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Abstract

The Alday–Maldacena solution, relevant to the n = 4 gluon amplitude in N = 4 SYM at strong coupling, was recently identified as a minimum
of the regularized action in the moduli space of solutions of the AdS5 σ -model equations of motion. Analogous solutions of the Nambu–Goto
equations for the n = 4 case are presented and shown to form (modulo the reparametrization group) an equally large but different moduli space,
with the Alday–Maldacena solution at the intersection of the σ -model and Nambu–Goto moduli spaces. We comment upon the possible form
of the regularized action for n = 5. A function of moduli parameters za is written, whose minimum reproduces the BDDK one-loop five-gluon
amplitude. This function may thus be considered as some kind of Legendre transform of the BDDK formula and has its own value independently
of the Alday–Maldacena approach.
© 2007 Elsevier B.V.

1. Introduction and conclusions

An ε-regularized minimal action in AdS5 σ -model was defined recently [1], and shown to reproduce the external momentum
dependence of the BDS formula [2] for the n = 4-gluon amplitude in N = 4 Super-Yang–Mills (SYM) theory. In [3–20] one may
find generalizations and discussions of this important result. In a previous paper [12] it was demonstrated that the Alday–Maldacena
solution is just one member of a large family of solutions; a rather distinct one, though, since it corresponds to a minimum of the
classical σ -model action in the moduli space Mσ

n of all solutions in d = 4 dimensions (i.e. for ε = 0). Throughout this Letter we
shall use the notation and results of [12], to which we refer the reader. We shall keep the parameter n explicit in various formulas
and symbols, even though, as it will be clear in the text, many of the statements will refer specifically to the cases n = 4 or 5.

Let us recall that in d = 4 dimensions and for n = 4 the moduli space of solutions constructed in [12] was parametrized by
{za,v1, φ} with a = 1, . . . , n enumerating the sides of the auxiliary polygon Π , Fig. 1, formed by the null 4-momenta pa of the
external gluons and lying at the boundary of AdS5 at z = ∞.

It is possible, that these are all the solutions with the particular boundary conditions corresponding to the above process. In [12]
they were obtained under the assumption (ansatz) that the Lagrangian Lσ = const = 2. In any case, in what follows we shall use
Mσ

n to denote this part of the moduli space.
The SO(4,2) symmetry of AdS5 relates some of these solutions, but it does not act transitively on Mσ

n . Specifically, only the
za moduli are affected by this group. In addition, v1 is an inessential modulus, since no physical quantity depends on it. Essential
moduli are the ratio z1z3/z2z4 and the angle φ. The latter is not affected by SO(4,2), but only by some larger hidden group, related
presumably to the integrability of the σ -model. It is important to point out that by definition the Lagrangian density is constant,
namely Lσ = 2, on the entire Mσ

n . Thus, the corresponding action integral diverges and needs regularization. The ε-regularization
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Fig. 1. Auxiliary skew polygon Π , playing a surprisingly important role in the theory of n-point amplitudes: all formulas at the perturbative, as well as the
strong-coupling sides of the AdS/CFT correspondence are written in terms of characteristics of Π . Its edges are external gluon 4-momenta pa , the squares of its
diagonals are scattering invariants tab . Formulas in the text are written in terms of their logarithms, τab = log tab .

used in [1] breaks not only the integrability, but also the SO(4,2) symmetry, so that the regularized action becomes a non-trivial
(z- and φ-dependent) function on the moduli space. As shown in [12], the Alday–Maldacena solution is exactly at the minimum of
this function. Incidentally, the regularization leaves unbroken the Lorentz subgroup of SO(4,2) (which, however, is partly broken
by the boundary conditions) and the two rescalings of za that preserve the products z1z3 and z2z4.

The present Letter is a little further development along the lines of [12]. Our purpose is on the one hand to clarify the difference
between the σ -model and Nambu–Goto actions in connection with the above approach, and on the other to attempt a generalization
to the five-gluon amplitude.

Specifically, in Section 2, we consider what happens if the σ -model action is replaced by the Nambu–Goto (NG) one—a question
raised but left unanswered in Section 4.7 of [12]. We conclude that for n = 4 the two moduli spaces are equally large, i.e.

