Contents lists available at ScienceDirect

Applied Mathematics Letters

© 2008 Elsevier Ltd. All rights reserved.

journal homepage: www.elsevier.com/locate/aml

Characterization of the existence of a pure-strategy Nash equilibrium*

Ji-Cheng Hou

Department of Mathematics, Beijing Information Technology Institute, Beijing 100101, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 1 February 2008 Received in revised form 29 June 2008 Accepted 26 August 2008

Keywords: Pure strategy Nash equilibrium Non-cooperative game C-quasiconcavity Diagonal transfer continuity

_

strategy Nash equilibrium for non-cooperative games in topological spaces.

In this work, we provide a necessary and sufficient condition for the existence of a pure-

1. Introduction

In mathematical economics, the main problem in investigating various kinds of economic models is showing the existence of an equilibrium, and already, a number of equilibrium existence results in economic models have been investigated by many authors (e.g., see, [1–7]).

The purpose of this work is to present a theorem that completely characterizes the existence of a pure-strategy Nash equilibrium for non-cooperative games in topological spaces. We do so by introducing the C-quasiconcavity condition which unifies the diagonal transfer quasiconcavity (weaker than the quasiconcavity) due to Baye et al. [5] and the C-concavity (weaker than concavity) due to Kim and Lee [6].

For the remainder of this section we give some definitions and notations.

Throughout this work, all topological spaces are assumed to be Hausdorff.

Let *A* be a subset of a topological space *X*. We denote by $cl_X A$ the closure of *A* in *X*. Let Δ_n be the standard *n*-dimensional simplex in \mathbb{R}^{n+1} . If *A* is a subset of a vector space, we denote by coA the convex hull of *A*.

Let *I* be a finite set of players. A *non-cooperative game* is a family of ordered tuples $\Gamma = (X_i, u_i)$ where the non-empty set X_i is the *i*th player's pure strategy space, and $u_i : X = \prod_{i \in I} X_i \to \mathbb{R}$ is the *i*th player's payoff function. The set X is the Cartesian product of the individual strategy spaces. Denote by X_{-i} the product $\prod_{i \in I \setminus \{i\}} X_i$. Denote by x_i and x_{-i} an element of X_i and X_{-i} , respectively. Denote an arbitrary point of X by $x = (x_i, x_{-i})$, with x_i in X_i and x_{-i} in X_{-i} . Moreover, (x_i, z_{-i}) denotes the point y in X with $y_i = x_i$ and $y_{-i} = z_{-i}$. A point $x^* \in X$ is said to be a *pure-strategy Nash equilibrium* for Γ if $u_i(x_i^*, x_{-i}^*) \ge u_i(x_i, x_{-i}^*)$ for all $x_i \in X_i$ and for all $i \in I$.

2. Characterization of a pure-strategy Nash equilibrium

Definition 1. Let X be a topological space, and A, $Y \subseteq X$. A function $f : X \times Y \rightarrow \mathbb{R}$ is called *C*-quasiconcave on A if, for any finite subset $\{x^0, x^1, \ldots, x^n\}$ of A, there exists a continuous mapping $\phi_n : \Delta_n \rightarrow Y$ such that

E-mail address: hjc@biti.edu.cn.

^{*} This project was supported by the National Natural Science Foundation of China (10571081) and the Natural Science Foundation of Beijing Education Department (KM200710772007).

^{0893-9659/\$ –} see front matter ${\rm \odot}$ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2008.08.005

 $f(\phi_n(\lambda_0, \lambda_1, \dots, \lambda_n), \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) \ge \min\{f(x^i, \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) : i \in J\} \text{ for all } (\lambda_0, \lambda_1, \dots, \lambda_n) \in \Delta_n, \text{ where } J = \{i \in \{0, 1, \dots, n\} : \lambda_i \neq 0\}.$

For the *C*-quasiconcavity, we have the following two propositions that show that the *C*-quasiconcavity unifies the diagonal transfer quasiconcavity (weaker than the quasiconcavity) due to Baye et al. [5] and the *C*-concavity (weaker than concavity) due to Kim and Lee [6].

Proposition 1. Let *X* be a convex subset of a topological vector space. Let us have $\emptyset \neq A \subseteq X$, *C* a non-empty convex subset of *X*, and $f : X \times C \rightarrow \mathbb{R}$ a function. If *f* is diagonally transfer quasiconcave on *A*,¹ then *f* is *C*-quasiconcave on *A*.

