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The polar cone of the limit inferior of a sequence of cones of a Banach space is 
shown to be the Cesari’s limit superior of the sequence of polar cones in the bounded 
weak* topology. In a similar way the lower semicontinuity of a not necessarily 
countable family of closed convex cones is characterized in terms of Castaing’s 
notion of pseudo-upper semicontinuity. More general results are given within the 
framework of convergence spaces and the pseudo-upper semicontinuity of a 
closed-valued multifunction is characterized as closedness with respect to a new 
convergence. Applications to the YounggFenchel correspondence are pointed out. 
\p 1991 Acadcm,c Press. Inc. 

It is a well-known fact that if a vector subspace of a Hilbert space X 
depends continuously on a parameter w then its orthogonal subspace 
depends continuously on w. Here the continuous dependence on the 
parameter can be taken in several senses corresponding to various 
topologies on the set of orthogonal projectors of X, in finite dimensions 
these topologies coincide. In the infinite-dimensional case more care is 
needed and a convergence introduced by U. Mosco [27] has been proved 
to be of fundamental importance (see [2,25,28, 35, 391 for instance). Here 
we extend this convergence to a nonsequential setting. This is not made 
just for the sake of generality. In several problems one must consider func- 
tions f depending on two variables (w, x) and the (partial) Legendre- 
Fenchel transform .f,T off,<: x -+ f( w, x) depends on the parameter w which 
appears to be in a space topologized by a nonmetrizable weak topology 
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(see [3] for instance). The interest of using topologies instead of sequential 
convergences also appears when one deals with the convergence of convex 
sets. 

Here our main purpose consists in showing that a simple result about 
continuous dependence of polar cones can serve to prove in a simple 
unified geometric way several results in convex analysis and variational 
convergence. This idea is certainly not new: in [25] it is attributed to 
Rockafellar (see [33] in this connection); it is worked out in the pioneering 
works of Wijsman [40,41] and Walkup and Wets [38], where it is used 
for a different kind of convergence not considered here; see also [9, 16, 391. 
Here we deal systematically with the geometrical constructions involved in 
this process as they are considered to be of genera1 use. For instance an 
application to the study of the approximate subdifferential of a convex 
function relying on the results of this paper will appear elsewhere. 

The fact that we deal with convergences instead of topologies should not 
obscure the simplicity of the results concerning the operations of taking 
conical hulls and intersections with hyperplanes which are the main 
ingredients of the constructions we use. In order to keep close to the usual 
topological framework we use nets instead of Iilters so that in a first 
reading of Section 3 one may suppose the spaces are just topological spaces. 
The required notions about convergences are recalled in Section 1 where an 
interpretation of pseudo-upper semicontinuity in terms of closedness with 
respect to an appropriate convergence is presented. This is not the sole 
motivation for dealing with convergences instead of topologies: the theory 
of distributions, the study of order structures and differentiability theory 
[ 143 show that convergence structures can be very convenient. In measure 
theory a.e. convergence is quite usual; more recently convergence with 
respect to a function (written x’ A X) appears to be an indispensable tool 
in nonsmooth analysis. The continuity of the Fenchel-LegendreeYoung 
correspondence is dealt with in Section 4. 

After a lecture in Limoges about the results of this paper it was kindly 
pointed out to one of the authors by S. Dolecki that close connections exist 
with his results [ 111 and with the paper by Back [S] and the thesis of Joly 
[ 181. Although these two authors remain in the sequential case they do use 
a similar convergence. Moreover they compare this convergence with the 
familiar sequential Mosco convergence; their methods are analytical and 
quite different. They specialize their results to some classes of topological 
vector space (tvs) as metrizable spaces and barreled spaces, a topic not 
discussed here as our genera1 thrust is directed toward (not necessarily 
reflexive) Banach spaces although we also deal with pairs of tvs in duality. 
In particular we show the usefulness of the classical bounded weak* 
topology [ 12, 151 in variational convergence, a fact which seems to deserve 
some attention. 
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1. CHARACTERIZATION OF PSEUDO-UPPER SEMICONTINUITY 

Recall that a multifunction F: W + X between two topological spaces is 
upper semicontinuous (USC) at WOE W if for each open subset V of X 
containing F(w,) there exists a neighborhood U of w0 such that 
F(U) := uucu F(U) c V. It has been recognized for several decades that 
this is a very restrictive condition. Therefore some authors prefer to use 
closedness at wO, where F is said to be closed at w0 if for any x0 E x\F( wO) 
there exist neighborhoods U of wO, Vofx,in Wsuchthatr;‘(U)nV=@. 
From the very definition of the limit superior as 

lip+yp F(w) : = n F(, 
UE.(I (h.0) 

where M(w,) is the set of neighborhoods of w0 and A is the closure of A 
in X, we have that F is closed at w0 iff lim sup, _ ~,. F(w) = F(wO). 

