element of X_i and X_{-i} , respectively. Denote an arbitrary point of X by $x = (x_i, x_{-i})$, with x_i in X_i and x_{-i} in X_{-i} . Moreover, (x_i, z_{-i}) denotes the point *y* in *X* with $y_i = x_i$ and $y_{-i} = z_{-i}$. A point $x^* \in X$ is said to be a *pure-strategy Nash equilibrium* for Γ if $u_i(x_i^*, x_{-i}^*) \geq u_i(x_i, x_{-i}^*)$ for all $x_i \in X_i$ and for all $i \in I$.

2. Characterization of a pure-strategy Nash equilibrium

Definition 1. Let *X* be a topological space, and *A*, $Y \subseteq X$. A function $f : X \times Y \rightarrow \mathbb{R}$ is called C-quasiconcave on *A* if, for any finite subset $\{x^0, x^1, \ldots, x^n\}$ of *A*, there exists a continuous mapping ϕ_n : Δ_n \to *Y* such that

 $\hat{\mathbf{x}}$ This project was supported by the National Natural Science Foundation of China (10571081) and the Natural Science Foundation of Beijing Education Department (KM200710772007).

E-mail address: [hjc@biti.edu.cn.](mailto:hjc@biti.edu.cn)

^{0893-9659/\$ –} see front matter © 2008 Elsevier Ltd. All rights reserved. [doi:10.1016/j.aml.2008.08.005](http://dx.doi.org/10.1016/j.aml.2008.08.005)

 $f(\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n),\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n))\geq \min\{f(x^i,\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n))\,:\,i\in J\}$ for all $(\lambda_0,\lambda_1,\ldots,\lambda_n)\,\in\,\Delta_n$, where $J = \{i \in \{0, 1, \ldots, n\} : \lambda_i \neq 0\}.$

For the C-quasiconcavity, we have the following two propositions that show that the C-quasiconcavity unifies the diagonal transfer quasiconcavity (weaker than the quasiconcavity) due to Baye et al. [\[5\]](#page-3-1) and the C-concavity (weaker than concavity) due to Kim and Lee [\[6\]](#page-3-2).

Proposition 1. Let X be a convex subset of a topological vector space. Let us have $\emptyset \neq A \subseteq X$, C a non-empty convex subset of *X*, and $f: X \times C \to \mathbb{R}$ a function. If f is diagonally transfer quasiconcave on A, 1 1 then f is C -quasiconcave on A.

Proof. Let $\{x^0, x^1, \ldots, x^n\}$ be a finite subset of *A*. Since *f* is diagonally transfer quasiconcave on *A*, there exists a finite subset $\{y^0, y^1, \ldots, y^n\}$ of C such that for any subset $\{y^{k_0}, y^{k_1}, \ldots, y^{k_s}\} \subseteq \{y^0, y^1, \ldots, y^n\}, 0 \le s \le n$, and any $y^* \in$ $\text{co}\{y^{k_0}, y^{k_1}, \ldots, y^{k_s}\}$, we have $\min_{0 \leq l \leq s} f(x^{k_l}, y^*) \leq f(y^*, y^*)$. Now we define the mapping $\phi_n: \Delta_n \to C$ as follows:

 $\phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n) = \lambda_0 y_0 + \lambda_1 y_1 + \cdots + \lambda_n y_n$

for all $(\lambda_0, \lambda_1, \ldots, \lambda_n) \in \Delta_n$.

Obviously, ϕ_n is continuous. Let $(\lambda_0, \lambda_1, \ldots, \lambda_n) \in \Delta_n$ and $J = \{i \in \{0, 1, \ldots, n\} : \lambda_i \neq 0\}$. Then

$$
\sum_{j\in J}\lambda_jy^j\in\mathrm{co}\{y^j:j\in J\}\text{ and }\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n)=\sum_{i=0}^n\lambda_iy^i=\sum_{j\in J}\lambda_jy^j.
$$

Consequently,

$$
f(\phi_n(\lambda_0, \lambda_1, \dots, \lambda_n), \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) = f\left(\sum_{j \in J} \lambda_j y^j, \sum_{j \in J} \lambda_j y^j\right)
$$

$$
\geq \min \left\{ f\left(x^j, \sum_{j \in J} \lambda_j y^j\right) : j \in J \right\}
$$

$$
= \min \{ f(x^j, \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) : j \in J \}.
$$