Proof. Let $\{x^0, x^1, \ldots, x^n\}$ be a finite subset of *A*. Since *f* is diagonally transfer quasiconcave on *A*, there exists a finite subset $\{y^0, y^1, \ldots, y^n\}$ of *C* such that for any subset $\{y^{k_0}, y^{k_1}, \ldots, y^{k_s}\} \subseteq \{y^0, y^1, \ldots, y^n\}$, $0 \le s \le n$, and any $y^* \in co\{y^{k_0}, y^{k_1}, \ldots, y^{k_s}\}$, we have $\min_{0 \le l \le s} f(x^{k_l}, y^*) \le f(y^*, y^*)$. Now we define the mapping $\phi_n : \Delta_n \to C$ as follows:

 $\phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n) = \lambda_0 y_0 + \lambda_1 y_1 + \cdots + \lambda_n y_n,$

for all $(\lambda_0, \lambda_1, \ldots, \lambda_n) \in \Delta_n$.

Obviously, ϕ_n is continuous. Let $(\lambda_0, \lambda_1, \dots, \lambda_n) \in \Delta_n$ and $J = \{i \in \{0, 1, \dots, n\} : \lambda_i \neq 0\}$. Then

$$\sum_{j\in J} \lambda_j y^j \in \operatorname{co}\{y^j : j \in J\} \text{ and } \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n) = \sum_{i=0}^n \lambda_i y^i = \sum_{j\in J} \lambda_j y^j.$$

Consequently,

$$f(\phi_n(\lambda_0, \lambda_1, \dots, \lambda_n), \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) = f\left(\sum_{j \in J} \lambda_j y^j, \sum_{j \in J} \lambda_j y^j\right)$$
$$\geq \min\left\{ f\left(x^j, \sum_{j \in J} \lambda_j y^j\right) : j \in J \right\}$$
$$= \min\{f(x^j, \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) : j \in J\}.$$

This completes the proof. \Box

Proposition 2. Let X be a topological space, and $f : X \times X \rightarrow \mathbb{R}$ a function. If f is C-concave on X,² then f is C-quasiconcave on X.

Proof. Let $\{x^0, x^1, \ldots, x^n\}$ be a finite subset of *X*. Since *f* is *C*-concave on *X*, there exists a continuous mapping $\phi_n : \Delta_n \to X$ such that

 $f(\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n),y) \ge \lambda_0 f(x^0,y) + \lambda_1 f U(x^1,y) + \cdots + \lambda_n f(x^n,y),$

for all $(\lambda_0, \lambda_1, \dots, \lambda_n) \in \Delta_n$ and all $y \in X$. In particular,

$$f(\phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n), \phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n)) \geq \sum_{i=0}^n \lambda_i f(x^i, \phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n)).$$

Let $J = \{i \in \{0, 1, ..., n\} : \lambda_i \neq 0\}$. Then

$$\begin{aligned} f(\phi_n(\lambda_0, \lambda_1, \dots, \lambda_n), \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) &\geq \sum_{i=0}^n \lambda_i f(x^i, \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) \\ &= \sum_{j \in J} \lambda_j f(x^j, \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) \\ &\geq \min\{f(x^j, \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) : j \in J\} \sum_{j \in J} \lambda_j \\ &= \min\{f(x^j, \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) : j \in J\}. \end{aligned}$$

This completes the proof. \Box

¹ Diagonal transfer quasiconcavity, due to Baye et al. [5], requires that for any finite subset $\{x^0, x^1, \ldots, x^n\}$ of A, there exists a finite subset $\{y^0, y^1, \ldots, y^n\}$ of C such that for any subset $\{y^{k_0}, y^{k_1}, \ldots, y^{k_s}\} \subseteq \{y^0, y^1, \ldots, y^n\}$, $0 \le s \le n$, and any $y^* \in co\{y^{k_0}, y^{k_1}, \ldots, y^{k_s}\}$, one has $\min_{0 \le l \le s} f(x^{k_l}, y^*) \le f(y^*, y^*)$. This is a weaker requirement than quasiconcavity and the diagonal quasiconcavity due to Zhou and Chen [11].

² *C*-concavity, due to Kim and Lee [6], requires that for any finite subset $\{x^0, x^1, \ldots, x^n\}$ of *X*, there exists a continuous mapping $\phi_n : \Delta_n \to X$ such that $f(\phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n), y) \ge \sum_{i=0}^n \lambda_i f(x^i, y)$ for all $(\lambda_0, \lambda_1, \ldots, \lambda_n) \in \Delta_n$ and all $y \in X$. This is a weaker requirement than concavity and the CF-concavity due to Forgö [9].

Let $\Gamma = (X_i, u_i)$ be a non-cooperative game. Following the method introduced by Nikaido and Isoda [8], the aggregate function $U: X \times X$ is given by

$$U(x, y) = \sum_{i \in I} u_i(x_i, y_{-i}),$$

for any $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in X = \prod_{i=1}^n X_i$. Then we shall need the following:

Lemma 1 (See Proposition 1 of [7]). Let $\Gamma = (X_i, u_i)$ be a non-cooperative game, and $\bar{x} \in X$. Then \bar{x} is a pure-strategy Nash equilibrium of Γ if and only if $U(\bar{x}, \bar{x}) > U(x, \bar{x})$ for all $x \in X$.

