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1. Introduction

In 1989, Caffarelli [1] developed a general technique using a polynomial approximation to obtain
C1,α, C2,α and W 2,p interior estimates for the viscosity solutions of fully nonlinear uniformly elliptic
equations. In 1992, the second author proved similar results for fully nonlinear uniformly parabolic
equations as well as the estimates up to the boundary [8,9]. In 1997–1999, Kovats [4,5] obtained in-
terior regularity results for the classical solutions of fully nonlinear uniformly elliptic equations under
the Dini condition as well as modulus of continuity estimates, but with a gap in the proof. In 2002
Zou and Chen [10] filled up Kovats’s gap and used the approximation lemma to obtain interior reg-
ularity results for viscosity solutions of fully nonlinear uniformly parabolic equations under the Dini
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condition. On boundary case, for C2,α regularity is well known [3] and [11]. In 2006, Li and Wang [6]
showed the boundary differentiability for solutions of elliptic differential equations in non-divergence
form on convex domains under zero Dirichlet boundary conditions. In 2009, Li and Wang [7] general-
ized their results to the nonhomogeneous Dirichlet boundary conditions. The boundary C1,α theorem
of parabolic equations was proved by Wang [8,9]. In this paper, we prove C1,ψ estimates up to the
boundary for viscous solutions of fully nonlinear uniformly elliptic equations under Dini conditions.
The Dini conditions include that the boundary is C1,dini . This is new, and we also emphasize that we
have pointwise estimates. As a corollary we derive C1,α boundary regularity. We also like to point out
that C1,α regularity holds only on the boundary in our setting but not in the interior.

In the linear case, it is well known that if u ∈ C2(B2(x0)) satisfies �u = f ∈ C0,ω(B2(x0)) in B2(x0),
then for all 0 � t < 1, we have

sup
|x−y|�t

∣∣D2u(x) − D2u(y)
∣∣ � C

( t∫
0

ω(s)

s
ds + t

1∫
t

ω(s)

s2
ds

)
, (1.1)

where C is independent of t . Of course, when f ∈ C0,α(B2), i.e. ω(t) = tα , 0 < α < 1, the right hand
side of (1.1) is controlled by Ctα .

Kovats [4] got the similar interior second order derivative estimates for fully nonlinear uniformly
elliptic equation F (D2u) = f in Ω . Under condition

lim
μ→0+ sup

0�t� 1
2

μα̃ϕ(t)

ϕ(tμ)
= 0,

where ϕ(t) = tα̃ + ω(t), his interior estimate is

‖u‖C2,ψ (B r0
2

) � C(n, λ,Λ,ω, r0)
(‖u‖0;Br0

+ ‖ f ‖0,ω;Br0

)
, (1.2)

where

ψ(r) = rα̃ +
r∫

0

ω(s)

s
ds,

and α̃ = α̃(n, λ,Λ) ∈ (0,1) is the Hölder exponent given in the Evans–Krylov theorem.
Li and Wang [7] investigated the influence of the convexity of domain on the solutions. Precisely,

assuming the domain in Rn is convex, they study the smoothness of the solutions of the following
elliptic equation {

−aij Diju(x) = f (x), Ω,

u(x) = g(x), ∂Ω,

where the matrix {aij(x)} is symmetric and satisfies

λIn �
(
aij(x)

)
n×n � 1

λ
In, ∀x ∈ Ω.

They obtained the following theorem.
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Theorem 1.1 (Li and Wang). Assume g(x) is differentiable at 0, i.e.∣∣g(x) − g(0) − Dg(0)x
∣∣ � rσ(r),

where σ is a modulus of continuity, then

∣∣u(x) − u(0) − Dg(0)x
∣∣ � C

{
rα

(‖u‖L∞(Ω([1×1])) + ‖ f ‖Ln(Ω([1×1])) + σ(
√

2 )
)

+ rα

1∫
r

‖ f ‖Ln(Ω([t×t])) + σ(
√

2t)

t1+α
dt

+ ‖ f ‖Ln(Ω([Λr×Λr])) + σ(
√

2Λr)

}
r.

In this paper we give similar estimates. But we don’t assume the convexity of domain, and our
estimates are with regard to the first order derivative of solutions of fully nonlinear elliptic equation
up to the C1,ω boundary. We consider the following equation{

F
(

D2u(x), x
) = f (x), x ∈ Ω,

u(x) = φ(x), x ∈ ∂Ω,
(1.3)

where F is a uniformly elliptic operation, i.e. F satisfies

0 < λ‖M‖ < F (N + M, x) − F (N, x) � Λ‖M‖, (1.4)

where N is any symmetric matrix, M is any definite symmetric matrix, λ,Λ are elliptic constants.
Our primary goal is to answer the following questions: for solutions of (1.3), does Du exist on ∂Ω ,

and what is the modulus of continuity of Du in terms of the modulus of continuity of f , ∂Ω and φ?
Before we claim our main theorems, let us explain in what sense we say the modulus of continuity
of them.

