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Abstract

It is known that if one of the factors of a decomposition of a manifold into Cartesian product is an
interval then the decomposition is not unique. We prove that the decomposition of a 4-manifold (pos-
sibly with boundary) into 2-dimensional factors is unique, provided that the factors are not products
of 1-manifolds.

00 2004 Elsevier B.V. All rights reserved.

MSC: primary 54B10; secondary 57N13, 57N0O5

Keywords:Cartesian product; Kiinneth formula; Prime 2-manifold; Splitting theorem; Sufficiently large
3-manifold; Essential torus; Surface

1. Introduction

In 1945 Borsuk [2] showed that any connected compadimensional manifold with-
out boundary has at most one decomposition into a Cartesian product of factors of dimen-
sion < 2. If we consider Cartesian products of higher-dimensional manifolds then such
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uniqueness property does not hold (see Theorem 11.5 in [4] and [11]). Even if we con-
sider the classical Ulam problem [17] of uniqueness of Cartesian squares, one can find
counterexamples for 3-manifolds (cf. [12]).

The uniqueness of the decomposition into Cartesian products fails if the factors are
2-manifolds with boundary. A torus with a hole and a disk with two holes are not homeo-
morphic, however, their Cartesian products with the intefval[0, 1] are homeomorphic.

Similarly, the product of a Mdbius band with a hole and the inteialhomeomorphic
to the product of a Klein bottle with a hole and the intervahll 2-manifolds in the exam-
ples above can be constructed by identifying two pairs of disjoint arcs in the boundary of
a disk. After multiplication by the interval, the order of identified arcs on the boundaries
of disks becomes inessential. If 3-manifold or more general 3-polyhedron has two differ-
ent decompositions into Cartesian product then one of the factors in these decompositions
must be an interval (see [14]).

The uniqueness property holds for Cartesian squares (cf. [5]) and Cartesian powers (cf.
[15]) of 2-manifolds with boundary. The uniqueness (up to permutation of factors) of a
Cartesian product of circles and intervals is obvious. We have the uniqueness of decom-
position into a finite Cartesian product of 1-polyhedra (cf. [1]) and 1-dimensional locally
connected continua (cf. [3]). A Cartesian product of 1-polyhedra does not have another de-
composition into a Cartesian product of polyhedra of dimensjdh(cf. [16]). Before we
begin to consider uniqueness of Cartesian products of connected 2-manifolds with bound-
ary we need some preliminaries.

Definition 1.1. Let X be a compact connected 2-manifold with nonempty boundary. We
associate t& the following number:

s(X) =rankHy(X) —rankH1(0X) + 1.
Lemma 1.l Let X, Y, X', andY’ be any compact connect@manifolds with nonempty

boundary and suppose that the Cartesian prodicts Y and X’ x Y’ are homeomorphic.
Then

s(X)s(Y) =s(X)s(Y').

Proof. We use an argument similar to the one in [15, Theorem 2.1]. We consider the map
ix it Ha(X x Y) > Ho(X x Y, 9(X x Y)),

which isinduced by the inclusion of the p&iX x Y, ). The image of this map is generated
by all productsz; ® ¢2 such thatz; € H1(X) and¢z € H1(Y), such thatj,. (¢x) # 0, for
k=1,2,where

JitHi(X) —> Hi(X,90X) and  ja,: Hi(Y) > Hi(Y,0Y)

are given by inclusions. The numhsgtX) is equal to rankinyi, and the numbes(Y) is
equal to rankimy», . Sos(X)s(Y) is equal to rankin,.

Hence if X x Y and X’ x Y’ are homeomorphic it follows that(X)s(Y) =
s(XHs(Y). O
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Lemma 1.2. Let X, Y, X/, andY’ be any compact connect@imanifolds with nonempty
boundary and suppose that the Cartesian prodicts Y and X’ x Y’ are homeomorphic.
Then with respect to the order of the factors we have

() Hi(X)=H1(X") and H1(Y) = H1(Y');
(ii) Hi(X,0X) = H]_(X/, dXyand H((Y,dY) = H (Y, aY’).

Proof. Let Hi(X) = Z*, Hi(Y) = Z”, Hi(X') = Z* andHy(Y’) = Z* . By the Kiinneth
formula we conclude that:

ZY = Hy(X x Y)Z Hp(X' x Y')= 7" and
= H (X X Y)ZH (X xY)=Z25

Hencex =x’ andy =y’ orx = y’ andy = x’. We can assume that the first case holds.
This completes the proof of (i).