(1)dim
(
Mσ

4

) = dim
(
MNG

4

)
not expected a priori, because of the classical inequivalence of the two actions. We would like to recall here, that the σ -model
is being considered without the Virasoro constraints, which would render the two models classically equivalent. As shown, the
relevant solutions are parametrized by the same parameters, but they are different in the two models and the corresponding moduli
spaces do not coincide. The essential moduli in the σ -model case are the ratio z1z3/z2z4 and φ, while in the NG case no essential
moduli are made from za . Instead, the angle φ between the two �k-vectors gets complemented by the ratio of their lengths. This
simple description, however, requires careful definition of the manifold MNG

4 . The reason is that, in contrast to the σ -model case,
the NG action is invariant under arbitrary reparametrizations of the world sheet and, therefore, the entire space of solutions is infinite
dimensional, incomparably larger than that of the σ -model. In such a situation, it is natural to define the moduli space by factoring
out the reparametrization group with coordinate transformations vanishing at infinity. Then the moduli space of solutions with a
given asymptotic behavior at infinity is finite dimensional and is actually obtained by linear transformations of the world-sheet
coordinates. Similarly, it is natural to eliminate the 2d rotations and displacements, since the 2d Poincare invariance is common to
the σ -model and NG actions. Next, the ε-regularization preserves the 2d reparametrization invariance of the NG action, therefore,
again in contrast to the σ -model case, the regularized NG action is constant on the entire MNG

4 manifold. The NG valley in
the landscape of world-sheet embeddings into AdS5 is actually flat. It crosses the non-flat σ -model valley exactly at the Alday–
Maldacena solution,1 Fig. 2.

In Section 3, guided by the pictorial representation given in [12] and the results for n = 4, we make an attempt to guess the form
of the n > 4 regularized action An(z1, . . . , zn; ε) on the moduli space Mσ

n , parametrized by a conjectured set of parameters za

with a = 1,2, . . . , n. In addition, we present an ansatz for the constraint, generalization of its n = 4 counterpart, which is argued
to be reasonable for n = 5. The action is minimized under the constraint and reproduces the BDDK formula [22] for the one-
loop 5-gluon amplitude F

(1)
5 , which eventually exponentiates to the BDS formula [2] for the full strong coupling n = 5 scattering

amplitude. Hopefully, this action will eventually be derived, as in the n = 4 case, from exact solutions of the σ -model with subtle
growing asymptotics. At this point however, it may just serve as a useful guide through the tedious and not particularly transparent
calculations of the regularized integrals in [1] and [12].

It is important to emphasize here, that the finite part Ãn of the n-point action integral will be defined independently of the
Alday–Maldacena regularization. Consequently, it may be thought of as a kind of Legendre transform of the BDDK formula

1 For a small but potentially interesting deviation see [20].
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Fig. 2. Symbolic representation of the landscape of world-sheet embeddings into AdS5 space. The horizontal plane is actually an infinite-dimensional space of
mappings (z(�u),v(�u)). The “height functionals” on this space are the ε-regularized actions. Actually the NG and σ -model “height functions” are different, a fact
ignored in this picture. Solutions of the NG and σ -model equations of motion form two valleys in this landscape. The σ -model one is not flat, because the degeneracy
is partly broken by the ε-regularization. Therefore, there is a minimum in the valley, which coincides with the NG ε-regularized action. The Alday–Maldacena
solution lies at the crossing of the two valleys.

and in this sense has its own value and significance. Such a function for n > 5 would have an advantage, because the {za} are
independent variables, while there are many relations between the n(n−3)/2 parameters tab , of which only 3n−10 are independent.
Construction of Ãn for n > 5 is a challenging problem beyond the scope of the present Letter.

2. Moduli space of NG solutions for n = 4

In this section and in order to make the comparison easier, we shall make a parallel presentation of the solutions of interest in
the Nambu–Goto (NG) and the σ -model field equations.

2.1. Solving the NG equations of motion for n = 4

As explained in [12] the most relevant variables for the description of the Alday–Maldacena result are (z,v), which are actually
five of the six flat coordinates (Y−,Y, Y+), describing the embedding of AdS5 into R

6++++−−. In these variables the equations of
motion acquire the simple form

(2)∂i

(
Hij ∂j z

) = GijH
ij z,

(3)∂i

(
Hij Vj

) = 0

and the difference between the σ -model and NG cases lies in the expression for H , namely, we have

(4)Hij
σ = δij

while

(5)H
ij

NG = LNG
(
G−1)ij = Ǧij

LNG
.