Definition 1.2. We say g(r) satisfies doubling condition if there exist θ, C such that 0 < θ < 1, C > 0
and

g
(
r′) � C g(θr), for each r′ > r > 0. (1.5)

Definition 1.3. We say nonnegative function g(s), s ∈ [0,1], satisfies Dini condition if g(s) satisfies
doubling condition and satisfies

1∫
0

g(s)

s
ds < +∞.

Definition 1.4. We say ∂Ω is C1,ω at y, y ∈ ∂Ω , ω is a modulus of continuity if there exists a vector 
n
such that

1

r
sup

x∈∂Ω,|y−x|�r

∣∣(x − y) · 
n∣∣ � ω(r), for each r > 0.
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We say ∂Ω is C1,ω if for any y ∈ ∂Ω , ∂Ω is C1,ω at y. In the same way we define C1,dini if ω above
satisfies Dini condition.

Definition 1.5. We say φ is C1,ω on ∂Ω at y if there exists a linear function L(x) such that

1

r
sup

x∈∂Ω,|y−x|�r

∣∣φ(x) − L(x)
∣∣ � ω(r), for each r > 0.

We say φ is C1,ω on ∂Ω if for any y ∈ ∂Ω , φ is C1,ω at y. Similarly we can define C1,dini for φ.

Definition 1.6. We say f ∈ L p(Ω) is C−1,ω
p at y ∈ ∂Ω if

r

(
−
∫

Br(y)∩Ω

f p
) 1

p

= ‖ f ‖n,Br(y)∩Ω � ω(r), for each r > 0.

Similarly we can define C−1,ω
p on ∂Ω and C−1,dini on a point or on ∂Ω . We will write C−1,ω

n as C−1,ω

for simplicity.

The following theorems are our main results.

Theorem 1.7. Let u be a viscosity solution of (1.4) in Ω ∩ B1(0), 0 ∈ ∂Ω , and assume ∂Ω is C1,ω at 0, φ is
C1,ω at 0, f is C−1,ω at 0 and ω satisfies Dini condition, then u is differentiable at 0, furthermore, there exist
a linear function L(x) and constants α̂ > 0, C > 0 such that

∣∣u(x) − L(x)
∣∣ � Cr

(
rα̂ +

r∫
0

ω(s)

s
ds + rα̂

1∫
r

ω(s)

s1+α̂
ds

)
, 0 � r = |x| � 1,

where C only depends on n, λ,Λ,ω, ‖u‖C0(Ω∩B1(0)) and ‖ f ‖n,Ω∩B1(0) .

Corollary 1.8. Let u be a viscosity solution of (1.4) in Ω ∩ B1(0), 0 ∈ ∂Ω , and assume ∂Ω is C1,α at 0, φ is

C1,α at 0 and f is C−1,α at 0. Then u is C1,β̂ at 0, β̂ = min(α̂,α), i.e. there exists a linear function L(x) such
that ∣∣u(x) − L(x)

∣∣ � C |x|1+β̂ , 0 � |x| � 1,

where α̂, C are constants as in Theorem 1.7.

From Theorem 1.7 we know that solutions of (1.4) are differentiable on boundary under boundary
Dini condition. In fact we also have the uniformly estimate of the modulus of continuity of first order
derivative under uniformly boundary Dini condition.

Theorem 1.9. Let u be a viscosity solution of (1.4) in Ω ∩ B2(0), 0 ∈ ∂Ω , and assume ∂Ω is C1,ω in B2(0), φ is
C1,ω on ∂Ω ∩ B2(0), f is C−1,ω on ∂Ω ∩ B2(0), ω satisfies Dini condition, y, z ∈ ∂Ω ∩ B1(0), |y − z| = r � 1.
Then there exist constants α̂ > 0, C > 0 such that

∣∣∇u(y) − ∇u(z)
∣∣ � C

(
rα̂ +

r∫
ω(s)

s
ds + rα̂

1∫
r

ω(s)

s1+α̂
ds

)
,

0
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where C only depends on n, λ,Λ,ω, ‖u‖C0(Ω∩B2(0)) and ‖ f ‖n,Ω∩B2(0) , α̂ is the same constant as in Theo-
rem 1.7.

