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Abstract

Let G be a finite solvable group. We assume that the set of conjugacy class sizes of G is {1,m,n,mk}
with m and n coprime positive integers greater than 1 and k a divisor of n. Then we obtain several properties
on the structure of G.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

There has been considerable interest in studying the structure of a finite group given only
the set of conjugacy class sizes. If a group G has exactly two class sizes, {1,m}, then N. Itô
shows in [11] that G is nilpotent, m = pa for some prime p and G = P × A, with P a Sylow
p-subgroup of G and A ⊆ Z(G). When a group has exactly three class sizes there also exist
several results. For instance, Itô shows in [12] that such groups are solvable by appealing to
the Feit–Thompson theorem and some deep classification theorems of M. Suzuki. A.R. Cam-
ina obtains in [7] some properties when the class sizes are {1,pa,paqb} for distinct primes p

and q . It was first proved in [10] and later reproved in [6] that if the conjugacy class sizes of
G are {1,m,n} with (m,n) = 1, and m,n > 1, then G/Z(G) is a Frobenius group (G is then
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called a quasi-Frobenius group) and the inverse image in G of the kernel and a complement are
abelian.

In general, groups with four conjugacy class sizes may be not solvable or even may be sim-
ple. In 1970 [13], Itô shows that SL(2,2m) for m � 2 are the only simple groups with four class
sizes. In 1987, E. Fisman and Z. Arad used the classification of the finite simple groups to show
that groups with two classes of coprime size cannot be simple [8], and of course, they are not
necessarily solvable. On the other hand, Camina proves in [7] that if the class sizes of G are
{1,pa, qb,paqb}, with p and q two distinct primes, then G is nilpotent. Notice that the hypothe-
ses of Camina’s theorem imply the solvability of G just by using Burnside’s paqb-theorem. The
authors extend this result in [4] and [5], showing that when the set of conjugacy class sizes of a
group G is {1,m,n,mn}, with m and n arbitrary positive integers such that (m,n) = 1, then G

is nilpotent, m = pa and n = qb for two primes p and q .
In this paper we analyze the structure of a solvable group with four conjugacy class sizes,

{1,m,n,mk}, where m and n are coprime integers greater than 1 and k is any divisor of n. When
k = 1 or k = n then the structure of G is completely determined as we have explained above. So
we shall study the case 1 < k < n. We prove the following

Theorem A. Let G be a solvable group whose conjugacy class sizes are {1,m,n,mk}, where
m,n > 1 are coprime integers and 1 < k < n is a divisor of n. Let π be the set of primes dividing
m and let K and H be a Hall π -subgroup and π -complement of G, respectively. Then K is
abelian, k = qa for some prime q and H = QA, with A an abelian subgroup and Q a Sylow
q-subgroup of G. Furthermore, one of the following statements holds:

(1) If m > n, then K � G, H = Q × A, Oπ ′(G) ⊆ Z(G) and G is a quasi-Frobenius group.
(2) If n > m, then Oπ (G) ⊆ Z(G) and Oπ ′,π (G) is a quasi-Frobenius group. Moreover,

(2.1) If n = qr , then H = Q × A and A ⊆ Z(G).
(2.2) If n is not a prime-power, then A � Z(G) and

(a) either H = Q × A is normal in G (and consequently, G is quasi-Frobenius),
(b) or both Q and KQ are normal in G and Q is abelian.

We remark that in order to prove this theorem we make use of some results concerning local
information of the group given the class sizes of π -elements for an arbitrary set π of primes. For
instance, we shall need Theorem C of [3] and the main result of [2].

The following examples show that each one of the types described in Theorem A can occur.
Let us consider the quaternion group Q = 〈a, b | a4 = 1, a2 = b2, ab = a−1〉 of order 8 and let
A = 〈c〉 ∼= Z3, both acting on K = 〈x〉 × 〈y〉 ∼= Z13 × Z13 as follows:

xa = y8, ya = x8, xb = y, yb = x12, xc = x3, yc = y3.

It is easy to see that Q × A acts Frobeniusly on K . If we consider the semidirect product G =
[K](Q × A), then one can check that the conjugacy class sizes of G are {1,169,338,24}. This
provides an example of a group of type (1) with m = 169, n = 24, k = 2 and π = {13}.

The symmetric group on four letters is an example of group of type (2.1). The conjugacy class
sizes of S4 are {1,3,8,6}, and we take m = 3, n = 8, k = 2 and π = {3}.
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Now we are going to construct a group satisfying the conditions described in (2.2)(a). Let us
consider again the quaternion group of order 8, Q = 〈a, b〉 and let A = 〈c〉 ∼= Z7. We define the
action of a cyclic group K = 〈x〉 of order 3 on both groups in the natural way:

ax = ab, bx = a, cx = c2

and define G = [Q × A]K . The conjugacy class sizes of G are {1,3,6,28}. In this case, m = 3,
n = 28, k = 2, π = {3} and G has a normal π -complement which factorizes as described
in (2.2)(a). We can proceed in this way constructing other groups of this type, just changing
the group A, in such a way that the set of primes dividing n is as large as wanted.

Finally the affine semilinear group G = Γ (23) of order 168 (see for instance p. 147 of [9]) is
an example of group satisfying the conditions given in (2.2)(b). The conjugacy class sizes of G

are {1,7,24,28}. In this case, we take m = 7, n = 24, k = 4 and π = {7}, and G possesses an
abelian normal Sylow 2-subgroup, Q, and an abelian Hall π -subgroup, K , such that KQ is also
normal in G. Notice that this is the only case in which the π -complements of G do not factorize
as Q × A.