In the above formulas i, j = 1,2 label 2d coordinates on the world sheet,

(6)Gij = ∂iz∂j z + ViVj

z2

is the AdS-induced metric on the world sheet, Ǧij =
(

G22 −G12
−G12 G11

)
is made from algebraic complements,

(7)V = z∂v − v∂z

and the two Lagrangian densities are

(8)Lσ = Gi
i = G11 + G22

and
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(9)LNG = √
detGij =

√
G11G22 − G2

12,

respectively.
In [12] it was suggested to make the ansatz Gij = const in the differential equations (2) and (3), solve them with appropriate

boundary conditions and finally consider the self-consistency of this ansatz as an algebraic equation (6) on the parameters of the
solution. Many more NG solutions can be produced afterwards by world sheet reparametrizations ui → ũi (�u), corresponding to
a single point in the moduli space if ũi = ui + O(|u|−1) at large |�u|. For constant Gij both the Lagrangian densities and the
coefficient in front of z on the right-hand side of (2) are also constant, in which case the solutions of Eqs. (2), (3) are obviously of
the form

z =
∑
a

zae
�ka �u,

(10)v =
∑
a

vae
�ka �u

where �u are the world sheet coordinates. The 2d vectors �ka are constrained in different ways for different actions:

(11)�k2
a = TrG in the σ -model case,

(12)Ǧij ka
i ka

j = 2 detG in the NG case.

Correspondingly, the parameters va are fixed by the boundary conditions [12],

(13)
va+1

za+1
− va

za

= pa

which express them in terms of the external momenta pa and {za}. These boundary conditions restrict the number of exponentials
in (10) to the number n of sides in the polygon Π : a = 1, . . . , n. One of the v-vectors, say v1, remains undefined; we called it
inessential modulus in the introduction. The essential moduli are {za} modulo �u transformations and {�ka} modulo (11) or (12).

One is left with a set of non-trivial algebraic equations, namely that Gij obtained by substitution of (10) into (6) is constant, i.e.
independent of �u:

(14)
n∑

a,b=1

(
Gij − ka

i kb
j

)
zazbEa+b =

∑
a<b
c<d

kab
i kcd

j (PabPcd)zazbzczdEa+b+c+d .

Here Ea = e
�ka �u, Ea+b = EaEb, �kab = �ka − �kb , Pab = zazb(pa + · · · + pb−1), while further details about notation can be found

in [12]. In what follows we concentrate on the case of n = 4, where this simple ansatz indeed works. Eq. (14) is actually a system
of relations for coefficients in front of various exponentials. Many coefficients can be cancelled if we choose �k3 = −�k1 = �k−1
and �k4 = −�k2 = �k−2 so that the four �k-vectors form diagonals of a parallelogram. Next, comparison of the coefficients in front of
z2

1E1+1 on both sides of (14) gives:

(15)Gij − k1
i k

1
j = (

k12
i k14

j + k14
i k12

j

)
z2z4(−p1p4) = −η2(k1

i k
1
j − k2

i k
2
j

)
where η2 = z2z4t24. Similarly, from the coefficient of z2

2E2+2 one obtains

(16)Gij − k2
i k

2
j = (

k12
i k23

j + k23
i k12

j

)
z1z3(p1p2) = ξ2(k1

i k
1
j − k2

i k
2
j

)
with ξ2 = z1z3t13. Together these two equations imply the consistency relation on the parameters za ,

(17)ξ2 + η2 = z1z3t13 + z2z4t24 = 1

already familiar from [12], and the explicit expression for Gij ,

(18)Gij = ξ2k1
i k

1
j + η2k2

i k
2
j .

All other relations, following from (14), are then automatically satisfied. For example, the coefficient of z1z2E1+2 on the right-hand
side of (14) receives contributions from a + b + c + d = 1 + 1 + 2 + 3 and 1 + 2 + 2 + 4, and using the above relations one has(

k12
i k13

j + k13
i k12

j

)
z1z3

(
p1(p1 + p2)

) + (
k12
i k24

j + k24
i k12

j

)
z2z4

(
p1(p2 + p3)

)
= (

2k1
i k

1
j − k1

i k
2
j − k2

i k
1
j

)
z1z3t13 − (

2k2
i k

2
j − k1

i k
2
j − k2

i k
1
j

)
z2z4(−t24)

= 2
(
ξ2k1

i k
1
j + η2k2

i k
2
j

) − (
k1
i k

2
j + k2

i k
1
j

)(
ξ2 + η2)

(19)= 2Gij − k1
i k

2
j − k2

i k
1
j



A. Mironov et al. / Physics Letters B 659 (2008) 723–731 727
the last expression being equal to the coefficient of the same term on the left-hand side. Similarly for the coefficients of E0 = 1.
It remains to substitute Gij from (18) into Eqs. (11) and (12).
In the σ -model case (11) leads to

(20)�k2
1 = �k2

2 = TrG = ξ2�k2
1 + η2�k2

2 .