If X is orientable therH1(X, dX) = Z*. If it is not then H1(X,3X) = Z* 1 @ Z,.
Similarly, for ¥, X’, andY’. By the relative Kiinneth formula,

HZ(X X Y, a(X X Y)) — ny702X7()1)'+()102 @ Z;ZX‘f‘Oly_OlOZ’

whereo; = 1 if X is nonorientable and; = 0 if X is orientable, and, = 1 if Y is nonori-
entable and, = 0 if Y is orientable. Similarly forX’ andY’. Hencexy — o2x — o1y +
0102 = Xy — 05x — 07y + 0705. S0, ifx > 1 andy > 1 thenH1(X, 9X) = Hi(X',9X")
andHq(Y,dY) = Hi(Y', 9Y").

If x =0 thenX and X’ are homeomorphic to the disk. Therefdfeand Y’ are both
orientable or both nonorientable, and their relative first homology groups are the same.

If x =1 thenX can be the annulug = S* x I or the Mébius band/. Similarly for
X'.

If X is an annulus thedl>(X x Y, 3(X x Y)) = Z ® H1(Y,dY) = Hy(Y,dY). If X' is
a Mobius band thetl> (X' x Y/, 3(X’' x Y')) = Z», ® H1(Y’,dY’). These groups can be
isomorphic only if H1(Y, dY) = Z» and if H1(Y’, dY’) is equal toZ or Z,. The spaces
A x M andM x M are not homeomorphic by Lemma 1.1; by definitiai) = 0, and
s(M)=1,s0s(A)s(M) #s(M)s(M). O

We start the consideration of the Cartesian products of connected 2-manifolds with
boundary by presenting the case where one of the factors is not prime. In this paper a
primemanifold is a manifold which is not a nontrivial Cartesian product. There exist three
nonprime surfaced: x I, I x S1, ands? x . We have the following:

Proposition 1.1. Let X and Y be any compac2-manifolds, possibly with boundary, and
suppose that the Cartesian produdis< Y and X’ x Y’ are homeomorphic. I is prime
andY is a product of twol-manifolds, thenX’ is also a prime2-manifold andY’ is a
product of twol-manifolds(up to a permutation oX’ and Y’). In both casesy and ¥’
are homeomorphic. Furthermore, X and X’ are not homeomorphic, theriand Y’ are
homeomorphic either td? or to ST x 1.
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Proof. By Kosifski's theorem [10], all 2-dimensional Cartesian factors of a polyhedron
are polyhedra, s&’ andY’ are 2-manifolds, possibly with boundary.dX =@ andY =
s1 x st then we have the uniqueness by a classical result of Borsuk [2].

If 9X =@ andY = I x $1, then one of the factor¥’, Y’, sayX’ has an empty boundary,
becauséi3(X x Y; Z2) = H3(X' x Y'; Z2) #0.Sinced(X x¥Y) =X x9Y = X' x Y’ =
(X’ x Y"), the surfacesX and X’ are homeomorphic. Hence, comparing the homology
groups we obtain that’ is an annulus, also.

Now, letdX =@ andY = 2. If X is nonorientable then & Ho(X) = Ho(X x Y) =
Hy(X' x Y"), so one of the factorX’, Y’ is a disk. The second factor is homeomorphic
to X. If X is orientable, 0 X’ £ @ and dY’ £ @ then Z = H»(X) = Hi(X') ® H1(Y").
ThereforeX’ andY’ are homeomorphic t61 x I and X is a torus. IfdX’ = ¢ then the
boundarie$) (X x ¥) andd(X’ x ¥’) are homeomorphic, s& andX’ are homeomorphic
andY’ is a disk.

If X # ¥ andY = S x §1, theny’ = $1 x ST becaus@ (X x Y) is a disjoint union of
the sets homeomorphic & x S* x S. HenceX and X’ are homeomorphic by a special
case of Theorem 2 [16]. If is homeomorphic to a disk or to an annulus @ids @, then
by Lemma 1.2Y’ is also homeomorphic to a disk or to an annulusl

2. Themain result
The following is the main result of our paper:

Theorem 2.1. Any connected-dimensional manifold, possibly with boundary, has at most
one decomposition into Cartesian products of prizamanifolds, possibly with boundary.

