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1. Introduction

In 1989, Caffarelli [1] developed a general technique using a polynomial approximation to obtain
cle 2 and W2P interior estimates for the viscosity solutions of fully nonlinear uniformly elliptic
equations. In 1992, the second author proved similar results for fully nonlinear uniformly parabolic
equations as well as the estimates up to the boundary [8,9]. In 1997-1999, Kovats [4,5] obtained in-
terior regularity results for the classical solutions of fully nonlinear uniformly elliptic equations under
the Dini condition as well as modulus of continuity estimates, but with a gap in the proof. In 2002
Zou and Chen [10] filled up Kovats’s gap and used the approximation lemma to obtain interior reg-
ularity results for viscosity solutions of fully nonlinear uniformly parabolic equations under the Dini
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condition. On boundary case, for C2% regularity is well known [3] and [11]. In 2006, Li and Wang [6]
showed the boundary differentiability for solutions of elliptic differential equations in non-divergence
form on convex domains under zero Dirichlet boundary conditions. In 2009, Li and Wang [7] general-
ized their results to the nonhomogeneous Dirichlet boundary conditions. The boundary C!¢ theorem
of parabolic equations was proved by Wang [8,9]. In this paper, we prove C1:¥ estimates up to the
boundary for viscous solutions of fully nonlinear uniformly elliptic equations under Dini conditions.
The Dini conditions include that the boundary is C'-¢"_ This is new, and we also emphasize that we
have pointwise estimates. As a corollary we derive C** boundary regularity. We also like to point out
that C*¢ regularity holds only on the boundary in our setting but not in the interior.

In the linear case, it is well known that if u € C2(By(xp)) satisfies Au = f € C%®(By(xp)) in B2 (xo),
then for all 0 <t < 1, we have

1

t
sup ]DZu(x)_DZu(y)| <C</@d$+t/?ds>, (1.1)

Ix—yI<t

where C is independent of t. Of course, when f € C%%(By), i.e. w(t) =t%, 0 <« < 1, the right hand
side of (1.1) is controlled by Ct“.

Kovats [4] got the similar interior second order derivative estimates for fully nonlinear uniformly
elliptic equation F(D?u) = f in £2. Under condition

a
t
lim ~e® =0
n=0F ogrgl ptu)

where ¢(t) = t% 4+ w(t), his interior estimate is

lull 2y g7y < C. 4, A, @.70) (I[ullo:s,, + 11 fllo.w:Byy)- (12)
2
where
.
- s
1//(r)=r“+/?ds,
0

and @ =a(n, A, A) € (0,1) is the Holder exponent given in the Evans-Krylov theorem.

Li and Wang [7] investigated the influence of the convexity of domain on the solutions. Precisely,
assuming the domain in R" is convex, they study the smoothness of the solutions of the following
elliptic equation

—aiDijux) = f(x), £,
u(x) = g(x), 982,

where the matrix {a;j(x)} is symmetric and satisfies

1
nxngxln, Vx e $2.

My < (aV(0)

They obtained the following theorem.
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Theorem 1.1 (Li and Wang). Assume g(x) is differentiable at 0, i.e.
|g(x) — g(0) — Dg(0)x| <10 (1),

where o is a modulus of continuity, then

lu(x) —u(0) — Dg(0)x| < C[ra(llullLOO(:z(nxu)) + 1 flle@qix1y +0(~/§))

1
I f 2 exen) + 0 (+/20)
o
r

+ 1 f i@ arxarly) + 0 (V2 Ar) }r.

In this paper we give similar estimates. But we don’t assume the convexity of domain, and our
estimates are with regard to the first order derivative of solutions of fully nonlinear elliptic equation
up to the C1* boundary. We consider the following equation

F(D?u(x),x) = f(x), x€%,

(1.3)
ux) =¢(x), X €082,
where F is a uniformly elliptic operation, i.e. F satisfies
0<A|M| < F(N+ M,x) — F(N,x) < A|M]|, (1.4)

where N is any symmetric matrix, M is any definite symmetric matrix, A, A are elliptic constants.