This completes the proof. \square

Proposition [2](#page-1-1). Let X be a topological space, and $f: X \times X \to \mathbb{R}$ a function. If f is C-concave on X , 2 then f is C-quasiconcave *on X.*

Proof. Let { x^0, x^1, \ldots, x^n } be a finite subset of *X*. Since f is C -concave on X , there exists a continuous mapping $\phi_n:\Delta_n\to X$ such that

$$
f(\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n),y)\geq \lambda_0 f(x^0,y)+\lambda_1 fU(x^1,y)+\cdots+\lambda_n f(x^n,y),
$$

for all $(\lambda_0, \lambda_1, \ldots, \lambda_n) \in \Delta_n$ and all $y \in X$. In particular,

$$
f(\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n),\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n))\geq \sum_{i=0}^n\lambda_if(x^i,\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n)).
$$

Let $J = \{i \in \{0, 1, ..., n\} : \lambda_i \neq 0\}$. Then

$$
f(\phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n), \phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n)) \geq \sum_{i=0}^n \lambda_i f(x^i, \phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n))
$$

=
$$
\sum_{j \in J} \lambda_j f(x^j, \phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n))
$$

$$
\geq \min \{ f(x^j, \phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n)) : j \in J \} \sum_{j \in J} \lambda_j
$$

=
$$
\min \{ f(x^j, \phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n)) : j \in J \}.
$$

This completes the proof. \square

¹ Diagonal transfer quasiconcavity, due to Baye et al. [\[5\]](#page-3-1), requires that for any finite subset $\{x^0, x^1, \ldots, x^n\}$ of A, there exists a finite subset $\{y^0, y^1, \ldots, y^n\}$ of C such that for any subset $\{y^{k_0}, y^{k_1}, \ldots, y^{k_s}\} \subseteq \{y^0, y^1, \ldots, y^n\}$, $0 \le s \le n$, and any $y^* \in \mathfrak{col}y^{k_0}, y^{k_1}, \ldots, y^{k_s}\}$, one has $\min_{0 \le l \le s} f(x^{k_l}, y^*) \le f(y^*, y^*)$. This is a weaker requirement than quasiconcavity and the diagonal quasiconcavity due to Zhou and Chen [\[11\]](#page-3-3).

 2 C-concavity, due to Kim and Lee [\[6\]](#page-3-2), requires that for any finite subset {x⁰, x¹, . . . , xⁿ} of X, there exists a continuous mapping $\phi_n:\varDelta_n\to X$ such that $f(\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n),y)\geq\sum_{i=0}^n\lambda_if(x^i,y)$ for all $(\lambda_0,\lambda_1,\ldots,\lambda_n)\in\Delta_n$ and all $y\in X$. This is a weaker requirement than concavity and the CF-concavity due to Forgö [\[9\]](#page-3-4).

Let $\Gamma = (X_i, u_i)$ be a non-cooperative game. Following the method introduced by Nikaido and Isoda [\[8\]](#page-3-5), the aggregate function $U: X \times X$ is given by

$$
U(x, y) = \sum_{i \in I} u_i(x_i, y_{-i}),
$$

for any $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in X = \prod_{i=1}^n X_i$. Then we shall need the following:

Lemma 1 (*See Proposition 1 of [\[7\]](#page-3-6)*). *Let* $\Gamma = (X_i, u_i)$ *be a non-cooperative game, and* $\bar{x} \in X$. *Then* \bar{x} *is a pure-strategy Nash equilibrium of* Γ *if and only if* $U(\bar{x}, \bar{x}) \ge U(x, \bar{x})$ *for all* $x \in X$.

The following theorem states our main result.

Theorem 1. *Let* Γ *be a non-cooperative game, and U* : *X* × *X* → R *be the aggregate function. Then* Γ *has a pure-strategy Nash equilibrium if and only if there exists a non-empty compact subset C of X such that the following hold:*

(i) *C has the fixed point property*[3](#page-2-0) *;*

(ii) the restricted mapping $U|_{X\times C}: X\times C\to \mathbb{R}$ is diagonally transfer continuous on C^4 C^4 and is C - quasiconcave on X.