Corollary 1.10. Let u be a viscosity solution of (1.4) in Ω ∩ B2(0), 0 ∈ ∂Ω , and assume ∂Ω is C1,α in B2(0),
φ is C1,α on ∂Ω ∩ B2(0), f is C−1,α on ∂Ω ∩ B2(0) and y, z ∈ ∂Ω ∩ B1(0), |y − z| � 1. Then there exist
constants β̂ = min(α, α̂) > 0, C > 0 such that

∣∣∇u(y) − ∇u(z)
∣∣ � C |y − z|β̂ ,

where α̂, C are constants as in Theorem 1.9.

This paper is organized as follows: In Section 2, we present some notations and tools for fully
nonlinear elliptic equations. In Section 3, we prove Theorem 1.7 and Theorem 1.9.

2. Some auxiliary materials

We review the viscosity solutions and some important tools for fully nonlinear elliptic equations
in this section. In order to avoid talking about a specific operator, we introduce Pucci’s extremal
operators as introduced in [2].

Definition 2.1 (Pucci’s extremal operator).

M−(
D2u

) = λ

( ∑
e j>0

e j

)
+ Λ

( ∑
e j<0

e j

)
,

M+(
D2u

) = Λ

( ∑
e j>0

e j

)
+ λ

( ∑
e j<0

e j

)
,

where λ and Λ are the elliptic constants as in (1.4), and {e j,1 � j � n} are the eigenvalues of D2u.

Definition 2.2. We say that u belongs to the class S( f ) = S(λ,Λ, f ) if for any C2 function ϕ which
satisfies M+(D2ϕ) � f , u − ϕ cannot have a local maximum. Similarly we say that u belongs to the
class S( f ) = S(λ,Λ, f ) if for any C2 function ϕ which satisfies M+(D2ϕ) � f , u − ϕ cannot have a
local minimum. The set S( f ) ∩ S( f ) is denoted by S( f ).

We introduce barriers for uniformly elliptic operators based on P (x) = 1
|x|2N . First we observe that

P (x) is a smooth subsolution except x = 0 when N >
(n−1)Λ

λ
− 1. Indeed, since P (x) is rotationally

symmetric, we only check at point (r,0, . . . ,0).

M−(
D2 P

)
(x) = (

λ(N + 1) − Λ(n − 1)
)
N|x|−N−2 > 0, x 
= 0.

Let

P x0,R(x) =
1

|x−x0|2N − 1
(R)2N

−2N −2N
,

(R/2) − (R)
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then Px0,R is rotational symmetric and satisfies the following properties:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M− P x0,R > 0, x 
= x0,

P x0,R = 1, ∂ B R
2
(x0),

P x0,R = 0, ∂ B R(x0),

P x0,R � 0, Bc
R(x0),

∂ P x0,R

∂r
< 0,

∂2 P x0,R

∂r2
> 0, x 
= x0,

(2.1)

where r = |x − x0|.
We also need the following two classic tools: the A-B-P estimate and Harnack inequality [2].

Theorem 2.3 (A-B-P estimate). Assume u ∈ S( f ) in Ω , then

sup
Ω

(
u − inf

∂Ω
u
)−

� Cd(Ω)
∥∥ f +∥∥

Ln(u−inf∂Ω u=Γ (u−inf∂Ω u))
,

where d(Ω) is the diameter of Ω , C is a universal constant which only depends on λ,Λ and n.

Theorem 2.4 (Harnack inequality). Let u be a nonnegative function and u ∈ S( f ) in B2 . Then

sup
B1

u � C
(

inf
B1

u + ‖ f ‖Ln(B2)

)
,

where C is a universal constant which only depends on λ,Λ and n.

3. Estimates

In this section, we prove the theorems discussed in the Introduction. For convenience, we always
assume that 0 ∈ ∂Ω and the direction of the vector 
n in Definition 1.4 is the direction of xn axis.
Since the equation doesn’t include Du, we may assume φ(0) = 0 and Dφ(0) = 0 by subtracting a
linear function from the solution and the boundary value condition. Throughout this paper, we use
the following notations:

x = (
x′, xn

)
, ‖ f ‖n,Ω = ‖ f ‖Ln(Ω), Br = Br(0),

Tr = {
x′ ∈ R

n−1:
∣∣x′∣∣ < r

}
, Tr(x) = Tr + x,

∂Ωr = ∂Ω ∩ (
Tr × (−r, r)

)
, Ωr = Ω ∩ (

Tr × (−r, r)
)
,

osc ∂Ωr = sup xn
(x′,xn)∈∂Ωr

− inf xn
(x′,xn)ε∂Ωr

, osc∂Ωr φ = sup φ(x)
(x′,xn)∈∂Ωr

− inf φ(x)
(x′,xn)∈∂Ωr

.