Here we use the following weakening of upper semicontinuity. 

1.1. DEFINITION (see [6]). Let W and X be two topological spaces and 
let X be a subfamily of the family X.. of compact subsets of X. A multi- 
function F: W + X is said to be X-USC at w. E W if for each KG X the 
multifunction F,: W + X given by FK(w) = F(w) n K is USC at wo. When 
~4’” = XX, F is said to be pseudo-upper continuous at w. (put at wo). 

Obviously F is X-USC at w. iff F is USC at w. for the topology on X 
generated by the subbase O(X) = {X/K : KE X}; when X is stable under 
finite unions and arbitrary intersections, Lo(X) itself is a topology. 

For X locally compact and X = XX this topology has been introduced 
by Fell [ 131. As we intend to apply the preceding notion to the case X is 
a dual vector space endowed with its weak* topology, it is of interest to 
dispose of choices for %C other than XX itself. For instance one may take 
convex members of XX, bounded members of XX, or closed equicon- 
tinuous subsets of X. When X is the dual of a Banach space X,, endowed 
with its weak* topology these distinctions are irrelevant; this is not so 
when X is just a normed vector space (nvs) or a locally convex topological 
vector space (1~s). 

The following results show the interest of the notion introduced above. 
Their (simple) proofs are left to the reader for the sake of brevity. 

1.2. LEMMA. Zf a multifunction F: W-+ X is USC at w. or closed at wO 
then for any subfamily X of Xx, F is X-USC at wo. Conversely if X con- 
tains the family of compact metrizable subsets of X and if F is X-USC at wO 
then F is sequentially closed at wo. 
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1.3. LEMMA. Suppose d is u distance on X jOr M,hich the closed hull.\ 
belong to II .sutjfumil?s .%” of ~4; . Then, !f F : W + X is X-USC ut I\‘,,, ,/or L’IIC~ 
s E X the function HI -+ d(x, F(I\,)) : = inf{d(.u, .u’) : s’ E F(bt*)) is 1~ at M‘(,. 

1.4. LEMMA (compare with [7, Theorem 11.201). Suppose X is u its 
endowed with its weak topology. A multifunction F: W + X such that F(w,) 
is closed and convex is put at wO $f,for any continuous linear functional x* 
on X and any KE XX the ,function w + h(x*, F(w) A K) : = sup{ (.u*, .Y) : 
x E F(w) n K 1 is USC at M’~). 

We intend to give an interpretation of pseudo-upper semicontinuity in 
terms of the notion of limit superior for some convergence. Some 
preliminaries are in order. 

In several important instances in analysis the use of topologies is 
awkward or impossible whereas simple and natural convergences such as 
test function and distribution convergences, order convergences, a.e. con- 
vergence, continuous convergence on spaces of mappings, and convergence 
of subsets of a topological space are at hand. Here we mainly use a variant 
of the weak and weak* convergence which seems to be more convenient 
than the bounded weak star convergence. 

The axioms usually adopted for defining a convergence space use filters 
[S, 10, 141, and hence may be of little attractiveness to analysists. Here we 
introduce an equivalent definition in terms of nets similar to the axioms of 
Y-spaces introduced and used by Urysohn [37], Kuratowski [23], and 
Kisynski [21]. 

Let us recall that a net N on a set X is a mapping N: I + X from a 
directed set (I, <) into X, recall that a set I is directed by a preorder d on 
1 (i.e., a transitive, reflexive relation) if for any i, j in I there exists k E I 
with i 6 k, j 6 k, so that f = (I, : j E I} is a filter base in Z, where 
I,= (iEZ: i>j). 

A subnet of N is a net P : J+ X such that for each ie I there exists je J 
with P(J,) c N(Z,) (i.e., the filtered family associated to P is liner than the 
filtered family associated to N in the sense that its image filter base is finer 
than the image of f by I). This notion introduced by Aarnes and 
Andenaes [ 1 ] is less restrictive than the more usual concept of strict sub- 
net. A net P : J+ X is a strict subnet of N if there exists a filtering mapping 
S : J-t I with P = N 2 S, where S is said to be filtering if for each iG I there 
exists jE J with S(J,) c I,. As shown below each subnet P of N has a subnet 
Q which is a strict subnet of N, so that for our purposes these two notions 
can be used equivalently. 