As soon as the two vectors �k1 and �k2 have equal lengths, the corresponding parallelogram has to be a rectangle. The remaining
essential modulus is the angle φ between the two vectors, their common length being an inessential modulus (scaling of the
Lagrangian). Another essential modulus is ξ2 or η2 = 1 − ξ2. Rescalings of parameters za , which leave ξ2 and η2 intact, are
induced by constant shifts of the coordinate vectors �u.

Analogously, in the NG case, one obtains from (12)

(21)Ǧij k1
i k

1
j = Ǧij k2

i k
2
j = 2 detG.

If we parametrize the two NG �k-vectors through �k1 = (α,β) and �k2 = (γ, δ), then

(22)Gij =
(

α2ξ2 + γ 2η2 αβξ2 + γ δη2

αβξ2 + γ δη2 β2ξ2 + δ2η2

)
, Ǧij =

(
β2ξ2 + δ2η2 −αβξ2 − γ δη2

−αβξ2 − γ δη2 α2ξ2 + γ 2η2

)
,

detG = (αδ − βγ )2ξ2η2, and (21) is equivalent to the system of equations

Ǧij k1
i k

1
j = (

α2δ2 − 2αβγ δ + β2γ 2)η2 = 2(αδ − βγ )2ξ2η2,

(23)Ǧij k2
i k

2
j = (

α2δ2 − 2αβγ δ + β2γ 2)ξ2 = 2(αδ − βγ )2ξ2η2.

It follows that

(24)ξ2
NG = η2

NG = 1

2

with no restriction on the vectors �k1 and �k2. The corresponding parallelogram in this case can be arbitrary and the two essential
moduli are the angle φ between �k1 and �k2 and the ratio of their lengths, |�k1|/|�k2| =

√
(α2 + β2)/(γ 2 + δ2). It is clear that arbitrary

vectors �k1 and �k2 give rise to NG solutions, because they can be made arbitrary by linear transformations of ui , which are part of
the 2d reparametrization invariance of the NG equations, i.e. part of the symmetry group of MNG

4 .

2.2. On the relation between NG and σ -model solutions

In the previous section we determined the moduli spaces of both the σ -model and the NG equations for n = 4 in the framework
of the ansatz (10). Actually, the σ -model case corresponds to the trace of Eq. (14) with respect to the indices i, j [12], while in the
NG case one should contract with Ǧij instead of δij .

Our result is that the moduli spaces, while both two-dimensional, are essentially different. Moreover, there is no one-to-one
correspondence between the solutions. Does this contradict the widespread belief that the NG and the σ -model are equivalent?
It does not, as we shall argue next, because of the Virasoro constraints. Notice that the σ -model dealt with in [1] and [12] does not
take into account the Virasoro constraints, which are crucial in the proof of the above equivalence. So, the two models are actually
different and, not surprisingly, lead to different answers.

More specifically, recall that the idea behind the equivalence of the NG and σ -model formalisms is based on the consideration
of the more general Polyakov action [23]:

(25)
∫

LP d2u =
∫

Gabg
ij ∂iX

a∂jX
b√g d2u

where Gab is the target space metric, made from dynamical fields like in (6), Xa ≡ (r,v) and gij is the auxiliary field of 2d-metric.
The equations of motion for the dynamical fields then read

(26)∂i

(
gijGab

√
g∂jX

a
) = ∂LP

∂Xb

while variation with respect to the 2d-metric gives

(27)gij = 2
Gab∂iX

a∂jX
b

Gcdgkl∂kXc∂lXd
= 2

Gij

gklGkl

.