We will denote by xG the conjugacy class of x in G and we call |xG| the index of x in G. The
rest of the notation is standard.

2. Preliminary results

We shall need the following elementary results on conjugacy classes of π -elements where π

is an arbitrary set of primes.

Lemma 1. Let G be a π -separable group.

(a) The conjugacy class size of any π ′-element of G is a π -number if and only if G has abelian
Hall π ′-subgroups.

(b) The conjugacy class size of every π -element of G is a π -number if and only if G = H × K ,
where H and K are a Hall π -subgroup and a π -complement of G, respectively.

(c) If x ∈ G and |xG| is a π -number, then x ∈ Oπ,π ′(G).

Proof. (a) Suppose that the class size of any π ′-element is a π -number and work by induction
on |G| so as to prove that any π -complement of G is abelian. Assume first that Oπ (G) > 1 and
write G = G/Oπ (G). As the hypotheses are inherited by factor groups, we get that G has abelian
π -complements and then so has G.

Assume now that Oπ (G) = 1 and thus Oπ ′(G) > 1. By hypothesis, for any π ′-element g ∈ G

there exists a π -complement H of G such that g ∈ H ⊆ CG(g). Then

g ∈ CG(H) ⊆ CG

(
Oπ ′(G)

) ⊆ Oπ ′(G).

It follows that G has a normal π -complement and moreover, that it is abelian. The converse
direction is obvious.

(b) is exactly Lemma 8 of [3] and (c) is exactly Theorem C of [3]. �
We shall use the following result due to Itô, which characterizes the structure of those groups

which possess only two conjugacy class sizes.
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Theorem 2. Suppose that 1 and m > 1 are the only lengths of conjugacy classes of a group G.
Then G = P × A, where P ∈ Sylp(G) and A is abelian. In particular, then m is a power of p.

Proof. See Theorem 33.6 of [9]. �
The authors obtained in [2] the following generalization of Itô’s theorem for p-regular conju-

gacy classes in p-solvable groups.

Theorem 3. Suppose that G is a finite p-solvable group and that {1,m} are the p-regular con-
jugacy class sizes of G. Then m = paqb, with q a prime distinct from p and a, b � 0. If b = 0
the G has abelian p-complement. If b 	= 0, then G = PQ × A, with P ∈ Sylp(G), Q ∈ Sylq(G)

and A ⊆ Z(G). Furthermore, if a = 0 then G = P × Q × A.

Proof. This is exactly Theorem A of [2]. �
We shall also make use of the classic Thompson’s A × B-lemma.

Theorem 4. Let AB be a finite group represented as a group of automorphisms of a p-group G

with [A,B] = 1 = [A,CG(B)], B a p-group and A = Op(A). Then [A,G] = 1.

Proof. See for instance 24.2 of [1]. �
The following result is a generalization for π -separable groups of a classic theorem of Burn-

side which asserts that if a group G possesses a Sylow p-subgroup such that NG(P ) = CG(P ),
then G is p-nilpotent.

Theorem 5. Let G be a π -separable group and suppose that H is a Hall π -subgroup of G such
that NG(H) = CG(H). Then G has a normal π -complement.

Proof. It is sufficient for instance to rewrite the proof of 17.9 of [9] (the above mentioned Burn-
side’s theorem). �
3. Proof

The proof of Theorem A has been divided into 19 steps. In Step 7, we shall show that the
number k of the statement of the theorem may be equal to qa or qt rl for some primes q and r ,
but from Step 14 to 19 we shall prove that the second case cannot occur.

Proof of Theorem A

Step 1. There are no π -elements of index m. Consequently, there exist π ′-elements of index m.

Proof. Suppose that there exists a π -element x of index m. Then x ∈ K , where K is a Hall
π -subgroup of G. If y is a π ′-element of CG(x), then CG(xy) = CG(x) ∩ CG(y) ⊆ CG(x), and
so the index of y in CG(x) is 1 or k. By Lemma 1(b), we may write CG(x) = H × Kx , with H

a π -complement of G and Kx a π -subgroup.
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Now suppose that there exists a π ′-element y of index n. Replacing y by some conjugated we
can assume that K ⊆ CG(y). Hence x ∈ CG(y), so CG(xy) = CG(x) ∩ CG(y) and accordingly,
the index of xy in G is divisible by |G : CG(y)| = n and |G : CG(x)| = m, a contradiction.
Therefore, every π ′-element of G has index 1,m or mk. Now, choose z ∈ G of index n with
K ⊆ CG(z). We consider the decomposition z = zπzπ ′ , with zπ and zπ ′ the π -part and π ′-part
of z, respectively. We have CG(z) ⊆ CG(zπ ′), so by the above property zπ ′ ∈ Z(G) and |zG

π | = n.
It follows that x ∈ K ⊆ CG(zπ ), whence zπ ∈ CG(x) = H × Kx . This implies that zπ ∈ Kx and
H ⊆ CG(zπ ), contradicting the fact that |zG

π | = n.
The consequence in the statement can be easily obtained by considering the {π,π ′}-decom-

position of any element of index m. �
Step 2. There are no π ′-elements of index n. As a consequence, there exist π -elements of

index n and if x is an element of index n, then xπ ′ is central.