The techniques which were used in a similar lemma in [13] are not strong enough for
our purpose. We shall use the Splitting theorem in the proof of our theorem above (see
[8,9])—for investigation of the boundaries of the manifokisc Y andX’ x Y’. So we use
this theorem in the case whé/ is empty.

In [8,9] manifolds are orientable, so we must also assume that the mandfaddori-
entable. We denote by (M) the 3-manifold obtained by splittiny/ alongW. Similarly
we define the 2-manifoletyy (0 M), which can be naturally identified with a submanifold
of the boundary o&w (M).

Theorem 2.2 (Splitting theorem [8, p. 157])Let M be any compact, orientable, suf-
ficiently-large, irreducible and boundary-irreducib®manifold. Then there exists a two-
sided, incompressibl@-manifold, W properly embedded i, unique up to ambient
isotopy, having the following three properties

(a) The components of W are annuli and tori, and none of them is boundary-parall&l in

(b) Each component by (M), oyw (9 M)) is either a Seifert pair or a simple paiand

(c) W is minimal with respect to inclusion among all two-sidzdhanifolds inM having
properties(a) and (b).
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Proof of Theorem 2.1. If both surfacesX andY are without boundary, the uniqueness
holds by Borsuk’s theorem [2].

If 9X =¥ anddY # @ thend(X x ¥Y) = X x dY. SinceY # I2, like in the proof of
Proposition 1.1, one of the factoks, Y/, sayX’ has an empty boundary, becaugg( X x
Y; Zy)=H3(X' xY'; Z3) #0anddY’ # . S0,0(X’' x Y') = X' x Y’. Thereforex and
X’ are homeomorphic and the numbers of the components of the bouné®rawd Y’
are the same. Looking at the homology and relative homology groups we obtain that the
surfacesy andY’ are also homeomorphic.

Now we consider the case whéX andadY are nonempty. Again by Lemma 1.2, the
first Betti numbers ofX and X’ are the same and the first Betti numbersYoand Y’,
are also the same. The coincidence of the first relative homology groups implies that the
orientability of X andY agree with the orientability of’ andY’, respectively. We consider
three cases.

In thefirst case X andY are orientableM = 9(X x Y),W = 90X x dY. Since by
assumptionX andY are not homeomorphic té% or St x I, the manifoldsM and W
satisfy the hypotheses of the Splitting theorem. Since the boundady i=f empty, the
manifold W is a disjoint union of tori.

For somebody who is familiar with 3-manifolds the irreducibility &f is a simple
exercise, but for the reader’s covenience we outline a prodf.itfa 2-sphere contained
in M we can assume that it is in a general position WWthso the intersectio§ N W is a
disjoint union of closed curves. Some of them bound innermost disksSuich a disk lies
in one of components afy (M). The boundaries of the components are incompressible
[8, 11.2.4], so the boundary of the disk bound a diskih The components afy (M) are
irreducible [8, 11.2.3], so the union of our two disk bounds a ball. Via this ball we isotope
parts ofS into the adjacent component @fy (M) eliminating one closed curve ¢fn W.

We repeat this operation as many timessdies in one component and it bounds a ball.

We will show thatW is minimal. Assume thaV = W \ (51 x S2) whereS; x So is a
component ofW also gives a splitting in the sense of Theorem 2.2. According tave
haveU = (X x S2) U (81 x Y) as a component afy (M). It must be either a Seifert pair
or a simple pair. The séf is not a simple pair because the incompressible tSfus S> is
not boundary-parallel it/ (see [8, p. 154]).

The fundamental group @f is infinite, so by Corollary 8.3 in [6] or VI.11.ain [7], the
manifold U is a Seifert manifold if and only if its fundamental group has a normal cyclic
infinite subgroup. Let an elemeatof 71 (U) be a generator of this subgroup. By Seifert—
van Kampen theorem1(U) is a sum with amalgamation of the groups(X x S2) and
m1(S1 x Y). The natural projections map the elemenonto elements of the centers of
m1(X x §2) andm1(S1 x Y). So, if r1(X) andx1(Y) have more than one generator, it is
impossible.