Our primary goal is to answer the following questions: for solutions of (1.3), does Du exist on 942,
and what is the modulus of continuity of Du in terms of the modulus of continuity of f, 2 and ¢?
Before we claim our main theorems, let us explain in what sense we say the modulus of continuity
of them.

Definition 1.2. We say g(r) satisfies doubling condition if there exist 6, C such that 0 <6 <1, C >0
and

g(’) > Cg(or), foreachr >r>0. (1.5)

Definition 1.3. We say nonnegative function g(s), s € [0, 1], satisfies Dini condition if g(s) satisfies
doubling condition and satisfies

1
/&ds<+oo.

S
0

Definition 1.4. We say 952 is C1-¢ at y, y € 382, w is a modulus of continuity if there exists a vector i
such that

1 -
- sup ‘(X—y)-n\ <ow(r), foreachr>0.
r X€082,|y—x|<r
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We say 942 is C1 if for any y € 942, 982 is C1® at y. In the same way we define C1-4" if o) above
satisfies Dini condition.

Definition 1.5. We say ¢ is C1'“ on 852 at y if there exists a linear function L(x) such that

1
—  sup  |p(x) —L®| <o), foreachr>0.
T xed2,|y—x|<r

We say ¢ is C1® on 942 if for any y € 982, ¢ is C1¢ at y. Similarly we can define ¢4 for ¢.

Definition 1.6. We say f € LP(2) is C;l’w at y e 982 if

r ][ f7) =1flnppne <w@), foreachr>o0.

Br(y)ng2

Similarly we can define C, " on 952 and C~"-%" on a point or on 32. We will write C; " as €~
for simplicity.

The following theorems are our main results.

Theorem 1.7. Let u be a viscosity solution of (1.4) in £2 N B1(0), 0 € 852, and assume 352 is C1% at 0, ¢ is
Ccl®qt0, fis C~1¢ at 0 and w satisfies Dini condition, then u is differentiable at 0, furthermore, there exist
a linear function L(x) and constants & > 0, C > 0 such that

r 1

]u(x)—L(x)\<Cr(r‘5‘+/@d5+rd‘/wf) d5>, 0<r=x<1,

s+
0 r

where C only depends onn, A, A, o, ||[ullcoczng, 0y) @4 || flIn.20B, 0)-

Corollary 1.8. Let u be a viscosity solution of (1.4) in £2 N B1(0), 0 € 382, and assume 952 is C1-% at 0, ¢ is

c' gt0and fis C~' at 0. Then u is C"-# at 0, B = min(&, o), i.e. there exists a linear function L(x) such
that

luGy — L < ClxI"™P, o< X <1,
where &, C are constants as in Theorem 1.7.

From Theorem 1.7 we know that solutions of (1.4) are differentiable on boundary under boundary
Dini condition. In fact we also have the uniformly estimate of the modulus of continuity of first order
derivative under uniformly boundary Dini condition.

Theorem 1.9. Let u be a viscosity solution of (1.4)in £2 N B3(0), 0 € 352, and assume 352 is C1-¢ in By (0), ¢ is
C1® on 32N B3 (0), fis C~1% on 82 N B, (0), w satisfies Dini condition, y, z € 32N B1(0), |y —z| =1 < 1.
Then there exist constants & > 0, C > 0 such that

1

}Vu(y)_vu(z)| éC(ré‘+/w(s) ds-{—ré‘/ w(s) ds),

S S'l+6l
0 r
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where C only depends on n, A, A, o, |[ullcoeng, 0y and Il flln,2nB, ), & is the same constant as in Theo-
rem 1.7.

Corollary 1.10. Let u be a viscosity solution of (1.4) in £2 N B»(0), 0 € 352, and assume 352 is C1* in B;(0),
¢ is C1* on 92 N B2(0), fis C~"% on 32 N B(0) and y,z € 32 N B1(0), |y — 2| < 1. Then there exist
constants 8 = min(a, &) > 0, C > 0 such that

|Vu(y) — Vu(@)| <Cly — 2/,
where &, C are constants as in Theorem 1.9.