Proof. Suppose that y is a π ′-element of index n. We can assume without loss that y is a p-
element for some prime p. If we take any p′-element, say w, of CG(y), we have CG(yw) =
CG(y) ∩ CG(w) and then the maximality of n implies CG(y) ⊆ CG(w), so w ∈ Z(CG(y)).
Accordingly, we can write CG(y) = Py ×T with Py a p-subgroup and T an abelian p′-subgroup.
Now, by Step 1, we can take some π ′-element of index m, say z, and up to conjugacy we can
assume that Py ⊆ CG(z). So in particular, z ∈ CG(y) and CG(zy) = CG(y) ∩ CG(z). But this
forces zy to have index nm, which is a contradiction.

The consequence of the statement follows as in the above step by considering de decomposi-
tion of an element. �

Step 3. If x is a π -element of index mk, then CG(x) = Kx × Hx , with Kx a π -subgroup
and Hx a non-central abelian π ′-subgroup of G.

Proof. Let y be a π ′-element of CG(x). Then CG(xy) = CG(x) ∩ CG(y) ⊆ CG(x). The max-
imality of mk implies that CG(x) ⊆ CG(y), so y ∈ Z(CG(x)). Then we can write CG(x) =
Kx × Hx , with Kx a π -subgroup and Hx an abelian π ′-subgroup of G.

We show that Hx cannot be central in G. Suppose that Hx ⊆ Z(G). It follows that Hx =
Z(G)π ′ and k = |G : Z(G)|π ′ , but this certainly leads to a contradiction with the existence of
elements of index n. �

Step 4. The Hall π -subgroups of G are abelian. Consequently, any π -element has index 1 or n

and if x is an element of index m or mk, then xπ is central.

Proof. Suppose that G has non-abelian Hall π -subgroups. By applying Step 1 and Lemma 1(a),
we can take some π -element x ∈ G of index mk. By Step 3, we write CG(x) = Kx ×Hx , with Kx

a π -subgroup and Hx an abelian non-central π ′-subgroup. We shall prove now that Kx is abelian
too. Let us choose some non-central y ∈ Hx and notice that CG(x) ⊆ CG(y), so y must have
index m or mk. If |yG| = mk, then certainly CG(x) = CG(y). In this case, for any π -element
of CG(y), say t ∈ Kx , we have CG(ty) = CG(y) ∩ CG(t) = CG(y) ⊆ CG(t), so t ∈ Z(CG(y)).
Therefore, Kx is abelian as wanted. Assume now that |yG| = m. If w is a π -element of CG(y)

then |CG(y) : CG(y) ∩ CG(w)| = |CG(y) : CG(wy)| is equal to 1 or k. Since k is a π ′-number,
by Lemma 1(a), the Hall π -subgroups of CG(y) are abelian, so in particular, Kx is abelian too.
Consequently, CG(x) is abelian.
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By Step 2, there exists a π -element w of index n and it easily follows that w ∈ Z(K), for some
Hall π -subgroup K of G. Moreover, up to conjugacy we can assume that x ∈ K , so w ∈ CG(x)

and as CG(x) is abelian, then CG(x) ⊆ CG(w). This leads to a contradiction.
Now the consequence in the statement trivially follows by applying Lemma 1(a). �
Step 5. |G : Z(G)| = mn.

Proof. We show first that |G : Z(G)|π = m. Let z be an element of index mk and consider the
{π,π ′}-decomposition of z = zπzπ ′ . As CG(z) ⊆ CG(zπ ), by applying Step 4, we deduce that
zπ ∈ Z(G). Consequently, zπ ′ has index mk and thus, we may suppose that z is a π ′-element.
Now, if t is a non-central π -element of CG(z), then CG(zt) = CG(z) ∩ CG(t) = CG(z) ⊆ CG(t)

and again by applying Step 4, t ∈ Z(G). Then |G : Z(G)|π = m.
Now by Step 2, we can take a π -element z of index n. If w is a π ′-element of CG(z), then

CG(zw) = CG(z) ∩ CG(w) = CG(z) ⊆ CG(w) and, by Step 2, w ∈ Z(G). Hence Z(G)π ′ is a
Hall π ′-subgroup of CG(z) and thus, |G : Z(G)|π ′ = n. Now the step is clearly proved. �

Step 6. If x is a non-central π -element, then CG(x) = K × Z(G)π ′ , for some Hall π -
subgroup K of G. If y is a non-central π ′-element, then y has index m or mk and CG(y) =
Hy × Z(G)π , with Hy a π ′-subgroup of G.

Proof. If x is a non-central π -element, then we know by Step 4 that it has index n, and by
applying Step 5, it follows that CG(x) = K × Z(G)π ′ , for some Hall π -subgroup K of G. On
the other hand, by Step 2 there are no π ′-elements of index n and, by applying Step 5 again, we
obtain that any non-central π ′-element y satisfies CG(y) = Hy ×Z(G)π , with Hy a π ′-subgroup
of G. �

Step 7. Let H be a Hall π ′-subgroup of G. Then one of the following two properties holds:
(a) k = qa for some prime q and H = QA, with Q ∈ Sylq(G) and A is an abelian q ′-group.
(b) k = qt rl for some distinct primes q and r and l, t > 0, and H = QR × V , where Q and R

are q- and r-Sylow subgroups of G and V ⊆ Z(G).