Inserting (27) into (26), one reproduces the NG equations, while, taking advantage of the local symmetries of the Polyakov action
to choose gij = δij , one obtains the σ -model equations. This choice is a gauge-fixing and can always be achieved by a proper
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transformation of the world sheet variables ui .2 Based on this, one may argue that any solution of the NG equations can be
converted into a solution of the σ -model: once a GNG

ij is found, it can always be diagonalized by a coordinate transformation. In

our context, with Gij constant, this transformation �uNG → �uσ is linear, and is given simply by

(28)�kNG
a �uNG = �kσ

a �uσ ,

or equivalently, using the explicit form of kNG
a and kσ

a ,

(29)uσ
1 = αuNG

1 + βuNG
2 , uσ

2 = γ uNG
1 + δuNG

2 .

It is always possible to find such a transformation with non-unit Jacobian, in order to convert the two NG �k-vectors with different
lengths into two σ -model �k-vectors with equal lengths. Clearly, the above NG → σ mapping has a non-trivial kernel. It has enough
parameters to map different NG solutions into the same σ -model solution; it is not an isomorphism of the two moduli spaces.

The converse, however, is not true: one cannot convert an arbitrary σ -model solution into an NG one. For this, one would have in
addition to satisfy the gauge condition Gij ∼ δij . For instance, linear transformations of coordinates �u cannot change parameters ξ2

and η2. The parameters za of a particular solution (10) are rescaled by shifts of �u, �u → �u + �a, but z1 and z3 = z−1 or z2 and
z4 = z−2 are rescaled in opposite directions (since �k−a = −�ka), so that ξ2 and η2 = 1 − ξ2 remain intact. This implies that it is
not possible to use the gauge freedom of the Polyakov equations to convert σ -model solutions with generic ξ2 	= 1/2 into NG
solutions, which all have ξ2 = η2 = 1/2. Generic coordinate-�u reparametrizations (linear or otherwise) change the two tensors gij

and Gij simultaneously, and the desired transformation (gσ
ij ,G

σ
ij )

?−→ (gNG
ij ,GNG

ij ) is generically in contradiction with the other
two properties, namely

(30)gσ
ij = δij

and (27)

(31)gNG
ij ∼ GNG

ij .

These relations are all compatible if and only if Gσ
ij ∼ δij , which is not true for a generic σ -model solution, but only for those

with ξ2
σ = η2

σ = 1/2. This, as stated in the beginning of this section, is a concrete manifestation of the well-known fact [24] that
Polyakov’s σ -model, which is classically equivalent to the NG theory, reproduces the ordinary σ -model, but together with the
Virasoro constraints.

A consequence of the above discussion is that the regularized σ -model and NG actions of even a common solution do not
coincide. Naively, since substitution of the 2d-metric (27) into the Polyakov action (25) reproduces the NG action, one would
expect that the σ -model and NG actions coincide, provided the Virasoro constraint is satisfied. This is true, but ambiguous, since
both actions are infinite. The regularization proposed in [1] does not change only the target space metric Gab in both actions,
which would leave them equal. Instead, it spoils the Virasoro constraint and should lead a priori to different actions! Indeed, it was
explicitly checked [20] that, even in the n = 4 case, the two actions are different. However, they differ by an inessential additive
constant. It would be instructive to examine their difference for higher n.

3. Guess of the action integral for n = 5

As explained in [12], it is not straightforward to generalize to n > 4 our solutions with exponential behavior at infinity. So,
it is not obvious how to extend our approach to these cases and have so far been unable to find relevant solutions. Nevertheless,
one can still try to guess the form of the regularized action integral An(z1, . . . , zn; ε) for n � 5, whose minimum will lead to the
BDDK formula for the one-loop amplitude F

(1)
n of n-gluon scattering. For that, let us assume that we have an n-parameter set of

solutions of the σ -model with the appropriate asymptotics, parametrized by za , with a = 1,2, . . . , n. In addition, we must assume
a regularization scheme [1] with parameter ε, as well as a constraint analogous to (17).

We split the action integral into the infinite A(n)
ε and finite Ãn pieces and guided by the pictorial representation of the BDDK

formula [12] and by our n = 4 results, we write (up to an additive inessential constant 1/ε2 term)

(32)An(z1, z2, . . . , zn) =A(n)
ε + Ãn = 1

ε

n∑
a=1

log za +
n∑

a=1

log za log za+1

with a + n ≡ a for all values of a. We neglected any additional angular variables like φ of the n = 4 case, assuming that such
parameters enter in an especially simple way, like it happened in the case of n = 4 in [12], where | sinφ|−1 was a common factor in
front of the entire A4. Notice that for n = 4 (32) reproduces the expression derived in [12].