Constant C may take different values independent of solution in different places.
Consider the following normalization of solution

ũ(x) = ε0u(δ0x)δ−2
0

δ−2|u(δ0x)| 0 + ‖ f (δ0x)‖n,Ω

, x ∈ Ω̃1, (3.1)

0 C (Ω1) 1
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and the normalization of domain

Ω̃ = Ω

δ0
= {x, δ0x ∈ Ω}, (3.2)

specially Ω̃1 = Ω1
δ0

= {x, δ0x ∈ Ω1}.
Obviously ũ(x) satisfies

G
(

D2ũ(x), x
) = 1

K
F
(

K D2ũ(x), x
) = 1

K
f (δ0x),

where K = (δ−2
0 |u(δ0x)|C0(Ω1) + ‖ f (δ0x)‖n,Ω1 )/ε0. We know that G(·) and F (·) have the same elliptic

constants. When ε0 and δ0 are small enough, (3.1) and (3.2) may satisfy the assumptions in Lemma 3.1
as well as conditions (3.5) and (3.6) in Lemma 3.2. The value of ε0 and δ0 will be decided as in
Remark 3.3.

Lemma 3.1. Let u ∈ S( f ) in Ω2 and u|∂Ω1 = φ . Assume

B + βxn � u � A + αxn in Ω1,

and |A − B|, |α − β|,‖ f ‖n,Ω1 � 1, B � 0 � A, ∂Ω1 ⊂ T1 × (−l,k) for l,k � 1
8 .

Then there exist constants C, A1, B1,α1, β1 and ε , C > 0, ε ∈ (0,1), such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1 + β1xn � u � A1 + α1xn in Ω 1
4
,

B1 � 0 � A1,

α1, β1 � α − ε|α − β| + C |A − B| + C‖ f ‖n,Ω1 ,

α1, β1 � β + ε|α − β| − C |A − B| − C‖ f ‖n,Ω1 ,

|B1 − A1| � osc∂Ω1 φ + C‖ f ‖n,Ω1 + C(l + k),

|α1 − β1| � ε|α − β| + C |A − B| + C‖ f ‖n,Ω1 ,

(3.3)

where C, ε depend only on λ,Λ and n.

Proof. Without loss of generality, we may suppose B � infφ � 0 � sup φ � A and β = 0. We also
suppose that

(u − B)

(
0,

1

2

)
� 1

2
(A − B) + α

4
, (3.4)

otherwise we can replace u by A + αxn − u, then the argument would be similar to the case above
with small variation.

From (3.4), and applying Harnack inequality to the function u − B , we obtain

u − B � C1

[
1

2
(A − B) + α

4

]
− C2‖ f ‖n,Ω1 ,

in T 3
4

× ( 1
4 + k, 3

4 + l).

For any x′
0 ∈ R

n−1 satisfying |x′
0| < 1

4 , let

v = u − B −
(

inf
∂Ω

φ − B
)

P
(x′

0,− 1
4 −l), 1

2
−

{
C1

[
1

2
(A − B) + α

4

]
− C2‖ f ‖n,Ω1

}
P

(x′
0, 1

2 +k), 1
2
.

1
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We may assume that

C1

[
1

2
(A − B) + α

2

]
− C2‖ f ‖n,Ω1 � 0,

otherwise (3.3) is obvious by choosing A1 = A, B1 = B , α1 = α, β1 = β = 0 and ε = 1
2 .

Now, let us restrict ourself to the domain

Ω̃ =
(

B 1
2

(
x′

0,
1

2
+ k

)
∪ B 1

2

(
x′

0,−
1

4
− l

)
− B 1

4

(
x′

0,
1

2
+ k

))
∩ Ω1.

We have that v ∈ S( f ) in Ω̃ and v|∂Ω̃ � 0.
By the A-B-P estimate,

v � −C3‖ f ‖Ln(Ω1).

Using the properties of P on the line {x′
0} × (−l, 1

4 ), we obtain

u � B − C3‖ f ‖Ln(Ω1) +
(

inf
∂Ω1

φ − B
)

P
(x′

0,− 1
4 −l), 1

2

+
(

C1

[
1

2
(A − B) + α

4

]
− C2‖ f ‖n,Ω1

)
P

(x′
0, 1

2 +k), 1
2

� B − C3‖ f ‖Ln(Ω1) +
(

inf
∂Ω1

φ − B
)(

1 − C4(xn + l)
)

+ C5

(
C1

[
1

2
(A − B) + α

4

]
− C2‖ f ‖n,Ω1

)
(xn − k)