Proof. We can choose a π ′-element y of index m by Step 1, and up to conjugacy, such that
H ⊆ CG(y). Also, by considering the primary decomposition, y can be assumed to be a q-
element for some prime q ∈ π ′. Let z be a q ′-element of CG(y) and observe that CG(zy) =
CG(z) ∩ CG(y) ⊆ CG(y). This forces z to have index 1 or k in CG(y). Suppose first that all
these indexes are 1 and consequently, we can write CG(y) = CG(y)q × CG(y)q ′ with CG(y)q ′
abelian. By Step 4, we can take some π ′-element x of index mk, which up to conjugacy, can be
assumed to belong to CG(y). Then CG(y)q ′ ⊆ CG(x), and this yields to k = qa . From now on,
we will assume that both indexes, 1 and k, appear, so we can apply Theorem 3 to obtain two
possibilities for k: either k = qa and CG(y) = QA, with A abelian and Q ∈ Sylq(G) (notice that
this case is exactly the one obtained above), or k = qt rl , for some prime r , and t � 0, l > 0 and
also CG(y) = QR × S with Q and R Sylow q- and a r-subgroups of CG(y) (and consequently,
of G) and S abelian. In any case, by Step 6, we also know that CG(y) = H × Z(G)π for some
π -complement H of G.

Assume the first possibility, that is, k = qa and CG(y) = QA. Then H = H ∩ QA =
Q(H ∩ A) with A1 = H ∩ A abelian, so we get case (a).
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If we assume the second possibility for CG(y), we have QR ⊆ H , whence H = QR×(H ∩S)

with S1 := H ∩ S abelian. We distinguish two cases: t = 0 and t > 0. If t = 0, then Theorem 3
asserts that H = Q×R ×S1. Notice that then the q-elements of G have index 1, m or mrl , so by
Lemma 1(a), we have that Q is abelian. So we can write H = RA where A := Q × S1 is abelian
and then H has again the structure described in (a). Now assume that t > 0 and it only remains to
see that S1 is central. Let us take some non-central w ∈ S1 of order a power of a prime s ∈ π ′. As
H ⊆ CG(w), then w has index m. If z is any s′-element of CG(w), by arguing as above, it follows
that z has index 1 or k in CG(w). We analyze first the case in which every such s′-element z has
index 1 in CG(w). This implies that CG(w) can be written as CG(w) = CG(w)s ×CG(w)s′ with
CG(w)s′ abelian. Note that CG(w)s ⊆ H , so we can write H = CG(w)s × (CG(w)s′ ∩H). Now,
if x is a π ′-element of index mk lying in H and we factorize x = xsxs′ , then each one of these
factors, and accordingly x, must be centralized by CG(w)s′ ∩ H . Hence k is necessarily a power
of s, contradicting the fact that k is divisible by q and r . Thus, both integers 1 and k really appear
as indexes of q-elements of CG(w), so we can apply Theorem 3 to obtain that either s divides k

or k is a power of a single prime. Both cases yield to a contradiction. Therefore, S1 is central in
G and in this case the structure of H is as described in (b). �

Step 8. Oπ (G) ⊆ Z(G) or Oπ ′(G) ⊆ Z(G).

Proof. Suppose that Oπ (G) � Z(G) and take w ∈ Oπ(G) − Z(G). We have

Z(G) ⊆ CG

(
Oπ (G)

) ⊆ CG(w) ⊆ G.

Since |G : Z(G)|π ′ = n by Step 5 and |G : CG(w)| = n, this implies that Z(G)π ′ =
CG(Oπ (G))π ′ . As Oπ ′(G) ⊆ CG(Oπ (G)), then Oπ ′(G) ⊆ Z(G). �

Step 9. Suppose that Oπ ′(G) ⊆ Z(G). Then G is a semidirect product G = K(Q×A), where
K is an abelian normal Hall π -subgroup of G, A is abelian and Q ∈ Sylq(G) for some prime q .
Moreover, G is quasi-Frobenius, k = qa and n < m.

Proof. Any non-central π -element has index n, so by applying Lemma 1(c), it belongs to
Oπ ′,π (G) = Oπ (G) × Z(G)π ′ , and hence, it belongs to Oπ (G). As a result, K = Oπ(G) is
a normal Hall π -subgroup of G. It is also abelian by Step 4.

Write G∗ = G/K . We assert that every conjugacy class of G∗ has size 1 or k. For any g∗ ∈ G∗
we can clearly assume that g is a π ′-element, and thus, g has index 1, m or mk in G. If g has
index 1 or m, then g∗ has index 1 in G∗ because the index of g∗ in G∗ divides (m, |G∗|) = 1.
Therefore, in order to prove the assertion we shall assume that g has index mk in G and show
that g∗ has index k in G∗. We notice that

∣∣G : CG(g)K
∣∣∣∣CG(g)K : CG(g)

∣∣ = mk.

But, on the other hand, by applying Steps 6 and 5, we have

∣∣K : CK(g)
∣∣ = ∣∣K : Z(G)π

∣∣ = ∣∣G : Z(G)
∣∣
π

= m,

and consequently, k = |G : CG(g)K|. Now, let y∗ ∈ CG∗(g∗) and choose H to be a π -
complement of G with g ∈ H . As G = KH , we can clearly write y∗ = h∗ for some h ∈ H .
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As we are assuming that [h∗, g∗] = 1, then [h,g] ∈ K ∩ H = 1. Therefore, h ∈ CG(g) and so,
y ∈ KCG(g). It follows that CG∗(g∗) = CG(g)∗ and that g∗ has index k in G∗, as we wanted to
prove.

Now, we are able to apply Theorem 2 so as to obtain that k = qa for some prime q and
G∗ = Q∗ × A∗, where Q ∈ Sylq(G) and A is abelian. Since G∗ ∼= H , then H has the structure
described in the statement of this step.