For simplicity we consider only convergences with uniqueness of limits, 
as defined by the following axioms. 
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1.5. DEFINITION. A convergence c on a set X is a relation between nets 
of X and points of X denoted by (x,)~, , --% x verifying the following rules: 

(C, ) the constant net with value x converges to X; 

(C,) if P= (.xi)jEJ is a subnet of a net N = (.x~)~~, with (x;),~, a x 
then (x~)~~ J * x; 

(C,) if XE X and a net N= (.x~),~, of X are such that any subnet 

p= (x,),,, of N has a subnet Q= (x~)~=~L x then (-x,)~~,L x. 

It follows from (C,) that the convergence of a net N : Z+ X in fact depends 
on its image filter base S?N = { N(Z,) : i E Z} : for if P and Q are two equiv- 
alent nets (in this sense that P (resp. Q) is a subnet of Q (resp. P) or if the 
filters generated by g8, and aa coincide) then P converges iff Q converges. 

Given two convergence spaces (X, cX) and (Y, c,), a mapping f: X+ Y 
is said to be continuous at x E X if fo N converges to f(x) whenever N is 
a net with limit x in X, S is said to be continuous if f is continuous at each 
point of X. It is well known that when the convergences cX and cy are 
convergences associated with topologies, this notion reduces to usual 
continuity. A convergential vector space is a vector space endowed with a 
convergence for which the vector operations are continuous. 

With any convergence c on a set X one can associate a topology o(c): 
a subset C of X is declared to be closed if it contains the limits of its 
converging nets. The convergence c(r(c)) associated with z(c) is coarser 
than c (i.e., Id : (X, c) -+ (X, c(r(c))) is continuous); if c is the convergence 
associated with a topology CJ on X then r(c) = 0 and c(t(c)) = c. 

Given a topological space (X, a) (or even a convergence space) and a 
covering X of X we define a new convergence c = c(X) on X by setting 
(Xi)ie I A X iff txi)is I -% x and for each cofinal subset H of I there exists 
a colinal subset J of H and an element K of X such that x, E K for each 
j E J. The axioms of convergence spaces are readily verified. In general the 
convergence c associated to o and X is finer than the convergence of o and 
the topology t(c) corresponding to c is finer than 6. 

When X is a family of compact subsets, the topology r(c) is easy to 
describe and corresponds to a familiar construction. When (X, a) is a 
k-space (as a metric space or a locally compact space) and X = XX, ~(a) 
coincides with d by what follows. 

1.6. LEMMA. Given a subfamii’y X of the family Xx of compact subsets 
of a topological space (A’, a) the topology t(c) associated with the con- 
vergence c defined above is the inductive topology associated with the family 
{K : KE X} of subspaces of X, i.e., the strongest topology on X inducing on 
the members of X their relative topology o I K. 
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Proof It suffices to prove that the closed subsets of (X, r(c)) are the 
subsets A of X such that A n K is closed in (K, 0 ) K) for each KE X. 

Obviously any subset A of X verifying this property is closed for r(c). 
Conversely if A is closed for r(c) and if K E %“, for any converging net 
(x,)~~, contained in A n K, (x,),~, converges in c; hence its limit belongs to 
A and K, so that A n K is closed in (K, o 1 K). 1 

In particular when (X, a) is a weak*-dual Banach space the topology 
associated with the preceding convergence, with x = xx or with the family 
of bounded subsets of X, is the classical bounded weak* topology /?(a*) 
([12, 1.51 for instance). Note however that the preceding result does not 
mean that c is the convergence associated with this topology, although c 
and this topology have the same converging sequences. 

We are now ready for the characterization of pseudo-upper semicon- 
tinuity. 

1.7. PROPOSITION. Let c be the convergence on X associated with X as 
above. 

(a) If F: W-+ X is closed at wO for c then F is X-USC at wO and 
F( wO) n K is closed for each K E 3”. 

(b) Conversely if (X, g) is Hausdorff, F( w,,) n K is closed for each 
KE X and F is X-USC at wO then F is closed at wO for c. 

(c) Suppose that X is hereditary in the sense that for any K E X any 
closed subset of K is in X. Then F is X-USC at wO for c i f f  F is continuous 
at wO as a mapping from W into the space 2x of subsets of X endowed with 
the topology generated by the family { S(x\ K) : K E X }, where S(G) = 
{AE~?A~G}. 