The following theorem states our main result.

Theorem 1. Let Γ be a non-cooperative game, and $U: X \times X \to \mathbb{R}$ be the aggregate function. Then Γ has a pure-strategy Nash equilibrium if and only if there exists a non-empty compact subset C of X such that the following hold:

(i) *C* has the fixed point property³;

(ii) the restricted mapping $U|_{X \times C} : X \times C \to \mathbb{R}$ is diagonally transfer continuous on C^4 and is C- quasiconcave on X.

Proof. Necessity. Suppose that the game Γ has a pure-strategy Nash equilibrium $x^* \in X$. Let $C = \{x^*\}$. Obviously, C is compact, and (i) is satisfied. The restricted mapping $U|_{X \times C}$ clearly is diagonally transfer continuous on C. We want to show that $U|_{X\times C}$ is C-quasiconcave. Let $\{x^0, x^1, \ldots, x^n\}$ be a finite subset of X. Now we define the mapping $\phi_n : \Delta_n \to C$ by

 $\phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n) = x^*,$

for all $(\lambda_0, \lambda_1, \dots, \lambda_n) \in \Delta_n$. Obviously, ϕ_n is continuous. Let $(\lambda_0, \lambda_1, \dots, \lambda_n) \in \Delta_n$. By Lemma 1, we have

$$U(\phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n), \phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n)) = U(x^*, x^*) \ge U(x, x^*),$$

for any $x \in X$. In particular, if we put $I = \{i \in \{0, 1, ..., n\} : \lambda_i \neq 0\}$, then

$$U(\phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n), \phi_n(\lambda_0, \lambda_1, \ldots, \lambda_n)) = U(x^*, x^*) \ge U(x^i, x^*)$$

for all $i \in I$, and thus

$$U(\phi_n(\lambda_0, \lambda_1, \dots, \lambda_n), \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) \ge \min\{U(x^i, \phi_n(\lambda_0, \lambda_1, \dots, \lambda_n)) : i \in J\}.$$

Sufficiency. Let C be a compact subset of X satisfying (i) and (ii). We show that Γ has a pure-strategy Nash equilibrium. For typographical reasons, we use H to denote the mapping $U|_{X \times C}$. For each $x \in X$, let

 $G(x) = \{y \in C : H(x, y) \le H(y, y)\}.$

We first prove $\bigcap_{x \in X} cl_C G(x) = \bigcap_{x \in X} G(x)$. It is clear that $\bigcap_{x \in X} cl_C G(x) \supseteq \bigcap_{x \in X} G(x)$. So we only need to show $\bigcap_{x \in X} cl_C G(x) \subseteq G(x)$. $\bigcap_{x \in X} G(x)$. Let $y \in (C \setminus \bigcap_{x \in X} G(x))$. Then there is an $x \in X$ such that $y \notin G(x)$, i.e., H(x, y) > H(y, y). By the diagonal transfer continuity of H, there exist some $x' \in X$ and some neighbourhood N(y) of y in C such that H(x', z) > H(z, z) for all $z \in N(y)$. Thus $y \notin \operatorname{cl}_C G(x')$.

Now we show that the family $\{cl_C G(x) : x \in X\}$ has the finite intersection property.

Suppose, by way of contradiction, that $\{cl_C G(x) : x \in X\}$ does not have the finite intersection property, i.e., there exists some finite subset $\{x^0, x^1, \dots, x^n\}$ of X such that $\bigcap_{i=0}^n \operatorname{cl}_C G(x^i) = \emptyset$. Then $\bigcup_{i=0}^n (C \setminus \operatorname{cl}_C G(x^i)) = C$. Since C is compact, there is a partition of unity { $\alpha_i : i = 0, 1, ..., n$ } subordinate to { $C \setminus cl_C G(x^i) : i = 0, 1, ..., n$ }, i.e., for each i = 0, 1, ..., n, there exists a continuous function $\alpha_i : C \to [0, 1]$ such that (1) $\alpha_i^{-1}(0, 1] \subseteq C \setminus cl_C G(x^i)$; (2) for each $x \in C$, $\sum_{i=0}^n \alpha_i(x) = 1$.