The same holds fok’ andY’, whereM’ = 3(X’' x Y'), W = 93X’ x aY’. The compo-
nents ofow (M) are homeomorphic to spac&sx S andS! x Y. Because the manifolds
M and M’ are homeomorphic an® is unique up to ambient isotopy, the components of
ow (M) and the components ofy (M’) are homeomorphic. The componentsgf (M')
are homeomorphic to spac&s$ x S andS! x ¥/, so the manifoldst andY are homeo-
morphic toX’ andY’.
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In the second casenly one manifold is orientable. LeX be nonorientable an#l be
orientable. We consider the oriented double covémnd X’ of X andX’. The manifolds
X x Y, andX’ x Y’ are orientable double covers of the homeomorphic manif&ldsY
andX’ x Y’, so our manifolds are homeomorphic.
If X is the Mobius band, the&’ is also nonorientable anf1(X) = H1(X") = Z, by
Lemma 1.2, s&X’ is the Mébius band, too.
If X is not the M6bius band, then as before, we have homeomorphy either according
to X ~ X’ andY ~ Y’ or according toX ~ ¥’ andY ~ X’ by the Splitting theorem. In
the first caseX and X’ are also homeomorphic. In the second caskiifX) = Z* then
Hy(Y) = Z2~1, puttings(X') = s(X) +a, s(Y') =s(Y) + b, s(X) = 2(s(X) — 1) and
s(X')=2(s(X’) — 1) to the equations
s(X)s(Y):s(X/)s(Y’), s()?)s(Y):s()?/)s(Y’)

we obtains(Y) =s(Y’), soY andY’ are homeomorphic. Then
X~Y ~Y~X,

soX ~ X’ also.

If X and X’ are Mobius bands then we use Lemma 1.1. We havesttits(Y) =
s(X)s(Y"). Hences(Y) = s(Y’), because (X) = s(X’) = 1. SinceH1(Y) = H1(Y’) and
s(Y) =s(Y’), they have the same number of components of their boundaries, so they are
homeomorphic.

In the third caseboth surfacest andY are nonorientable. We cannot use exactly the
same argument, but we make a similar consideration. First, we know by Lemma 1.2 that
both surfacest’ andY’ are also nonorientable. We consider the manifolds S; where
S; are components @fY, andS; x Y wheresS; are components dfX.

Next, we take the oriented double covéfsandY of X andY. The manifoldsX x S;

ands; x Y are the oriented double covers¥fx S; andS; x Y. Each of the toriS; x S;
is covered by torS/ x S; andS” x S; in X x S; and is covered by to; x S’ andS; x S/
ins; x Y.

By identifying S;. x §; with §; x S andS}/ x §; with §; x S, we obtain the oriented
double coverM of 3(X x Y). It is not essential which circles we denoted ﬂyS} and
s’ S}’ because in every case we obtain the unique the oriented double céef afY).

Analogously, we construct the oriented double cavErof (X’ x Y'). Of courseM
and M’ are homeomorphic. If the manifoldé andY are not the Mobius bands then we
solve the problem by the Splitting theorem.

If X is a M6bius band then we solve the problem using Lemma 1.1, like in the second
case. O

We also include the following new related result:

Theorem2.3. LetX;, ..., X,, andYq, ..., Y, be any surfaces with nonempty boundary and
suppose that their Cartesian producfsg x --- x X, andY1 x - - - x Y,, are homeomorphic.
Then there exists a one-to-one correspondence between(#ssmmeX; corresponds to
Y;) such thatrankH;(X;) = rankH1(Y;) and if

s(X;) =rankH1(X;) —rankH1(0X;) + 1
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fori=1,2,...,nthen

$(X1)s(X2)---5(Xp) = 5(Y1)s(¥2) - - -5 (¥n).

Proof. Let H1(X;) = Z" andH1(Y1) = Z™i. We can conclude from the Kiinneth formula
that

Hi(X1 X - X X,) = Z2i=11i
Ho(X1 % -~ X X)) = Z=in#2""2  and

Hy(X1 X - x Xp)=2""n,

We obtain similar formulae for the produgg x --- x Y,,. Because rank;(X; x --- x
X,) =rankH; (Y1 x --- x Y¥,;) we can conclude that; =m; fori =1, 2, ..., n. This fol-
lows from the fact that the ranks of the homology groups above are the coefficients of the
polynomials[[7_; (x —n;) and[/_; (x —m;). The polynomials are equal, so the numbers
n; andm; are the same.

We obtain the equality(X1)s(X2) - --s(X,) = s(Y1)s(Y2) - --s(¥,) like in the previous
proof. O
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