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Abstract

It is known that if one of the factors of a decomposition of a manifold into Cartesian produc
interval then the decomposition is not unique. We prove that the decomposition of a 4-manifol
sibly with boundary) into 2-dimensional factors is unique, provided that the factors are not pr
of 1-manifolds.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In 1945 Borsuk [2] showed that any connected compactn-dimensional manifold with
out boundary has at most one decomposition into a Cartesian product of factors of
sion � 2. If we consider Cartesian products of higher-dimensional manifolds then
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uniqueness property does not hold (see Theorem 11.5 in [4] and [11]). Even if we
sider the classical Ulam problem [17] of uniqueness of Cartesian squares, one c
counterexamples for 3-manifolds (cf. [12]).

The uniqueness of the decomposition into Cartesian products fails if the facto
2-manifolds with boundary. A torus with a hole and a disk with two holes are not ho
morphic, however, their Cartesian products with the intervalI = [0,1] are homeomorphic

Similarly, the product of a Möbius band with a hole and the intervalI is homeomorphic
to the product of a Klein bottle with a hole and the intervalI . All 2-manifolds in the exam-
ples above can be constructed by identifying two pairs of disjoint arcs in the bound
a disk. After multiplication by the intervalI , the order of identified arcs on the boundar
of disks becomes inessential. If 3-manifold or more general 3-polyhedron has two
ent decompositions into Cartesian product then one of the factors in these decompo
must be an interval (see [14]).

The uniqueness property holds for Cartesian squares (cf. [5]) and Cartesian pow
[15]) of 2-manifolds with boundary. The uniqueness (up to permutation of factors)
Cartesian product of circles and intervals is obvious. We have the uniqueness of d
position into a finite Cartesian product of 1-polyhedra (cf. [1]) and 1-dimensional lo
connected continua (cf. [3]). A Cartesian product of 1-polyhedra does not have anoth
composition into a Cartesian product of polyhedra of dimension� 2 (cf. [16]). Before we
begin to consider uniqueness of Cartesian products of connected 2-manifolds with b
ary we need some preliminaries.

Definition 1.1. Let X be a compact connected 2-manifold with nonempty boundary
associate toX the following number:

s(X) = rankH1(X) − rankH1(∂X) + 1.

Lemma 1.1. Let X,Y,X′, andY ′ be any compact connected2-manifolds with nonempt
boundary and suppose that the Cartesian productsX ×Y andX′ ×Y ′ are homeomorphic
Then

s(X)s(Y ) = s
(
X′)s(Y ′).

Proof. We use an argument similar to the one in [15, Theorem 2.1]. We consider the

i∗ :H2(X × Y) → H2
(
X × Y, ∂(X × Y)

)
,

which is induced by the inclusion of the pair(X×Y,∅). The image of this map is generat
by all productsζ1 ⊗ ζ2 such thatζ1 ∈ H1(X) andζ2 ∈ H1(Y ), such thatjk∗(ζk) �= 0, for
k = 1,2, where

j1∗ :H1(X) → H1(X, ∂X) and j2∗ :H1(Y ) → H1(Y, ∂Y )

are given by inclusions. The numbers(X) is equal to rank imj1∗ and the numbers(Y ) is
equal to rank imj2∗. Sos(X)s(Y ) is equal to rank imi∗.

Hence if X × Y and X′ × Y ′ are homeomorphic it follows thats(X)s(Y ) =
s(X′)s(Y ′). �



278 J. Malešič et al. / Topology and its Applications 153 (2005) 276–283

y
.

lds.

e.

e

s with
aper a
hree

d

Lemma 1.2. Let X,Y,X′, andY ′ be any compact connected2-manifolds with nonempt
boundary and suppose that the Cartesian productsX ×Y andX′ ×Y ′ are homeomorphic
Then with respect to the order of the factors we have:

(i) H1(X) = H1(X
′) andH1(Y ) = H1(Y

′);
(ii) H1(X, ∂X) = H1(X

′, ∂X′) andH1(Y, ∂Y ) = H1(Y
′, ∂Y ′).

Proof. Let H1(X) = Zx , H1(Y ) = Zy , H1(X
′) = Zx′

andH1(Y
′) = Zy′

. By the Künneth
formula we conclude that:

Zxy ∼= H2(X × Y) ∼= H2
(
X′ × Y ′) ∼= Zx′y′

and

Zx+y ∼= H1(X × Y) ∼= H1
(
X′ × Y ′) ∼= Zx′+y′

.

Hence,x = x′ andy = y′ or x = y′ andy = x′. We can assume that the first case ho
This completes the proof of (i).