=
(

C5C1

4
α + C5C1

2
(A − B) − C4

(
inf
∂Ω1

φ − B
)

− C5C2‖ f ‖n,Ω1

)
xn

+ inf
∂Ω1

φ − C3‖ f ‖n,Ω1 + C4

(
inf
∂Ω1

φ − B
)

l − C5

(
C1

[
1

2
(A − B) + α

4

]
− C2‖ f ‖n,Ω1

)
k

�
(

C5C1

4
α − C4|A − B| − C5C2‖ f ‖n,Ω1

)
xn

+ inf
∂Ω1

φ − C3‖ f ‖n,Ω1 − C4|A − B|(k + l) − C5

(
C1

[
1

2
(A − B) + α

4

]
− C2‖ f ‖n,Ω1

)
(k + l).

We may assume C5 is a small positive number such that 0 < C6 := 1
4 C5C1 < 1. Noticing x′

0 is arbitrary
in T 1

4
, hence

B1 + β1xn � u � A1 + α1xn,

where {
B1 = inf

∂Ω1
φ − C3‖ f ‖n,Ω1 − C7(k + l), A1 = A,

β1 = C6α − C4|A − B| − C8‖ f ‖n,Ω1 , α1 = α,

with C7 = C4(A − B) + C5(C1[ 1
2 (A − B) + α

4 ] − C2‖ f ‖n,Ω1 ) and C8 = C5C2. Now let ε = 1 − C6, C =
max{C3, C4, C6, C7, C8}, then (3.3) is satisfied.
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As we mentioned at the beginning of this proof, if (3.4) is not satisfied, then similarly we have

B1 + β1xn � u � A1 + α1xn,

where ⎧⎨⎩
A1 = sup

∂Ω1

φ + C9‖ f ‖n,Ω1 + C10(k + l), B1 = B,

α1 = α − C11α + C12|A − B| + C13‖ f ‖n,Ω1 , β1 = β = 0.

Then (3.3) is also satisfied. �
Lemma 3.2. Assume u ∈ S( f ). For any k = 0,1,2,3, . . . , there are constants Ak, Bk,αk and βk such that if

osc∂Ω
θl φ

θ l
+ C‖ f ‖n,Ω

θl + C
osc ∂Ωθ l

θ l
� 1, 0 � l < k, (3.5)

and

|αl − βl| � 1, 0 � l < k, (3.6)

are satisfied, then we have

θk Bk + βkxn � u � θk Ak + αkxn, in Ωθk ,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bk � 0 � Ak,

αk, βk � αk−1 − ε|αk−1 − βk−1| + C |Ak−1 − Bk−1| + C‖ f ‖n,Ω
θk−1 ,

αk, βk � βk−1 + ε|αk−1 − βk−1| − C |Ak−1 − Bk−1| − C‖ f ‖n,Ω
θk−1 ,

|Ak − Bk| �
osc∂Ω

θk−1 φ

θk−1
+ C‖ f ‖n,Ω

θk−1 + C
osc ∂Ωθk−1

θk−1
,

|αk − βk| � ε|αk−1 − βk−1| + C |Ak−1 − Bk−1| + C‖ f ‖n,Ω
θk−1 .

(3.7)

Actually θ can be 1
4 . C and ε are the same constants as in Lemma 3.1.

Proof. We prove this lemma by induction.
Case k = 0, by taking B0 = infΩ1 u, A0 = supΩ1

u, α0 = β0 = 0, is obviously true.
Case k = 1 is derived by Lemma 3.1 directly.

Suppose it is right for case k. Now we show that case k + 1 is true. Let v(x) = u(θk x)
θk , then v ∈ S( f̃ )

in Ω̃1 for

f̃ = θk f
(
θkx

)
, φ̃(x) = φ(θkx)

θk
, Ω̃1 = Ωθk

θk
,

where D

θk = {x, θkx ∈ D}, D is a domain.

Since we have (3.5), (3.6) and ‖ f̃ ‖n,Ω̃ � 1, and use Lemma 3.1 again for v , then we derive

1
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βk+1xn + Bn+1 � v � αk+1xn + Ak+1 in Ω̃θ ,

|Bk+1 − Ak+1| � osc∂Ω̃1
φ̃ + C‖ f̃ ‖n,Ω̃1

+ C osc ∂Ω̃1

�
osc∂Ω

θk φ

θk
+ C‖ f ‖n,Ω

θk + C
osc ∂Ωθk

θk
,

and

|βk+1 − αk+1| � ε|αk − βk| + C |Ak − Bk| + C‖ f ‖n,Ω
θk .