This paper is organized as follows: In Section 2, we present some notations and tools for fully
nonlinear elliptic equations. In Section 3, we prove Theorem 1.7 and Theorem 1.9.

2. Some auxiliary materials

We review the viscosity solutions and some important tools for fully nonlinear elliptic equations
in this section. In order to avoid talking about a specific operator, we introduce Pucci’'s extremal
operators as introduced in [2].

Definition 2.1 (Pucci’s extremal operator).

M‘(Dzu):k<Zej) +A<Zej>,

€j>0 ej<0

M+(D2u)=A<Zej> +A<Zej>,

ej>0 ej<0
where A and A are the elliptic constants as in (1.4), and {ej, 1 < j <n} are the eigenvalues of D2u.

Definition 2.2. We say that u belongs to the class S(f) = S(x, A, f) if for any C? function ¢ which
satisfies MT(D?¢) < f, u — ¢ cannot have a local maximum. Similarly we say that u belongs to the
class S(f) =S(x, A, f) if for any C? function ¢ which satisfies M*(D%@) > f, u — ¢ cannot have a
local minimum. The set S(f) N S(f) is denoted by S(f).

We introduce barriers for uniformly elliptic operators based on P(x) = ‘X‘% First we observe that

P(x) is a smooth subsolution except x=0 when N > W

symmetric, we only check at point (r,0, ..., 0).

— 1. Indeed, since P(x) is rotationally

M~ (D*P)x) = (AM(N+1) — A(n— D)N|x| N2 >0, x#£0.
Let

1 1
[x—x0I?N _ (R)*N

ProR ()= R /2)—2 — (Ry-28"
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then Py, r is rotational symmetric and satisfies the following properties:

Mipr,R >0, X # Xo,
Pxor =1, BBg(Xo),
Px,.r =0, dBRr(x0), 21)
Pxo,r <0, B% (%0),
9Py, R 32 Pyy R
—— <0, —=—>0, x#Xp,
or = ar? - 7 X0

where r = |x — Xg|.
We also need the following two classic tools: the A-B-P estimate and Harnack inequality [2].

Theorem 2.3 (A-B-P estimate). Assume u € S(f) in £2, then

; a +
sgp(u - grgu) <Cd@)|f ”L"(ufinfag u=r (u—infyp 1))’

where d(£2) is the diameter of 2, C is a universal constant which only depends on A, A and n.

Theorem 2.4 (Harnack inequality). Let u be a nonnegative function and u € S(f) in By. Then

supu < C(infu + ||f||L"(Bz)>’
B4 By

where C is a universal constant which only depends on A, A and n.
3. Estimates

In this section, we prove the theorems discussed in the Introduction. For convenience, we always
assume that 0 € 32 and the direction of the vector 7 in Definition 1.4 is the direction of x, axis.
Since the equation doesn’t include Du, we may assume ¢(0) =0 and D¢ (0) = 0 by subtracting a
linear function from the solution and the boundary value condition. Throughout this paper, we use
the following notations:

x=(X',x), I flne=IIflling),  Br=Br0),
Tr={xXeR" " [¥|<r}, T,x)=Tr+x,
02, =020 (Ty x (-1,1)), 2 =20 (T, x (-1,1)),

0sC382y = supx, — infx, , 0SCy, ¢ = supp(x) — infp(x) .
(X, xn)€082r (X', Xn)€082; (X', xn)€082r  (X',xn)€082r

Constant C may take different values independent of solution in different places.
Consider the following normalization of solution

eou((Sox)zSO’Z
8o *1u(@ox) | coc,) + I f B0 lln, 2,

ii(x) = e 4, (3.1)
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and the normalization of domain

= {x,d0x € 2}, (3.2)

specially 2= ?_o] ={x, 8ox € £21}.
Obviously ti(x) satisfies

G(D?u(x),x) = Il—<F(KD2ﬂ(x),x) = %f(aox),

where K = (Sazlu(sox)lco(gl) + 11 f (80%)|In,2,)/€0. We know that G(-) and F(-) have the same elliptic
constants. When €g and §p are small enough, (3.1) and (3.2) may satisfy the assumptions in Lemma 3.1
as well as conditions (3.5) and (3.6) in Lemma 3.2. The value of €y and 89 will be decided as in
Remark 3.3.