If X is orientable thenH1(X, ∂X) = Zx . If it is not thenH1(X, ∂X) = Zx−1 ⊕ Z2.
Similarly, for Y,X′, andY ′. By the relative Künneth formula,

H2
(
X × Y, ∂(X × Y)

) = Zxy−o2x−o1y+o1o2 ⊕ Z
o2x+o1y−o1o2
2 ,

whereo1 = 1 if X is nonorientable ando1 = 0 if X is orientable, ando2 = 1 if Y is nonori-
entable ando2 = 0 if Y is orientable. Similarly forX′ andY ′. Hencexy − o2x − o1y +
o1o2 = xy − o′

2x − o′
1y + o′

1o
′
2. So, if x > 1 andy > 1 thenH1(X, ∂X) = H1(X

′, ∂X′)
andH1(Y, ∂Y ) = H1(Y

′, ∂Y ′).
If x = 0 thenX andX′ are homeomorphic to the disk. ThereforeY andY ′ are both

orientable or both nonorientable, and their relative first homology groups are the sam
If x = 1 thenX can be the annulusA = S1 × I or the Möbius bandM . Similarly for

X′.
If X is an annulus thenH2(X × Y, ∂(X × Y)) = Z ⊗ H1(Y, ∂Y ) = H1(Y, ∂Y ). If X′ is

a Möbius band thenH2(X
′ × Y ′, ∂(X′ × Y ′)) = Z2 ⊗ H1(Y

′, ∂Y ′). These groups can b
isomorphic only ifH1(Y, ∂Y ) = Z2 and if H1(Y

′, ∂Y ′) is equal toZ or Z2. The spaces
A × M andM × M are not homeomorphic by Lemma 1.1; by definitions(A) = 0, and
s(M) = 1, sos(A)s(M) �= s(M)s(M). �

We start the consideration of the Cartesian products of connected 2-manifold
boundary by presenting the case where one of the factors is not prime. In this p
primemanifold is a manifold which is not a nontrivial Cartesian product. There exist t
nonprime surfaces:I × I, I × S1, andS1 × S1. We have the following:

Proposition 1.1. Let X andY be any compact2-manifolds, possibly with boundary, an
suppose that the Cartesian productsX × Y andX′ × Y ′ are homeomorphic. IfX is prime
and Y is a product of two1-manifolds, thenX′ is also a prime2-manifold andY ′ is a
product of two1-manifolds(up to a permutation ofX′ and Y ′). In both cases,Y and Y ′
are homeomorphic. Furthermore, ifX andX′ are not homeomorphic, thenY andY ′ are
homeomorphic either toI2 or to S1 × I .
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Proof. By Kosiński’s theorem [10], all 2-dimensional Cartesian factors of a polyhe
are polyhedra, soX′ andY ′ are 2-manifolds, possibly with boundary. If∂X = ∅ andY =
S1 × S1 then we have the uniqueness by a classical result of Borsuk [2].

If ∂X = ∅ andY = I ×S1, then one of the factorsX′, Y ′, sayX′ has an empty boundar
becauseH3(X ×Y ;Z2) = H3(X

′ ×Y ′;Z2) �= 0. Since∂(X ×Y) = X × ∂Y = X′ × ∂Y ′ =
∂(X′ × Y ′), the surfacesX andX′ are homeomorphic. Hence, comparing the homol
groups we obtain thatY ′ is an annulus, also.

Now, let ∂X = ∅ andY = I2. If X is nonorientable then 0= H2(X) = H2(X × Y) =
H2(X

′ × Y ′), so one of the factorsX′, Y ′ is a disk. The second factor is homeomorp
to X. If X is orientable,∂X′ �= ∅ and ∂Y ′ �= ∅ then Z = H2(X) = H1(X

′) ⊗ H1(Y
′).

ThereforeX′ andY ′ are homeomorphic toS1 × I andX is a torus. If∂X′ = ∅ then the
boundaries∂(X × Y) and∂(X′ × Y ′) are homeomorphic, soX andX′ are homeomorphic
andY ′ is a disk.

If ∂X �= ∅ andY = S1 × S1, thenY ′ = S1 × S1 because∂(X × Y) is a disjoint union of
the sets homeomorphic toS1 × S1 × S1. HenceX andX′ are homeomorphic by a speci
case of Theorem 2 [16]. IfY is homeomorphic to a disk or to an annulus and∂X �= ∅, then
by Lemma 1.2,Y ′ is also homeomorphic to a disk or to an annulus.�

2. The main result

The following is the main result of our paper:

Theorem 2.1. Any connected4-dimensional manifold, possibly with boundary, has at m
one decomposition into Cartesian products of prime2-manifolds, possibly with boundary

The techniques which were used in a similar lemma in [13] are not strong enou
our purpose. We shall use the Splitting theorem in the proof of our theorem abov
[8,9])—for investigation of the boundaries of the manifoldsX ×Y andX′ ×Y ′. So we use
this theorem in the case when∂M is empty.