Of course we also have the other three inequalities of (3.7). Scaling back, we obtain that case k + 1 is
true. �
Remark 3.3. The conditions (3.5) and (3.6) can be satisfied by normalization. For (3.5), we have
osc∂Ω

θl
φ

θ l + C‖ f ‖n,Ω
θl + C

osc ∂Ω
θl

θ l � Cω(θk). For (3.6), observing (3.8), we know

|αl − βl| � εl|α0 − β0| + C
l−1∑
i=0

ε i(|Al−1−i − Bl−1−i| + ‖ f ‖n,Ω
θl−1−i

)
� εl|α0 − β0| + C

1 − ε
ω(1).

Consequently |α0 − β0| � 1
2 and ω(1) � 1−ε

2C derive (3.5) and (3.6). Since ∂Ω is C1,ω at 0, let δ0

be small enough to make osc ∂Ωδ0 � 1−ε
2C in the normalization (3.1) and (3.2), then ω(1) � 1−ε

2C is
satisfied if we choose ε0 � 1−ε

2C .

If we calculate the last two inequalities of (3.7), then we have the following lemma which will be
used in the proof of Theorem 1.7.

Lemma 3.4. If positive functions h(x) and g(x) satisfy h(θk+1) � εh(θk) + g(θk), k = 0,1,2,3, . . . , where
0 � θ, ε < 1, then

∞∑
i=k

h
(
θ i) � εk

1 − ε
h(1) +

∞∑
i=0

ε(k−1−i)+

1 − ε
g
(
θ i),

where (s)+ =
{

s, s � 0,

0, s < 0.

Proof. We compute

h
(
θk) � εh

(
θk−1) + g

(
θk−1)

� ε2h
(
θk−2) + εg

(
θk−2) + g

(
θk−1)

· · ·

� εkh(1) +
k−i∑
i=0

ε i g
(
θk−1−i), (3.8)

and
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∞∑
i=k

h
(
θ i) �

∞∑
i=k

(
εh

(
θ j−1) + g

(
θ i−1))

�
∞∑

i=k

(
ε jh(1) +

∞∑
i=k

i−1∑
j=0

ε j g
(
θk−1− j))

= εk

1 − ε
h(1) +

∞∑
i=0

ε(k−1−i)+

1 − ε
g
(
θ i). �

We also need an elementary lemma for linear functions.

Lemma 3.5. If L(·) is linear function, then⎧⎪⎪⎨⎪⎪⎩
∣∣L(·)∣∣L∞(B

θk )
� 1

θ

∣∣L(·)∣∣L∞(B
θk+1 )

, 0 < θ < 1, k = 0,1,2, . . . ,∣∣∇L(·)∣∣ � 1

r

∣∣L(·)∣∣L∞(Br)
, r > 0,

where | · | is standard norm. We skip the proof of this lemma.

Now we prove the main theorem of this paper.

Proof of Theorem 1.7. From Lemma 3.2, we know that there exists a linear function Lθk (x) s.t.

|u − Lθk |L∞(Ω
θk ) � |Ak − Bk|θk + |αk − βk|θk. (3.9)

We need the convergence of Lθk . From (3.9) and Lemma 3.5, we have

|Lθk − Lθk+1 |L∞(Ω
θk ) � 1

θ
|Lθk − Lθk+1 |L∞(Ω

θk+1 )

� 1

θ

(|u − Lθk |L∞(Ω
θk+1 ) + |u − Lθk+1 |L∞(Ω

θk+1 )

)
� 1

θ

(|u − Lθk |L∞(Ω
θk ) + |u − Lθk+1 |L∞(Ω

θk+1 )

)
� 1

θ

((|Ak − Bk| + |αk − βk|
)
θk + (|Ak+1 − Bk+1| + |αk+1 − βk+1|

)
θk+1)

� θk−1(|Ak − Bk| + |αk − βk| + |Ak+1 − Bk+1| + |αk+1 − βk+1|
)
.

In the same way, we obtain

|Lθk+i − Lθk+i+1 |L∞(Ω
θk ) � 1

θ i+1
|Lθk+i − Lθk+i+1 |L∞(Ω

θk+i+1 )

� θk−1(|Ak+i − Bk+i| + |αk+i − βk+i|
+ |Ak+i+1 − Bk+i+1| + |αk+i+1 − βk+i+1|

)
.

Thus, using (3.7) and assumption, we know that the limit of Lθk , k → ∞, exists. Let L0 denote the
limit of Lθk , k → ∞.
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From Lemma 3.4, we have

1

θk
|Lθk − L0|L∞(Ω

θk ) �
∞∑

i=k

C
(|Ak − Bk| + |αk − βk|

)
=

∞∑
i=k

C |Ai − Bi | + Cεk

1 − ε
|α0 − β0| +

∞∑
i=0

Cε(k−1−i)+

1 − ε

(
C |Ai − Bi| + C‖ f ‖n,Ω

θ i

)
.