Lemma 3.1. Let u € S(f) in £, and u|yo, = ¢. Assume
B+ Bxp <u<A+ax, inf$2q,

and |A = B|, | = Bl | flln.2; <1, B<O< A, 3821 C Ty x (=1.k) forl,k< §.
Then there exist constants C, A1, B1, 1, f1 and €, C > 0, € € (0, 1), such that

B+ B1xn <u< At +oaixy in £21,

B1 <0< Ay,

a1, pr <o —é€lo— B[+ ClA—B|+Cllflne.

o1, p1 2 B+e€la— Bl —CIA—B[—Cl flna.

|B1 — A1l < o0scy, ¢ + Cll flln,2, + CU+k),

log — p1l < €loe — B| + C|A = B+ Cll flIn,2;

(3.3)

where C, € depend only on A, A and n.

Proof. Without loss of generality, we may suppose B < inf¢p <0 <sup¢p < A and g =0. We also
suppose that

“pfor)stna-p+? (3.4)
(u )<,2>/2( ) 7 .

otherwise we can replace u by A + ax, — u, then the argument would be similar to the case above
with small variation.
From (3.4), and applying Harnack inequality to the function u — B, we obtain

1 o
u—B2>0C E(A—B)Jrz =Gl flin.2;

i 1 3
in T% X (z+k 7 +D.

For any x; € R satisfying xp| < }1, let

. 1 o
v=u—B-— (31g€¢_B)P(x6~_}1_l)'% — {C] |:§(A_B)+Z:| _C2”f””’91}P(XE),%-H(),%'



E Ma, L. Wang / ]. Differential Equations 252 (2012) 988-1002 995

We may assume that
1 a
Gy i(A —-B)+ 51~ C2ll flln,2, =0,

otherwise (3.3) is obvious by choosing Ay =A, B1=B, 01 =«a, f/1=8=0and € = %

Now, let us restrict ourself to the domain
, 1 I ; 1
0 4 1 0> 2 1-

~ o1
@ =By (x5 +k)UB

We have that v € S(f) in £ and v|,5 > 0.
By the A-B-P estimate,

NI—=

v 2= —=C3| flltnay)-

Using the properties of P on the line {x;} x (I, %), we obtain

u>B—Csllfliney + (info—B)Py 1y

1 o
+ (C1 [E(A —B)+ Z:| - C2||f||n,91>P(x6,%+k),%

> B~ Csl|flincey + (inf ¢ — B) (1~ Caten +)

1
+Cs (q [5“‘ —B)+ %} - C2||f||n,.(21>(xn —k)

CsCq CsCq

- (T"‘ + 5 (A=)~ Ca( info—B) - C5C2||f||n,91>xn

. . 1 o
+I0f 6 — G5l fIn.2, +Ca( inf g —B) - C5<C1[§(A -B)+ ﬂ - C2||f||n,.(21>k

Cs5Cq
> (TO[ — C4|A — B| — C5Cy ||f||n,.(21)xn

. 1 o
+5gf¢ =G3[| flln,2, — C4lA = B|(k+D) — Cs(Q[E(A -B)+ Z] - Czllflln,gl)(kﬂ)-
1

We may assume Cs is a small positive number such that 0 < Cg := %C5C1 < 1. Noticing x; is arbitrary
in T1, hence
7

Bi+ Bixn Su <A +oixy,
where
{Bl =aigf¢ =Gl flng —Crk+D, A=A,
B1 =Ceaot — C4|A = B| = Csll flln2,, o1=q,

with C7 = C4(A — B) + C5(C1[%(A —B) + %] — G2l flln,@,) and Cg = C5Cy. Now let e =1 —Cg,C =
max{Cs, Cy4, Cg, C7, Cg}, then (3.3) is satisfied.
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As we mentioned at the beginning of this proof, if (3.4) is not satisfied, then similarly we have
B1 + B1xn < u < Ay + a1,
where
Aq =§gl?¢+c9||f||n,91 + Cro(k +1), By =B,
a1 =o —Cra+Ci2|A = B[+ Ci3l flln,e» B1=B=0.