2 It is well known that the freedom of arbitrary reparametrizations of the world sheet is enough to render an arbitrary metric conformally flat; however, the
conformal factor is inessential due to the Weyl invariance of the action, gij → ρgij .
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To guess a reasonable generalization of the constraint is more difficult. For general n one has to worry about the presence
of terms with higher powers of tab in the expression for the constraint. For instance, the first non-trivial such term would be∑

a<b<c<d zazbzczd tabtcd . However, for n = 4,5 such a term, as well as all analogous with higher powers of t vanish identically.
In what follows, we shall consider the constraint

(33)
n∑

a<b

zazbtab = 1

but, one should remember, that this particular form may be oversimplified and irrelevant for n � 6.
Our goal is to minimize (32) under the constraint (33). Let us start with the simpler problem of minimizing A(n)

ε under the above
constraint, which is introduced with a Lagrange multiplier λ. The position z

(0)
a of the minimum satisfies

(34)
1

z
(0)
a

= λ

n∑
b=1

tabz
(0)
b .

For n = 4, the solution is, up to the invariance z
(0)
1 → ζz

(0)
1 , z

(0)
3 → 1

ζ
z
(0)
3 and z

(0)
2 → ζ ′z(0)

2 , z
(0)
4 → 1

ζ ′ z
(0)
4 , given by [12]

(35)z(0)
a = 1√

2ta,a+2
.

Similarly, for n = 5 we obtain instead

(36)z(0)
a z

(0)
b = 1

5tab

, λ = 5

2
.

Multiplying all these pairs together gives

(37)z
(0)
1 z

(0)
2 z

(0)
3 z

(0)
4 z

(0)
5 = 1√

55t13t14t23t24t35

.

Now, dividing this expression twice by appropriately chosen products z
(0)
a z

(0)
b , one obtains

(38)z(0)
a =

√
ta+1,a+3ta+2,a+4

5ta,a+2ta,a+3ta+1,a+4
.

If one denotes τab = log tab , (38) has a pictorial representation shown in Fig. 3. Incidentally, note that in contrast to the n = 4 case,
there is no rescaling freedom in solutions of Eq. (34) for n = 5.

Going back to the minimization of A, observe that the presence of the finite correction Ãn in A will shift the position of the
minimum to za = z

(0)
a + εz

(1)
a . The O(ε) z

(1)
a -shift of za could a priori give a finite correction to A. However, as we will argue, this

Fig. 3. Pictorial representations of Eqs. (38) and (41). The polygon is nothing but Π from Fig. 1, whose edges are associated with external momenta. τ -parameters
τab = log tab are associated with diagonals and za with the vertices of the polygon. The marked diagonals correspond to differences of τ -parameters in the equations.
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O(ε0) contribution actually vanishes. Indeed, the finite correction of A due to z
(1)
a is

(39)
n∑
a

∂Aε

∂za

∣∣∣∣
za=z

(0)
a

z(1)
a =

n∑
a

z
(1)
a

z
(0)
a

= λ

n∑
a,b

tabz
(0)
a z

(1)
b = 0

the last two equalities being direct corollaries of (34).
Thus, in order to reproduce the BDDK3 result, one has to insert the solutions (38) for z

(0)
a into the action (32). The result is the

BDK formula for n = 5 (in this formula one should put μ2 = 1/5),

(40)BDK = BDDK5 = − 1

ε2

∏
a

(
μ2

ta,a+2

)ε

+
∑
a

log
ta,a+2

ta+1,a+3
log

ta+2,a+4

ta−2,a

= −2A5|za=z
(0)
a

+ O(ε).

The finite part of this expression is equal to (see Fig. 3)

(41)
n∑

a=1

(τa,a+2 − τa,a−2)(τa−1,a+2 − τa+1,a−2) = (τ14 − τ13)(τ24 − τ35) + cyclic permutations.

This generalizes the older result for n = 4

(42)finite part of BDDK4 = (τ13 − τ24)
2 =

(
log

s

t

)2

.

It is easy to see that the expressions for n = 5 are natural generalizations of those for n = 4. The main new ingredient for n > 5
is that t [r] with r > 2 (see [12] for notations) and higher powers of t can enter the constraint. At the same time, dilogarithmic
contributions should appear in the action integral. It can happen that they occur after additional integration over some new moduli.
We do not go into details of these subtler considerations in the present text.
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