In [8,9] manifolds are orientable, so we must also assume that the manifoldM is ori-
entable. We denote byσW(M) the 3-manifold obtained by splittingM alongW . Similarly
we define the 2-manifoldσ∂W (∂M), which can be naturally identified with a submanifo
of the boundary ofσW(M).

Theorem 2.2 (Splitting theorem [8, p. 157]). Let M be any compact, orientable, su
ficiently-large, irreducible and boundary-irreducible3-manifold. Then there exists a tw
sided, incompressible2-manifold, W properly embedded inM , unique up to ambien
isotopy, having the following three properties:

(a) The components of W are annuli and tori, and none of them is boundary-parallelM ;
(b) Each component of(σW (M),σ∂W (∂M)) is either a Seifert pair or a simple pair; and
(c) W is minimal with respect to inclusion among all two-sided2-manifolds inM having

properties(a)and (b).
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Proof of Theorem 2.1. If both surfacesX andY are without boundary, the uniquene
holds by Borsuk’s theorem [2].

If ∂X = ∅ and∂Y �= ∅ then∂(X × Y) = X × ∂Y . SinceY �= I2, like in the proof of
Proposition 1.1, one of the factorsX′, Y ′, sayX′ has an empty boundary, becauseH3(X ×
Y ;Z2) = H3(X

′ × Y ′;Z2) �= 0 and∂Y ′ �= ∅. So,∂(X′ × Y ′) = X′ × ∂Y ′. ThereforeX and
X′ are homeomorphic and the numbers of the components of the boundaries∂Y and∂Y ′
are the same. Looking at the homology and relative homology groups we obtain th
surfacesY andY ′ are also homeomorphic.

Now we consider the case when∂X and∂Y are nonempty. Again by Lemma 1.2, t
first Betti numbers ofX andX′ are the same and the first Betti numbers ofY andY ′,
are also the same. The coincidence of the first relative homology groups implies th
orientability ofX andY agree with the orientability ofX′ andY ′, respectively. We conside
three cases.

In the first case, X and Y are orientable,M = ∂(X × Y),W = ∂X × ∂Y . Since by
assumption,X andY are not homeomorphic toI2 or S1 × I , the manifoldsM andW

satisfy the hypotheses of the Splitting theorem. Since the boundary ofM is empty, the
manifoldW is a disjoint union of tori.

For somebody who is familiar with 3-manifolds the irreducibility ofM is a simple
exercise, but for the reader’s covenience we outline a proof. IfS is a 2-sphere containe
in M we can assume that it is in a general position withW , so the intersectionS ∩ W is a
disjoint union of closed curves. Some of them bound innermost disks inS. Such a disk lies
in one of components ofσW(M). The boundaries of the components are incompres
[8, II.2.4], so the boundary of the disk bound a disk inW . The components ofσW(M) are
irreducible [8, II.2.3], so the union of our two disk bounds a ball. Via this ball we iso
parts ofS into the adjacent component ofσW(M) eliminating one closed curve ofS ∩ W .
We repeat this operation as many times asS lies in one component and it bounds a ball

We will show thatW is minimal. Assume thatV = W \ (S1 × S2) whereS1 × S2 is a
component ofW also gives a splitting in the sense of Theorem 2.2. According toV , we
haveU = (X × S2) ∪ (S1 × Y) as a component ofσV (M). It must be either a Seifert pa
or a simple pair. The setU is not a simple pair because the incompressible torusS1 × S2 is
not boundary-parallel inU (see [8, p. 154]).

The fundamental group ofU is infinite, so by Corollary 8.3 in [6] or VI.11.a in [7], th
manifoldU is a Seifert manifold if and only if its fundamental group has a normal cy
infinite subgroup. Let an elementα of π1(U) be a generator of this subgroup. By Seife
van Kampen theoremπ1(U) is a sum with amalgamation of the groupsπ1(X × S2) and
π1(S1 × Y). The natural projections map the elementα onto elements of the centers
π1(X × S2) andπ1(S1 × Y). So, if π1(X) andπ1(Y ) have more than one generator, it
impossible.