By Steps 2 and 4, every element of G := G/Z(G) is a π -element or a π ′-element. Since
K 	= 1 is a normal Hall π -subgroup and H 	= 1, it follows that G is a Frobenius group with
kernel K of order m. In particular, m > n. �

We remark that when Oπ ′(G) ⊆ Z(G) then, in view of Step 9, the structure of the π -
complements of G is as described in case (a) of Step 7.

From now on to the end of the proof we shall assume that Oπ ′(G) � Z(G) and then, by Step 8,
Oπ (G) ⊆ Z(G).

Step 10. Oπ ′,π (G) is a quasi-Frobenius group and n > m.

Proof. Since the Hall π -subgroups of G are abelian, it is known then that the π -length of G is
less or equal to 1. Therefore, N := Oπ ′,π (G) = Oπ ′(G)K , with K a Hall π -subgroup of G. Also
notice that Oπ ′(G) and K are non-central in G.

It is trivial that Z(G) ⊆ Z(N). By Steps 2 and 4, every element of N := N/Z(G) is a π -
element or a π ′-element. Since Oπ ′(G) 	= 1 is a normal Hall π ′-subgroup of N and K 	= 1, it
follows that N is a Frobenius group with kernel Oπ ′(G). In particular, we have |Oπ ′(G)| > |K|,
so by Step 5, n = |G : Z(G)|π ′ � |Oπ ′(G)| > |K| = m. Moreover, since N is a Frobenius group,
Z(N) = 1, so Z(N) = Z(G) and N is quasi-Frobenius. �

In view of Steps 9 and 10, when n < m then Oπ ′(G) is central and Step 9 provides case (1)
of the theorem. If n > m, then Oπ (G) must be central and thus, Step 10 proves case (2). Now
we are going to distinguish the two cases given in Step 7. First, from Steps 11 to 13, we analyze
case (a) and assume the conditions given there, and later, from Steps 14 to 19, we shall prove that
case (b) cannot happen. We notice that if n = qr (so the class sizes of G are (π ∪ {q})-numbers)
then A ⊆ Z(G), so we obtain case (2.1). Thus, in the following three steps we shall assume that n

is not a q-power (so A is not central in G) and show that one of the situations (2.2)(a) or (2.2)(b)
occurs.

Step 11. G has a normal π -complement or a normal Hall (π ∪ {q})-subgroup.

Proof. We fix K and H = QA a Hall π -subgroup and a π -complement of G, respectively.
Let g ∈ G and consider the factorization g = gπgπ ′ . If gπ is non-central, by Step 6, we have
gπ ′ ∈ Z(G), so g ∈ Kt Z(G), for some t ∈ G. Since K is abelian, then g ∈ CG(Kt). On the
other hand, if gπ ′ is non-central, then again by Step 6, gπ is central and the index of g is 1,m or
mqa . This implies that there is some t ∈ G such that At ⊆ CG(g), whence g ∈ CG(At ). These
properties yield to the following equality

G =
⋃

CG

(
Kt

) ∪
⋃

CG

(
At

)

t∈G t∈G
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and by counting elements we get

|G| � ∣∣G : NG

(
CG(K)

)∣∣(∣∣CG(K)
∣∣ − 1

) + ∣∣G : NG

(
CG(A)

)∣∣(∣∣CG(A)
∣∣ − 1

) + 1

or equivalently,

1 � |CG(K)|
|NG(CG(K))| − 1

|NG(CG(K))| + |CG(A)|
|NG(CG(A))| − 1

|NG(CG(A))| + 1

|G| .

Now we denote by n1 = |NG(CG(K))| and n2 = |NG(CG(A))|. If |CG(K)| < n1 and
|CG(A)| < n2, then

1 � 1

2
− 1

n1
+ 1

2
− 1

n2
+ 1

|G| ,

so we obtain the following contradiction

|G|
n1

+ |G|
n2

� 1.

Hence, NG(CG(K)) = CG(K) or NG(CG(A)) = CG(A), and the step follows as a consequence
of Theorem 5. �

Step 12. If G has a normal π -complement H , then it factorizes as H = Q × A. Also, G is a
quasi-Frobenius group.

Proof. Suppose that G has a normal π -complement H = QA with A abelian. By Step 6, any
x ∈ Q has index 1,m or mqa . On the other hand, we have

∣∣xG
∣∣∣∣CG(x) : CH (x)

∣∣ = |G : H |∣∣xH
∣∣.

As |G : H | is a π -number and |xH | divides |xG|, the above equality implies that |xH | is equal
to 1 or qa . By Lemma 1(b), we conclude that H = Q × A. The fact that G is quasi-Frobenius
follows from Step 10. �

The above step provides the properties given in (2.2)(a) of the theorem. The next step will
provide case (2.2)(b).

Step 13. If G has a normal Hall (π ∪ {q})-subgroup, then G has an abelian normal Sylow
q-subgroup.

Proof. Let L := KQ be a normal Hall (π ∪ {q})-subgroup of G, where K is a Hall π -subgroup
and Q is a Sylow q-subgroup of G such that H = QA. Since Oπ ′(G) ⊆ H , we can certainly
write Oπ ′(G) = A1Q1, where A1 ⊆ A and Q1 ⊆ Q. By Step 10, Oπ ′(G)/Z(G)π ′ is a Frobenius
kernel, so Oπ ′(G) is nilpotent. Consequently, Oπ ′(G) = A1 × Q1 and Q1 = Oq(G).