Proof. *Necessity*. Suppose that the game Γ has a pure-strategy Nash equilibrium $x^* \in X$. Let $C = \{x^*\}$. Obviously, C is compact, and (i) is satisfied. The restricted mapping $U|_{X\times C}$ clearly is diagonally transfer continuous on *C*. We want to show that $U|_{X\times C}$ is C -quasiconcave. Let $\{x^0,x^1,\ldots,x^n\}$ be a finite subset of X. Now we define the mapping $\phi_n:\Delta_n\to C$ by

 $\phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n) = x^*$

for all $(\lambda_0, \lambda_1, \ldots, \lambda_n) \in \Delta_n$. Obviously, ϕ_n is continuous. Let $(\lambda_0, \lambda_1, \ldots, \lambda_n) \in \Delta_n$. By [Lemma 1,](#page-2-2) we have

$$
U(\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n),\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n))=U(x^*,x^*)\geq U(x,x^*),
$$

for any $x \in X$. In particular, if we put $J = \{i \in \{0, 1, \ldots, n\} : \lambda_i \neq 0\}$, then

$$
U(\phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n), \phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n)) = U(x^*, x^*) \geq U(x^i, x^*)
$$

for all $i \in J$, and thus

$$
U(\phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n), \phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n)) \ge \min\{U(x^i, \phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n)) : i \in J\}.
$$

Sufficiency. Let *C* be a compact subset of *X* satisfying (i) and (ii). We show that Γ has a pure-strategy Nash equilibrium. For typographical reasons, we use *H* to denote the mapping $U|_{X\times C}$. For each $x \in X$, let

$$
G(x) = \{ y \in C : H(x, y) \le H(y, y) \}.
$$

We first prove $\bigcap_{x\in X} cl_C G(x) = \bigcap_{x\in X} G(x)$. It is clear that $\bigcap_{x\in X} cl_C G(x) \supseteq \bigcap_{x\in X} G(x)$. So we only need to show $\bigcap_{x\in X} cl_C G(x) \subseteq$ $\bigcap_{x\in X} G(x)$. Let $y \in (C \setminus \bigcap_{x\in X} G(x))$. Then there is an $x \in X$ such that $y \notin G(x)$, i.e., $H(x, y) > H(y, y)$. By the diagonal transfer continuity of H, there exist some $x' \in X$ and some neighbourhood $N(y)$ of y in C such that $H(x', z) > H(z, z)$ for all $z \in N(y)$. Thus $y \notin cl_C G(x')$.

Now we show that the family ${cl_C G(x) : x \in X}$ has the finite intersection property.

Suppose, by way of contradiction, that ${c_l}_G(x) : x \in X}$ does not have the finite intersection property, i.e., there exists some finite subset $\{x^0, x^1, \ldots, x^n\}$ of X such that $\bigcap_{i=0}^n cl_C G(x^i) = \emptyset$. Then $\bigcup_{i=0}^n (C \setminus cl_C G(x^i)) = C$. Since C is compact, there is a partition of unity { $\alpha_i:i=0,1,\ldots,n$ } subordinate to { $C\setminus cl_C G(x^i):i=0,1,\ldots,n$ }, i.e., for each $i=0,1,\ldots,n$, there exists a continuous function $\alpha_i: C \to [0, 1]$ such that $(1) \alpha_i^{-1}(0, 1] \subseteq C \setminus cl_C G(x^i); (2)$ for each $x \in C$, $\sum_{i=0}^n \alpha_i(x) = 1$.

Since *H* is *C*-quasiconcave in *X*, there exists a continuous mapping $\phi_n : \Delta_n \to C$ such that

$$
H(\phi_n(\lambda_0, \lambda_1, \dots, \lambda_n), \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) \ge \min\{H(x^j, \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) : j \in J\},\tag{3}
$$

for all $(\lambda_0, \lambda_1, \ldots, \lambda_n) \in \Delta_n$, where $J = \{i \in \{0, 1, \ldots, n\} : \lambda_i \neq 0\}.$ Now consider the map $\psi : C \rightarrow C$, defined by

 $\psi(x) = \phi_n(\alpha_0(x), \alpha_1(x), \ldots, \alpha_n(x))$, for each $x \in C$.