Then (3.3) is also satisfied. O

Lemma 3.2. Assume u € S(f). Forany k=0, 1,2, 3, ..., there are constants Ay, By, oy and By, such that if
05Cyg2, ¢ 0SC 3821
——— +Clfllne, +C——— <1, 0<I<k, (3.5)
91 i’ 91
and
oy — Bl <1, 0<I<k, (3.6)

are satisfied, then we have
O*Bic + Pioxn <u < 0% A+ cuxn,  in 2,

and

Bk g O g Aks

o, B < otk—1 — €latk—1 — Pr—1| + ClAk—1 — Bi—1 4+ Cll flln.2 s »
ok, B = Pr—1 + €latk—1 — Bi—1] — ClAk—1 — Br—1| = Cll flln. 2,1 »

0SC32,, ; ¢ 05C 929k
Qkiil + C||f||n,!26k_1 + CW

|k — Bil < €latk—1 — Br—1l + ClAk—1 — Bkl + Cll flln 2, -

(3.7)

’

|Ak — Bl <

Actually 6 can be %. C and € are the same constants as in Lemma 3.1.

Proof. We prove this lemma by induction.
Case k=0, by taking Bo = infg, u, Ag =supg, u, ag = fo =0, is obviously true.
Case k=1 is derived by Lemma 3.1 directly.
k ~
Suppose it is right for case k. Now we show that case k+1 is true. Let v(x) = U0X) then v e S(f)

gk
in £21 for

. . ok ~ 2
F=otr@. =202 ="

where 23—,( ={x,0%x € D}, D is a domain.

Since we have (3.5), (3.6) and ”funﬁ] < 1, and use Lemma 3.1 again for v, then we derive
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Br+1Xn + Bny1 <V < opy1Xn + A1 in 2,
IBk+1 — Ak+1] < 0sCy5, ¢+ Cll fll, &, + Coscasy

o ® 0SC 3§24k

SCo
+Clf gy + €y

ok

’

and
|Bret1 — i | < €lak — Bl + ClA — Bil + Cll flln, 2,

Of course we also have the other three inequalities of (3.7). Scaling back, we obtain that case k+ 1 is
true. O

Remarl( 3.3. The conditions (3.5) and (3.6) can be satisfied by normalization. For (3.5), we have

0y + Cllifllne s COSCd < Cow(8%). For (3.6), observing (3.8), we know

-1
i C
lon = fil < €'leto = ol + C Y€ (1Ar-1-i = Bioail + 1 flIn.gyiy) < €'lo = ol + T— (D).
i=0

Consequently |op — Bol g 1 and w(1) < L€ derive (3.5) and (3.6). Since 852 is C1® at 0, let &g
be small enough to make oscd$2s, < 2_c€ in the normalization (3.1) and (3.2), then w(1) < —E is
satisfied if we choose €p < lzc

If we calculate the last two inequalities of (3.7), then we have the following lemma which will be
used in the proof of Theorem 1.7.

Lemma 3.4. If positive functions h(x) and g(x) satisfy h(6*t1) < eh(6%) + g(6%), k=0,1,2,3,..., where
0<0,e <1,then

(k 1- z)+

i‘h(el

i=k

s, §=0,

+_
where ()T = {07 -0

Proof. We compute

h(6%) <eh(6*7") + g(6¥ )
<e2h(6% %) +eg(6¥72) + g6k 1)
k—i ) ]
<)+ elg(ot1), (3.8)
i=0

and
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oo oo
D h(7) <D (en(07) +g(0' )
i=k i=k

o0 oo i—1

Z( I+ ) elg(o1) )

i=k i=k j=0

E(k 1— 1)Jr
O

We also need an elementary lemma for linear functions.