Suppose first that Oq(G) ⊆ Z(G). Since A is abelian, this implies that A ⊆ CG(Oπ ′(G)).
On the other hand, as Oπ (G) ⊆ Z(G) it is easy to see that CG(Oπ ′(G)) ⊆ Oπ ′(G)Z(G). So
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A ⊆ A1Z(G) and A = A1(A ∩ Z(G)). Hence A1 is normal in G, so we get G = L × A and
consequently, A ⊆ Z(G), which contradicts our assumption that Oπ ′(G) is not central.

Thus, we can assume that there is some non-central x ∈ Oq(G). If y is a π -element of
CG(Oq(G)), then y ∈ CG(x) and, by Step 6, y ∈ Z(G). Hence,

CG

(
Oq(G)

) = CG

(
Oq(G)

)
π ′ × CG

(
Oq(G)

)
π

⊆ Oπ ′(G)Z(G).

Now suppose that Q has an element z of index mk. Replacing z by some conjugated we can
assume that A ⊆ CG(z). If t ∈ A, then the maximality of mk implies that CG(zt) = CG(z) ⊆
CG(t), so COq (G)(z) ⊆ COq (G)(t). By applying Theorem 4, we obtain t ∈ CG(Oq(G)), so

A ⊆ CG(Oq(G)) ⊆ Oπ ′(G)Z(G)

and A ⊆ Oπ ′(G). Accordingly, A = A1 and as above this yields to a contradiction. Therefore,
there are no q-elements of index mk, so any q-element has index 1 or m, and by Lemma 1(a),
we conclude that Q is abelian.

Now, as Q is abelian, then Q ⊆ CG(Oq(G)) ⊆ Oπ ′(G)Z(G). Then Q ⊆ Oπ ′(G) and Q =
Oq(G), so the step is proved. �

The rest of the proof consists of proving that case (b) of Step 7 is not possible and then the
theorem will be proved. Thus, from now on we shall assume the conditions given in that case in
order to get a contradiction in Step 19.

Step 14. Let Lπ ′ = 〈x ∈ G: x is π ′-element of index 1 or m〉. Then Lπ ′ is a (normal) abelian
π ′-subgroup and Lπ ′ ⊆ Z(Oπ ′(G)).

Proof. Notice that by Lemma 1(c) any π ′-element of index m must lie in Oπ,π ′(G) = Oπ ′(G)×
Z(G)π , so it belongs to Oπ ′(G). We deduce that Lπ ′ ⊆ Oπ ′(G), whence Lπ ′ is a (normal) π ′-
group. In order to see that Lπ ′ lies in the center of Oπ ′(G), it is enough to note that the index in
Oπ ′(G) of any generator of Lπ ′ must divide (|Oπ ′(G)|,m) = 1. �

From the conditions given in 7(b) we note that the only primes dividing n are exactly q and r .
As Lπ ′ is abelian, then we can factor Lπ ′ = Lq × Lr × Z, where Z ⊆ Z(G) and the subgroups
Lq and Lr are defined as follows:

Lq = 〈x ∈ G: x is a q-element of index 1 or m〉,

Lr = 〈x ∈ G: x is an r-element of index 1 or m〉.

Step 15. Oπ ′(G) = Lπ ′ .

Proof. We claim that if z is a q-element of index mk, then CG(z) = Qz × Rz × Z, with Qz

a q-group, Rz an abelian r-group centralizing Lq and Z = Z(G){q,r}′ . By applying Step 6, we
can write CG(z) = QzRz × Z with Qz,Rz and Z as described above, so it remains to show
that Rz is an abelian direct factor of CG(z) which centralizes Lq . Let y ∈ Rz and notice that
CG(zy) = CG(y) ∩ CG(z) ⊆ CG(z). The maximality of mk implies that CG(z) ⊆ CG(y), so Rz

is an abelian direct factor of Z(CG(z)) as wanted. Also, in particular we have CLq (z) ⊆ CLq (y),
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and by applying Theorem 4, we get y ∈ CG(Lq). The same assertion can be done for r-elements
of index mk. In this case, if z is such an element, then CG(z) = Qz ×Rz ×Z, with Qz an abelian
q-group centralizing Lr , and Rz an r-group and Z = Z(G){q,r}′ .

We shall assume that w ∈ Oπ ′(G) − Lπ ′ and work to get a contradiction. Observe that, up
to some central element, we may factor w = wqwr , with wq and wr the q- and r-part of w,
respectively. Certainly one of them, say wq , does not lie in Lπ ′ , although both factors must
belong to Oπ ′(G). Then

Lπ ′ ⊆ CG

(
Oπ ′(G)

) ⊆ CG(wq) = Qwq × Rwq × Z,

where the last equality is written by using the above paragraph with the notation given there for
CG(wq). The first inclusion follows because any generator of Lπ ′ has π -index. In particular,
Lq ⊆ Qwq and Lr ⊆ Rwq , which provides the following inequalities:

|G|q/|Lq | > kq = qt and |G|r/|Lr | � kr = rl . (I)