Among these terms,

εk

1 − ε
|α0 − β0| � (θk)logθ ε

1 − ε
.

Noticing ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

osc∂Ω
θ i φ

θ i
� 1

θ

osc∂Ω
θ i−s φ

θ i−s
,

osc ∂Ωθ i

θ i
� 1

θ

osc ∂Ωθ i−s

θ i−s
,

‖ f ‖n,Ω
θ i � 1

θ
‖ f ‖n,Ω

θ i−s , 0 � s � i,

we obtain

∞∑
i=k

|Ai − Bi| � C
∞∑

i=k−1

(osc∂Ω
θ i φ

θ i
+ osc ∂Ωθ i

θ i
+ ‖ f ‖n,Ω

θ i

)

� C

θ

∞∑
i=k−2

i+1∫
i

(
osc∂Ωθt φ

θ t
+ osc ∂Ωθ t

θ t
+ ‖ f ‖n,Ωθt

)
dt

� C

θ

θk−2∫
0

(
osc∂Ωs φ

s
+ osc ∂Ωs

s
+ ‖ f ‖n,Ωs

)
ds

s
,

and

k−1∑
i=0

εk−1−i|Ai − Bi | � C
k−1∑
i=2

εk−1−i
(oscΩ

θ i−1 φ

θ i−1
+ osc ∂Ωθ i−1

θ i−1
+ ‖ f ‖n,Ω

θ i−1

)

= C
k−2∑
i=1

εk−2−i
(osc∂Ω

θ i φ

θ i
+ osc ∂Ωθ i

θ i
+ ‖ f ‖n,Ω

θ i

)
+ εk−1|A0 − B0| + εk−2(osc∂Ω1 φ + osc ∂Ω1 + ‖ f ‖n,Ω1

)
� C

k−3∑
i=0

εk−3−i

i+1∫
i

1

θ

(
osc∂Ωθt φ

θ t
+ osc ∂Ωθ t

θ t
+ ‖ f ‖n,Ωθt

)
dt

+ εk−1|A0 − B0| + εk−2(osc∂Ω1 φ + osc ∂Ω1 + ‖ f ‖n,Ω1

)



1000 F. Ma, L. Wang / J. Differential Equations 252 (2012) 988–1002
� C
k−3∑
i=0

εk−3

i+1∫
i

1

θεt

(
osc∂Ωθt φ

θ t
+ osc ∂Ωθ t

θ t
+ ‖ f ‖n,Ωθt

)
dt

+ εk−1|A0 − B0| + εk−2(osc∂Ω1 φ + osc ∂Ω1 + ‖ f ‖n,Ω1

)
= C

θε

(
θk−2)logθ ε

k−2∫
0

1

(θ t)logθ ε

(
osc∂Ωθt φ

θ t
+ osc ∂Ωθ t

θ t
+ ‖ f ‖n,Ωθt

)
dt

+ εk−1|A0 − B0| + εk−2(osc∂Ω1 φ + osc ∂Ω1 + ‖ f ‖n,Ω1

)
= C

θε

(
θk−2)logθ ε

1∫
θk−2

1

s1+logθ ε

(
osc∂Ωs φ

s
+ osc ∂Ωs

s
+ ‖ f ‖n,Ωs

)
ds

+ εk−1|A0 − B0| + εk−2(osc∂Ω1 φ + osc ∂Ω1 + ‖ f ‖n,Ω1

)
.

Then it’s easy to conclude

|Lθk − L0|L∞(Ω
θk ) � Cθk

((
θk)logθ ε +

θk−2∫
0

(
osc∂Ωs φ

s
+ osc ∂Ωs

s
+ ‖ f ‖n,Ωs

)
ds

s

+ (
θk)logθ ε

1∫
θk−2

1

s1+logθ ε

(
osc∂Ωs φ

s
+ osc ∂Ωs

s
+ ‖ f ‖n,Ωs

)
ds

)

� Cθk

((
θk)logθ ε +

θk∫
0

(
osc∂Ωs φ

s
+ osc ∂Ωs

s
+ ‖ f ‖n,Ωs

)
ds

s

+ (
θk)logθ ε

1∫
θk

1

s1+logθ ε

(
osc∂Ωs φ

s
+ osc ∂Ωs

s
+ ‖ f ‖n,Ωs

)
ds

)
.