Lemma 3.5. If L(-) is linear function, then
ILO) joogp ) < l|L(-)\WB , 0<0<1,k=0,12,...,
0 0 gk+1
|VL()| < %]L(-)\meﬁ, r>o0,
where | - | is standard norm. We skip the proof of this lemma.

Now we prove the main theorem of this paper.

Proof of Theorem 1.7. From Lemma 3.2, we know that there exists a linear function Ly (x) s.t.

lu = Lyelio(2,) < [Ak — Bil6* + lo — Bil6%. (3.9)

We need the convergence of Ly. From (3.9) and Lemma 3.5, we have

Lok = Lol (20 S glkox = Lt liooypi)
< 2 (1w = Loklro (@) + U = Lokst 1o (2,,1))

< 2 (lu = Loelrse (@) + 1 = Lokst 2o (2,0,1))

._;Q:;|._n Q>|.—A

< 5 (1A% = Bidl + o - Bi)O¥ + (1Akt1 — Br1] + i1 — Beg11)0KT)
< ek— (I1Ak = Bkl + lok — Bl + [Aks1 — Biga | + lotksr — Brsal).-

In the same way, we obtain

|Lgk+i = Lok+ist [100(2,) < Wﬂgkﬂ — Lokrivt [190(@p4i41)
k—1
<O (1At — Biil + [0ty — Bril
+ | Aktit1 — Bisis1] + Qi1 — Brgit1l)-

Thus, using (3.7) and assumption, we know that the limit of Ly, k — oo, exists. Let Ly denote the
limit of Ly, k — oo.
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From Lemma 3.4, we have

o0

eleek Lolieo@,) < Y C(1Ak — Bil + o — Bi)
i=k
00 k X rek=1-i)F
Ce Ce
=D _ClAi = Bil + y—leo = fol + 3 ———(ClAi = Bil + Cllflln.2,,)-
i=k i=0
Among these terms,
k kylogy €
(9 ) 8o
oo —pols ———
—€
Noticing
05Co, ¢ 10SCh, ¢
< =
N AT
oscaﬂe, 1 0sC982pi-s
o S8 g
1 :
1 flln,22,q §||f||n.(29,sa 0<s<i,
we obtain
> 0sCag; ¢ . 05C92%
Z|Al Bi| < C Z( i +||f||n,99i)
i=k—1
OSCa.Qg[ osc 08029t
Z T+ g, ) d
i=k-2 5
91{—2
C 0SCy, ¢  0SCIL2 ds
<—f< + S+l )
0 s S s
0
and

k—1 k—1
1 . {0SCo . 1 0sCOyi1

Y e A =B < CY e 1( 91.9_1 + 91._19 +||f||n,99i,l)

i=0 i=2

05Cy 0, ¢ osca.Ql
—CZek - ( o e ||f||n:z>

+ ka |Ap — Bo| + ékfz(OSCem] ¢ +0sc0821 + || flln2;)

i+1
0SCy2, @ 0SCO2pt
CZe’ - / ( ot ||f||n99t)dt

i=0

i

+ ekl |Ao — Bo| + gk*2(05c391 ¢ +0scd2; + ||f||n,91)



1000 F. Ma, L. Wang / ]. Differential Equations 252 (2012) 988-1002

k—3 i+1 o0sc ¢ 90

082 0sC t
<CY e 3/94( et ||f||n99f>dt
i=0

+ €11 Ag — Bo| + €72 (0scs2, ¢ + 05c 21 + || flIn,2,)
k=2

€ k—2ylogse 1 0SC32, ¢ 0SCI2t
- g(é ) / (gt)logge ot + ot ”f”n 4t
0

+ €71 Ag — Bo| + €72 (oscy, ¢ + 0sc 321 + || flIn,2,)
1

C (gh-2yloze 1 05Cy2, ¢ 0SCIs
- g(é ) gl+logge s + S + ||f||n:25 ds

gk—2
+ €1 Ag — Bo| + ék_z(OSCa.Q1 ¢ +0sc0821 + || flln,2,)-

Then it’s easy to conclude

gk—2

] 0SCy, ¢  0SCIS2 ds
|L0k—Lo|Lw<99k)<ce’<((e’<)°g“+/( +— 5+||f||n,gs>?