Observe that the first one cannot be an equality since wq ∈ Qwq − Lq .
We claim that Lq is centralized by any Sylow q-subgroup of G. Suppose not and choose

some q-element z /∈ CG(Lq). Certainly, z has index mk and again by the first paragraph, we
write CG(z) = Qz × Rz × Z, with Rz ⊆ CG(Lq). We claim now that Rz = Lr . If y ∈ Rz − Lr ,
then y has index mk and by maximality, CG(z) = CG(y). But then Lq ⊆ CG(y) = CG(z) and
so, z ∈ CG(Lq), which is a contradiction. Thus, Rz ⊆ Lr and by (I), we get Rz = Lr , as claimed.
Suppose now that there exists some r-element x of index mk and write CG(x) = Qx × Rx × Z,
with Qx ⊆ CG(Lr). Then we may choose some q-element s ∈ Qx of index mk, otherwise every
element of Qx would have index m, so Qx ⊆ Lq and this yields to a contradiction with the
first inequality of (I). By maximality of mk, it follows that CG(x) = CG(s), so in particular,
Lr ⊆ CG(s) = CG(x), that is, Lr ⊆ Rx . As |Rx | = |Rz| = |Lr |, we conclude that Rx = Lr , so
x ∈ Lr . We have proved that Lr ∈ Sylr (G), but this is not possible since Lr ⊆ CG(wq) and wq

has index mk. Therefore, the claim is proved.
We prove now that Lr is also centralized by any Sylow r-subgroup of G. Choose any r-

element x of index mk and write, taking into account the first paragraph, CG(x) = Qx ×Rx ×Z,
with Qx ⊆ CG(Lr). Notice that (I) implies that Qx � Lq , so there exists some z ∈ Qx of index
mk. By maximality, Lr ⊆ CG(z) = CG(x), whence x ∈ CG(Lr). Since any r-element of index 1
or m also lies in Lr , we conclude that any Sylow r-subgroup of G centralizes Lr .

We prove that any Sylow q-subgroup of G centralizes Lπ ′ . Let z be a q-element of index
mk and write again by using the first paragraph, CG(z) = Rz × Qz × Z with Rz ⊆ CG(Lq). If
Rz ⊆ Lr then (I) implies that Rz = Lr , so in particular, z ∈ CG(Lr). Suppose then that Rz 	= Lr

and choose x ∈ Rz of index mk. By maximality CG(x) = CG(z) and by the above paragraph
Lr ⊆ CG(z) = CG(x). Thus, in both cases z ∈ CG(Lr) ∩ CG(Lq) = CG(Lπ ′). On the other
hand, if z is a q-element of index 1 or m then it trivially centralizes Lπ ′ .

Finally, we assert that any Sylow r-subgroup of G also centralizes Lπ ′ . The proof is similar
to the one of the above paragraph. It is enough to consider an r-element x of index mk, write
CG(x) = Qx × Rx × Z and take into account that Qx � Lq by (I).

All of the above results show that Lπ ′ is centralized by any Hall π ′-subgroup of G. On the
other hand, if we choose some w ∈ Lπ ′ of index m, we have H ⊆ CG(Lπ ′) ⊆ CG(w). By Step 6,
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CG(Lπ ′) = H × Z(G)π , whence H � G. We see that this provides the final contradiction. For
any x ∈ H , which has index 1, m or mk, we have

|G : H |∣∣xH
∣∣ = ∣∣xG

∣∣∣∣CG(x) : CH (x)
∣∣,

and as |xH | divides |xG|, it follows that |xH | is necessarily equal to 1 or k. By Theorem 2, then
k would be a power of a single prime, contradicting the fact that k = qt rl . �

Step 16. For a q-element x /∈ Lq , we can write CG(x) = Qx × Rx × Z, with Qx a q-group,
Rx ⊆ Lr and Z = Z(G){q,r}′ . Analogously, this property is satisfied for any r-element x /∈ Lr ,
but with Qx ⊆ Lq .

Proof. Notice that x has index mk and then by the first paragraph of the proof of Step 15,
CG(x) has the structure described in the statement, although it remains to prove that Rx ⊆ Lr .
Suppose that there is some y ∈ Rx − Lr . Clearly y has index mk and by maximality, it follows
that CG(x) = CG(y). In particular, CLq (x) = CLq (y) and CLr (x) = CLr (y), so we can apply
Theorem 4 to obtain that both Lq and Lr centralize x, that is, x ∈ CG(Lπ ′). But CG(Lπ ′) =
CG(Oπ ′(G)) ⊆ Oπ ′(G) × Z(G)π and then x ∈ Oπ ′(G) = Lπ ′ , which is a contradiction.

The same property for r-elements can be demonstrated in a similar way. �
Step 17. Lπ ′ = {x ∈ G: x is a π ′-element of index 1 or m}.

Proof. By definition of Lπ ′ and Step 2 it is enough to assume that there exists some w ∈ Lπ ′
of index mk and get a contradiction. Let us factor w = wqwr with wq ∈ Lq and wr ∈ Lr (omit-
ting without loss the central factor). Now, as Lπ ′ is abelian, we have Lπ ′ ⊆ CG(w), so we get
|G|r/|Lr | � kr = rl .

Let z be any q-element of G. If z ∈ Lq , then it trivially centralizes wr . If z /∈ Lq , then it has
index mk, and by using Step 16 (with the notation given for CG(z)) together with the above
inequality, we obtain Rz = Lr . Then z ∈ CG(Lr), so in particular z ∈ CG(wr). Therefore, wr is
centralized by any Sylow q-subgroup of G. But we can argue similarly with any r-element of G

to obtain that wq is centralized by any Sylow r-subgroup of G. This implies that wq has index 1
or m, so wq is centralized by some Sylow q-subgroup of G. It follows that w = wqwr must be
centralized by some Sylow q-subgroup of G, which contradicts the fact that w has index mk. �

Step 18. If Lq � Z(G), then Lq ∈ Sylq(G).