By the triangle inequality

|u − L0|L∞(Ω
θk ) � |u − Lθk |L∞(Ω

θk ) + |Lθk − L0|L∞(Ω
θk ),

and noticing |Ak − Bk| + |αk − βk| � ∑∞
i=k(|Ai − Bi | + |αk − βk|), we have

|u − L0|L∞(Ω
θk ) � Cθk

((
θk)logθ ε +

θk∫
0

(
osc∂Ωs φ

s
+ osc ∂Ωs

s
+ ‖ f ‖n,Ωs

)
ds

s

+ (
θk)logθ ε

1∫
θk

1

s1+logθ ε

(
osc∂Ωs φ

s
+ osc ∂Ωs

s
+ ‖ f ‖n,Ωs

)
ds

)
.

Let α̂ := logθ ε . Since 0 < θ , ε < 1, we have α̂ > 0. By a standard process, for 0 < r < 1, we have



F. Ma, L. Wang / J. Differential Equations 252 (2012) 988–1002 1001
|u − L0|L∞(Ωr) � Cr

(
rα̂ +

r∫
0

(
osc∂Ωs φ

s
+ osc ∂Ωs

s
+ ‖ f ‖n,Ωs

)
ds

s

+ rα̂

1∫
r

1

s1+α̂

(
osc∂Ωs φ

s
+ osc ∂Ωs

s
+ ‖ f ‖n,Ωs

)
ds

)
,

where C only depends on n, λ,Λ,ω and ‖u‖C0(Ω1) . The proof is finished. �
Remark 3.6. It’s easy to verify that rα̂

∫ 1
r

ω(s)
s1+α̂ ds is a modulus of continuity if ω is a modulus of

continuity. The corollary is just the special case of the theorem when ω = C0rα . And in this case, the
constant C in Corollary 1.8 and Corollary 1.10 depends on C0 instead of ω.

Proof of Theorem 1.9. We just consider |∇u(y) − ∇u(z)|, where y, z ∈ ∂Ω and |y − z| = θk . From
Lemma 3.1 we have ∣∣u − L y

θk

∣∣
L∞(Ω

θk (y))
�

∣∣A y
k − B y

k

∣∣θk + ∣∣α y
k − β

y
k

∣∣θk,∣∣u − Lz
θk

∣∣
L∞(Ω

θk (z)) �
∣∣Az

k − Bz
k

∣∣θk + ∣∣αz
k − β z

k

∣∣θk, (3.10)

where L y
θk (x), Lz

θk (x) are linear functions of x ∈ Ω . Noticing ∂Ω is C1,ω and our normalization makes
ω small, then there exists a point q ∈ Ω such that B θk

4
(q) ⊂ Bθk (y) ∩ Bθk (z) ∩ Ω . Using the argument

above, we obtain∣∣L y
θk (x) − Lz

θk (x)
∣∣

L∞(B
θk
4

(z)) � C
(∣∣A y

k − B y
k

∣∣θk + ∣∣α y
k − β

y
k

∣∣θk + ∣∣Az
k − Bz

k

∣∣θk + ∣∣αz
k − β z

k

∣∣θk).
Consequently by Lemma 3.5, we have

∣∣∇L y
θk (x) − ∇Lz

θk (x)
∣∣ � 1

θk

∣∣L y
θk (x) − L y

θk (x)
∣∣

L∞(B
θk
4

(q))

� C
(∣∣A y

k − B y
k

∣∣ + ∣∣α y
k − β

y
k

∣∣ + ∣∣Az
k − Bz

k

∣∣ + ∣∣αz
k − β z

k

∣∣).
Hence∣∣∇u(y) − ∇u(z)

∣∣ = ∣∣∇L y
0 − ∇Lz

0

∣∣
�

∣∣∇L y
0 − ∇L y

θk

∣∣ + ∣∣∇Lz
0 − ∇Lz

θk

∣∣ + ∣∣∇L y
θk − ∇Lz

θk

∣∣
� 1

θk

(∣∣L y
0 − L y

θk

∣∣
L∞(Ω∩B

θk (y))
+ ∣∣Lz

0 − Lz
θk

∣∣
L∞(Ω∩B

θk (z))

) + ∣∣∇L y
θk − ∇Lz

θk

∣∣.
By the proof of Theorem 1.7 and boundary condition, we have

∣∣∇u(y) − ∇u(z)
∣∣ � C

(
rα̂ +

r∫
0

ω(s)

s
ds + rα̂

1∫
r

ω(s)

s1+α̂
ds

)
, |y − z| � r � 1,

where C only depends on n, λ,Λ,ω, ‖u‖C0(Ω1) and ‖ f ‖n,Ω1 . This completes our proof. �
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