Since ϕ_n and all α_i are continuous, ψ also is continuous. By the condition (i), there exists an element \bar{x} of *C* such that $\psi(\bar{x}) = \bar{x}$, and thus $\phi_n(\alpha_0(\bar{x}), \alpha_1(\bar{x}), \ldots, \alpha_n(\bar{x})) = \bar{x}$.

 3 The fixed point property, due to Granas and Dugundji [\[10\]](#page-3-7), requires that every continuous mapping $f: C \to C$ has a fixed point.

 4 Diagonal transfer continuity, due to Baye et al. [\[5\]](#page-3-1), requires that for every $(x,y)\in X\times C$, $U(x,y)>U(y,y)$ implies that there exist some point $x'\in X$ and some neighbourhood $N(y)$ of y in C such that $U(x', z) > U(z, z)$ for all $z \in N(y)$. This is a weaker requirement than continuity in $X \times C$.

Let $J=\{i\in\{0,\,1,\,\ldots,\,n\}:\alpha_i(\bar x)\ne 0\}.$ Then $J\ne\emptyset$ by (2). By (1), for any $j\in J,$ we have $\bar x\in\alpha_j^{-1}(0,\,1]\subseteq\mathcal C\setminus\text{cl}_\mathcal C G(x^j)$, and therefore, $\bar{x} \not\in G(x^j)$, and thus $H(x^j, \bar{x}) > H(\bar{x}, \bar{x})$. Therefore,

$$
\min\{H(x^j,\bar{x}) : j \in J\} > H(\bar{x},\bar{x}).
$$

Combining this fact and [\(3\),](#page-2-3) we have

$$
H(\bar{x}, \bar{x}) = H(\psi(\bar{x}), \psi(\bar{x}))
$$

= $H(\phi_n(\alpha_0(\bar{x}), \alpha_1(\bar{x}), \dots, \alpha_n(\bar{x})), \phi_n(\alpha_0(\bar{x}), \alpha_1(\bar{x}), \dots, \alpha_n(\bar{x})))$
 $\geq \min\{H(\chi^j, \phi_n(\alpha_0(\bar{x}), \alpha_1(\bar{x}), \dots, \alpha_n(\bar{x}))) : j \in J\}$
= $\min\{H(\chi^j, \bar{x}) : j \in J\} > H(\bar{x}, \bar{x}).$

This is a contradiction. Since *C* is compact, ∩{cl_C*G*(*x*) : *x* ∈ *X*} $\neq \emptyset$. Pick out an element *x*^{*} ∈ ∩{cl_C*G*(*x*) : *x* ∈ *X*}. Then by the previous arguments, we have $x^* \in \bigcap \{G(x) : x \in X\}$. It is easy to see that x^* is a pure-strategy Nash equilibrium of Γ . \Box

References

- [1] J. Nash, Non-cooperative games, Annals of Mathematics 54 (1951) 286–295.
- [2] G. Debreu, A social equilibrium theorem, Proceedings of the National Academy of Sciences of the Unite States of America 38 (1952) 386–393.
- [3] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proceedings of the National Academy of Sciences of the Unite States of America 38 (1952) 121–126.
- [4] P. Dasgupta, E. Maskin, The existence of equilibrium in discontinuous economic games I: Theory, Review of Economic Studies 53 (1986) 1–26.
- [5] M. Baye, G. Tian, J. Zhou, Characterizations of the existence of equilibria in games with discontinuous and non-quasiconcave payoffs, Review of Economic Studies 60 (1993) 935–948.
- [6] W.K. Kim, K.H. Lee, Existence of Nash equilibria with C-convexity, Computers and Mathematics with Applications 44 (2002) 1219–1228.
- [7] H. Lu, On the existence of pure-strategy Nash equilibrium, Economics Letters 94 (2007) 459–462.
- [8] H. Nikaido, K. Isoda, Note on non-cooperative convex games, Pacific Journal of Mathematics 5 (1955) 807–815.
- [9] F. Forgö, On the existence of Nash-equilibrium in *n*-person generalized concave games, in: S. Komlósi, T. Rapcsák, S. Schaible (Eds.), Generalized Convexity: Lecture Notes in Economics and Mathematical Systems, vol. 405, Springer-Verlag, Berlin, 1994, pp. 53–61.
- [10] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, Berlin, Heidelberg, 2003.
- [11] J.X. Zhou, G. Chen, Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities, Journal of Mathematical Analysis and Applications 132 (1988) 213–225.