Proof. We shall assume that Lq � Z(G) and that Lq is not a Sylow q-subgroup of G in or-
der to get a contradiction. Suppose first that Lr ⊆ Z(G), that is, every non-central r-element
has index mk. We can take some q-element, x, of index mk. By Step 16, we write CG(x) =
Qx × Rx × Z with Rx ⊆ Lr . Consequently, Rx = Z(G)r and |G|r/|Z(G)|r = kr = rl , and this
contradicts the existence of r-elements of index mk. Notice that there are r-elements of index
mk as the Sylow r-subgroups are not central since r divides k.

Therefore, we can assume that Lr � Z(G) and then we may choose some non-central y ∈ Lr .
By Steps 6 and 17, we have CG(y) = H × Z(G)π , for some Hall π ′-subgroup H of G. In the
rest of this step, we shall prove that any element of CG(y) has index 1 or k in CG(y). This yields,
via Theorem 2, to either H is abelian or k is a power of a single prime. In both cases, there is a
contradiction. Note that H is not abelian, since there are π ′-elements of index mk by Step 4.
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To see the above assertion, we choose first any q-element z ∈ CG(y). As CG(zy) = CG(z) ∩
CG(y) ⊆ CG(y), then z has index 1 or k in CG(y). Now suppose that z is an r-element of
CG(y) and take some non-central x ∈ Lq (of index m by Step 17). As in the above paragraph,
we have CG(x) = Hg × Z(G)π , for some g ∈ G. Replace x by some G-conjugated to assume
that CG(y) = CG(x). Then

CG(z) ∩ CG(y) = CG(z) ∩ CG(x) = CG(zx) ⊆ CG(x) = CG(y),

so z has again index 1 or k in CG(y), as wanted. Finally, we check the same property for an
arbitrary element w of CG(y). We can assume without loss that w is a {q, r}-element and write
w = wqwr , since other any factor in the primary decomposition would be central. Moreover, if
one of both is central, then the result follows by the above argument. Suppose now that wr has
index m and notice that one can take x ∈ Lq with CG(x) = CG(y) by arguing as in the above
paragraph. Then

CG(wr) ∩ CG(y) = CG(wr) ∩ CG(x) = CG(wrx).

But wrx ∈ Lπ ′ , so by Step 17, it has index 1 or m. Since y has also index m, it follows that
CG(wr)∩CG(y) = CG(y) and as a result, CG(wr) = CG(y). Then CG(w)∩CG(y) = CG(wq)∩
CG(y) and this forces w to have index 1 or k in CG(y). Analogously, if we assume that wq has
index m, we can argue as above to obtain that w has also index 1 or k in CG(y). Therefore,
suppose finally that both wq and wr have index mk. By applying Step 16, and taking the notation
given in that step, we write CG(wq) = Qwq × Rwq × Z, with Rwq ⊆ Lr . Since wr ∈ Rwq , this
provides a contradiction with the fact that wr has index mk. �

Step 19. Final contradiction.

Proof. We can assume that one of the subgroups Lq or Lr lies in Z(G), otherwise Step 18
implies that G possesses an abelian π -complement, which provides a contradiction using
Lemma 1(a). We shall suppose for instance that Lr ⊆ Z(G), or equivalently, that every r-element
of G has index 1 or mk. Consequently, Lq is non-central and it is a Sylow q-subgroup of G by
Step 18. On the other hand, as the Hall π -subgroups of G are abelian, we know then that the
π -length of G is less or equal to 1. Hence, Oπ ′(G)K � G and we deduce that LqK � G. Let
R ∈ Sylr (G) and let us take any prime s ∈ π . Since R acts coprimely on LqK , there exists some
S ∈ Syls(G) fixed by R. Also, since S is abelian, certain coprime action properties allow us to
write S = T × CS(R), where T := [S,R]. Notice that if a ∈ CS(R), and hence R ⊆ CG(a), then
a ∈ Z(G) by Step 6. Therefore, CS(R) = Z(G)s , and consequently, T ∩ Z(G) = 1.

We consider the group R = R/Z(G)r which acts fixed-point-freely on T by xy = xy for all
x ∈ T and all y ∈ R. Certainly this action has no fixed points because if y fixes some 1 	= x ∈ T ,
then y ∈ CG(x) and by Step 6 it follows that y ∈ Z(G) and y = 1. It is also known that in this
case R must be cyclic or generalized quaternion (see for instance Theorem 16.12 of [9]). Note
that T 	= 1 since there are elements of index n.

On the other hand, T also acts coprimely on Lq , so we write Lq = [Lq,T ] × CLq (T ). More-
over, if y ∈ CLq (T ), then S ⊆ CG(y), and since y has index 1 or m and s divides m, we obtain
y ∈ Z(G). Hence, CLq (T ) = Z(G)q . Moreover, T acts fixed-point-freely on [Lq,T ]. To see
this, it is enough to notice that by Step 6 any a ∈ [Lq,T ] − {1} cannot be centralized by any
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non-central element of K , so in particular, by any element of T − {1}. Now, again by Theo-
rem 16.12 of [9], T must be cyclic if s 	= 2. Finally, as the automorphism group of a cyclic group
is abelian, we conclude that R is abelian. Therefore, R must be cyclic, whence R is abelian. By
using Lemma 1(a), we see that this contradicts the existence of r-elements of index mk in G. �
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