S
0

1
I logy € 1 0SCy, ¢ 0SCIL2s
+ (O™ fsmogﬁe( t—— +flng, )ds
k-2

o
ok
I 05Cy 2, 0sc a2 ds
< ce"((e") o8y f < 29 s+ ||f||n,95>—
s s s
0
: 1 ¢ 982
kylogy € 0SCh 02 0scC s
+ (9 ) / sl+logge ( S + s + ”f”"-(?s) dS).
ok

By the triangle inequality

[u — Lolroe(@,) < IU = Loklroo(2,,) + Lok — Lolroe(g2,)

and noticing |A — By| + ot — Bl < Y72k (|1Ai — Bil + |ay — Brl), we have

0 k

] 0SCy, ¢  0SCOL2 ds
|u — Loli=(a,,) < ce"((ek)"gf’%f( +— 5+||f||n,gs);

N
0

1
K\ logy € 1 0SCy, @  0SCIS2s
+(09) /s1+log9€< St flng)ds).

gk

Let & :=logy, €. Since 0 < 6, € < 1, we have & > 0. By a standard process, for 0 <r < 1, we have
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r

0SCy, ¢  0SCIS2 ds
[u — Lo|r=o(e,) < CT(" +/( + . =01 lin, 25 "

N
0

1
. 1 0sC 0SC 082
+r°‘/ ( 2,9 | - S+||f||n,gs)ds>,
;

sl+a S

where C only depends on n, A, A, w and ||u||co(g,)- The proof is finished. O
Remark 3.6. It's easy to verify that r¢ f1 “l’(fo)t ds is a modulus of continuity if w is a modulus of

continuity. The corollary is just the special case of the theorem when w = Cor®. And in this case, the
constant C in Corollary 1.8 and Corollary 1.10 depends on Cy instead of w.

Proof of Theorem 1.9. We just consider |Vu(y) — Vu(z)|, where y,z € 382 and |y — z| = 6%. From
Lemma 3.1 we have

|u— 9k|L°°(S?9k(y)) S |Ay B,}:|9k + |O‘Ii[ - 5}3’}9k’

|u— Lok ’Lw(rzgk(z)) <|Af - Bﬂ@k + o — ﬂ,ﬂek, (3.10)

where Lé’k (x), Lgk (x) are linear functions of x € £2. Noticing 952 is C'® and our normalization makes
o small, then there exists a point q € §2 such that B, (q) C Bgr(y) N Byk(2) N £2. Using the argument
T

above, we obtain

|sz(x) k(x)|L°0(B k(z)) < (}A B,{|9k+|oz,f—ﬁ,ﬂek—i—|Ai—B,f|9k+|a,f—ﬁ,f|9k).
Consequently by Lemma 3.5, we have

v VL4 (| < — |1
| ok (X) - gk (X)| X ﬁ| gk (X) 9k (X)|Loo(3 ’ (q))

C(|Ax — Byl + o — B | + [ A% — Bi| + [eit — B¢))-
Hence

|Vu(y) — Vu(@)| =|VL} — VL§|

<|VLY = VL) | +|VL§ = VLE |+ VL), — VL, |
1
=X ﬁ(“‘g - Lgk ’LOO(.QQng(y)) + |L6 - Lék{LOO(Qﬁng(z)) + |VL9/< VL;k

By the proof of Theorem 1.7 and boundary condition, we have

1
|Vu(y)—Vu(z)|<C< +fﬂd +r /:ﬁz ds), ly —z|<r<1,

0 r

where C only depends on n, A, A, w, |[u]lcoce,) and || flin,e,- This completes our proof. O
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