The same holds forX′ andY ′, whereM ′ = ∂(X′ × Y ′),W ′ = ∂X′ × ∂Y ′. The compo-
nents ofσW(M) are homeomorphic to spacesX × S1 andS1 × Y . Because the manifold
M andM ′ are homeomorphic andW is unique up to ambient isotopy, the components
σW(M) and the components ofσW ′(M ′) are homeomorphic. The components ofσW ′(M ′)
are homeomorphic to spacesX′ × S1 andS1 × Y ′, so the manifoldsX andY are homeo-
morphic toX′ andY ′.
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In the second caseonly one manifold is orientable. LetX be nonorientable andY be
orientable. We consider the oriented double coversX̃ andX̃′ of X andX′. The manifolds
X̃ × Y , andX̃′ × Y ′ are orientable double covers of the homeomorphic manifoldsX × Y

andX′ × Y ′, so our manifolds are homeomorphic.
If X is the Möbius band, thenX′ is also nonorientable andH1(X) = H1(X

′) = Z, by
Lemma 1.2, soX′ is the Möbius band, too.

If X is not the Möbius band, then as before, we have homeomorphy either acc
to X̃ ≈ X̃′ andY ≈ Y ′ or according tõX ≈ Y ′ andY ≈ X̃′ by the Splitting theorem. In
the first caseX andX′ are also homeomorphic. In the second case ifH1(X) = Zx then
H1(Y ) = Z2x−1. Puttings(X′) = s(X) + a, s(Y ′) = s(Y ) + b, s(X̃) = 2(s(X) − 1) and
s(X̃′) = 2(s(X′) − 1) to the equations

s(X)s(Y ) = s
(
X′)s(Y ′), s

(
X̃

)
s(Y ) = s

(
X̃′)s(Y ′)

we obtains(Y ) = s(Y ′), soY andY ′ are homeomorphic. Then

X̃ ≈ Y ′ ≈ Y ≈ X̃′,
soX ≈ X′ also.

If X and X′ are Möbius bands then we use Lemma 1.1. We have thats(X)s(Y ) =
s(X′)s(Y ′). Hences(Y ) = s(Y ′), becauses(X) = s(X′) = 1. SinceH1(Y ) = H1(Y

′) and
s(Y ) = s(Y ′), they have the same number of components of their boundaries, so th
homeomorphic.

In the third caseboth surfacesX andY are nonorientable. We cannot use exactly
same argument, but we make a similar consideration. First, we know by Lemma 1
both surfacesX′ andY ′ are also nonorientable. We consider the manifoldsX × Si where
Si are components of∂Y , andSj × Y whereSj are components of∂X.

Next, we take the oriented double coversX̃ andỸ of X andY . The manifolds̃X × Si

andSj × Ỹ are the oriented double covers ofX × Si andSj × Y . Each of the toriSj × Si

is covered by toriS′
j ×Si andS′′

j ×Si in X̃ ×Si and is covered by toriSj ×S′
i andSj ×S′′

i

in Sj × Ỹ .
By identifying S′

j × Si with Sj × S′
i andS′′

j × Si with Sj × S′′
i , we obtain the oriented

double coverM of ∂(X × Y). It is not essential which circles we denoted byS′
i , S

′
j and

S′′
i , S′′

j because in every case we obtain the unique the oriented double cover of∂(X × Y).
Analogously, we construct the oriented double coverM ′ of ∂(X′ × Y ′). Of courseM

andM ′ are homeomorphic. If the manifoldsX andY are not the Möbius bands then w
solve the problem by the Splitting theorem.

If X is a Möbius band then we solve the problem using Lemma 1.1, like in the se
case. �

We also include the following new related result:

Theorem 2.3. LetX1, . . . ,Xn andY1, . . . , Yn be any surfaces with nonempty boundary a
suppose that their Cartesian productsX1 ×· · ·×Xn andY1 ×· · ·×Yn are homeomorphic
Then there exists a one-to-one correspondence between them(assumeXi corresponds to
Yi ) such thatrankH1(Xi) = rankH1(Yi) and if

s(Xi) = rankH1(Xi) − rankH1(∂Xi) + 1
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for i = 1,2, . . . , n then

s(X1)s(X2) · · · s(Xn) = s(Y1)s(Y2) · · · s(Yn).

Proof. Let H1(Xi) = Zni andH1(Y1) = Zmi . We can conclude from the Künneth formu
that

H1(X1 × · · · × Xn) = Z
∑n

i=1 ni ,

H2(X1 × · · · × Xn) = Z
∑

i1 �=i2
ni1ni2 , and

...

Hn(X1 × · · · × Xn) = Zn1···nn .

We obtain similar formulae for the productY1 × · · · × Yn. Because rankHi(X1 × · · · ×
Xn) = rankHi(Y1 × · · · × Yn) we can conclude thatni = mi for i = 1,2, . . . , n. This fol-
lows from the fact that the ranks of the homology groups above are the coefficients
polynomials

∏n
i=1(x −ni) and

∏n
i=1(x −mi). The polynomials are equal, so the numb

ni andmi are the same.
We obtain the equalitys(X1)s(X2) · · · s(Xn) = s(Y1)s(Y2) · · · s(Yn) like in the previous

proof. �
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