Since *H* is *C*-quasiconcave in *X*, there exists a continuous mapping $\phi_n : \Delta_n \to C$ such that

$$H(\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n),\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n)) \ge \min\{H(x^j,\phi_n(\lambda_0,\lambda_1,\ldots,\lambda_n)): j \in J\},\tag{3}$$

for all $(\lambda_0, \lambda_1, \dots, \lambda_n) \in \Delta_n$, where $J = \{i \in \{0, 1, \dots, n\} : \lambda_i \neq 0\}$. Now consider the map $\psi : C \to C$, defined by

 $\psi(x) = \phi_n(\alpha_0(x), \alpha_1(x), \dots, \alpha_n(x)), \text{ for each } x \in C.$

Since ϕ_n and all α_i are continuous, ψ also is continuous. By the condition (i), there exists an element \bar{x} of C such that $\psi(\bar{x}) = \bar{x}$, and thus $\phi_n(\alpha_0(\bar{x}), \alpha_1(\bar{x}), \dots, \alpha_n(\bar{x})) = \bar{x}$.

³ The fixed point property, due to Granas and Dugundji [10], requires that every continuous mapping $f: C \rightarrow C$ has a fixed point.

⁴ Diagonal transfer continuity, due to Baye et al. [5], requires that for every $(x, y) \in X \times C$, U(x, y) > U(y, y) implies that there exist some point $x' \in X$ and some neighbourhood N(y) of y in C such that U(x', z) > U(z, z) for all $z \in N(y)$. This is a weaker requirement than continuity in $X \times C$.

Let $J = \{i \in \{0, 1, ..., n\} : \alpha_i(\bar{x}) \neq 0\}$. Then $J \neq \emptyset$ by (2). By (1), for any $j \in J$, we have $\bar{x} \in \alpha_j^{-1}(0, 1] \subseteq C \setminus cl_C G(x^j)$, and therefore, $\bar{x} \notin G(x^j)$, and thus $H(x^j, \bar{x}) > H(\bar{x}, \bar{x})$. Therefore,

$$\min\{H(x^j, \bar{x}) : j \in J\} > H(\bar{x}, \bar{x}).$$

Combining this fact and (3), we have

$$\begin{aligned} H(\bar{x}, \bar{x}) &= H(\psi(\bar{x}), \psi(\bar{x})) \\ &= H(\phi_n(\alpha_0(\bar{x}), \alpha_1(\bar{x}), \dots, \alpha_n(\bar{x})), \phi_n(\alpha_0(\bar{x}), \alpha_1(\bar{x}), \dots, \alpha_n(\bar{x}))) \\ &\geq \min\{H(x^j, \phi_n(\alpha_0(\bar{x}), \alpha_1(\bar{x}), \dots, \alpha_n(\bar{x}))) : j \in J\} \\ &= \min\{H(x^j, \bar{x}) : j \in J\} > H(\bar{x}, \bar{x}). \end{aligned}$$

This is a contradiction. Since *C* is compact, $\cap \{cl_CG(x) : x \in X\} \neq \emptyset$. Pick out an element $x^* \in \cap \{cl_CG(x) : x \in X\}$. Then by the previous arguments, we have $x^* \in \cap \{G(x) : x \in X\}$. It is easy to see that x^* is a pure-strategy Nash equilibrium of Γ .

References

- [1] J. Nash, Non-cooperative games, Annals of Mathematics 54 (1951) 286-295.
- [2] G. Debreu, A social equilibrium theorem, Proceedings of the National Academy of Sciences of the Unite States of America 38 (1952) 386–393.
- [3] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proceedings of the National Academy of Sciences of the Unite States of America 38 (1952) 121–126.
- [4] P. Dasgupta, E. Maskin, The existence of equilibrium in discontinuous economic games I: Theory, Review of Economic Studies 53 (1986) 1-26.
- [5] M. Baye, G. Tian, J. Zhou, Characterizations of the existence of equilibria in games with discontinuous and non-quasiconcave payoffs, Review of Economic Studies 60 (1993) 935–948.
- [6] W.K. Kim, K.H. Lee, Existence of Nash equilibria with C-convexity, Computers and Mathematics with Applications 44 (2002) 1219–1228.
- [7] H. Lu, On the existence of pure-strategy Nash equilibrium, Economics Letters 94 (2007) 459-462.
- [8] H. Nikaido, K. Isoda, Note on non-cooperative convex games, Pacific Journal of Mathematics 5 (1955) 807-815.
- [9] F. Forgö, On the existence of Nash-equilibrium in n-person generalized concave games, in: S. Komlósi, T. Rapcsák, S. Schaible (Eds.), Generalized Convexity: Lecture Notes in Economics and Mathematical Systems, vol. 405, Springer-Verlag, Berlin, 1994, pp. 53–61.
- [10] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, Berlin, Heidelberg, 2003.
- [11] J.X. Zhou, G. Chen, Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities, Journal of Mathematical Analysis and Applications 132 (1988) 213–225.