Proof: (a) Suppose lim supn, j w. F(w)cF(wO). Let KEX and let G be 
an open subset of (X, a) containing F(w,) n K. If, for each neighborhood 
V of w,, in W, F( V) n K meets X\G we can find a net ( wi) ic, in W and a 
net (x~)~~, in X\G with xi E F(w,) n K for each i E I. As K is compact we can 
find a converging subnet (x~)~~, in (K, 0 / K). Then (xi)],, converges in c 
and its limit x0 belongs to F(wO) by our assumption, and in X\G which is 
closed for g. This is a contradiction; therefore there exists a neighborhood 
V of w0 with F(V) n Kc G and F is X-USC at wO. The closedness of 
F(w,) n K for each KE 9? is obvious. 

(b) It suffices to prove that if (w~)~~, is a net with limit w0 in Wand 
if (xiLel is a net with c-limit x0 in X with X~E F(w,) for each ie I then 
x0 E F( wO). Taking subnets if necessary we may assume (x~)~. , is contained 
in some KE xx. As (K, 0 1 K) is Hausdorff, FK(w,,) = F(w,) n K is closed in 
K and FK is USC at w,,, FK is closed at wO. Hence x,, E FK(wO) c F(w,). 
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(c) Let us suppose F is X-USC and let KEY be such that 
F(w,) E S(X\K) or F(w,) n K = 0. Then, as F, is USC we have FK(w) = fz! 
or F(w) E S(X\K) for w  close to wO. Conversely if F is continuous for the 
topology generated by the sets S(X\K) for K E X, for any open subset G 
of X with F(w,) n Kc G we have F(w,) c G u (X\K) = X\((P,G) A K). As 
K’=(;T\G)~KEX we have F(w)cX\K’, hence F(w)nKcG, for w  
close to wO. 1 

Now let us define convergence structures on the set P(X) of subsets of 
a convergence space (X, c). 

It is convenient to call a net (x,),~ J of (X, c) subordinated to a net (F,),, , 
of P(X) if for each i,EI there exists joeJ such that 

{x,:j>jo}= u F,. 
i> io 

When the Fis are singletons, (xj)jEJ is subordinated to (Fi)i,, iff (x,)/~~ is 
a subnet of (x.)iE,, where F,= {f;}. When there exists a filtering mapping 
p: .I+ I such that X,E Fpcj, for each jeJ the net (xj)jEJ is said to be 
strongly subordinated to (FJi, ,, This is the most usual way of getting 
subordinated nets. 

1.8. DEFINITION. Let (X, c) be a convergence space and let (Fi)ic, be a 
net of P(X). The limit superior of (F,)i, I is the set lim supie, Fi of limits 
of converging nets (x,)~~~ which are subordinate to (Fi)i, p 

In the preceding definition one could use strongly subordinated nets 
instead of subordinated nets without changing lim supie, Fi. This follows 
from the fact that any net (xj)jEJ subordinated to (Fi)ie, has a subnet 
(Xk)keK which is strongly subordinated to (Fi)i,,, taking K as 

K= {(i, j)EZxJ:xjEFj}, 

with the product preorder, and p: (i, j) -+ i. It is easy to see that when c is 
the convergence structure associated with a topology o the preceding 
definition of lim supiS, F, coincides with the usual one, 

xolimsupF,oVVEJY;,(x) 
iSI 

VieI, 3kEI, kBi, VnFk#@, 

JO(x) denoting the filter of neighborhoods of x in (X, 0). 

1.9. DEFINITION. The limit inferior of a net F: I+ g(X) of subsets of a 
convergence space (X, c) is the set lim infi,, Fi of x E X such that for each 
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colinal subset J of I there exists a net (.v~)~~ K subordinated to (F,),, ,, 
which converges to s, 

lim inf F, = (i lim sup F, 
iE I JET(/) IEJ 

where %(I), the grill of (I, <), is the family of all colinal subsets of I. 

The preceding definitions can be extended to families of subsets (F,,.). E w 
of (X, c) parametrized by a topological space W. Here and in the sequel we 
suppose W is a subspace of a topological space Q and o is a point in f2\ W. 
We set WC = Wu {o}. In this case we define lim sup,.,,, F(w) (standing 
for lim sup,, + w. w  E w  F(w)) as the set of x E X such that x E lim supit, F(u,) 
for some net (w;),~, in W with limit c~. When W” = I”, where (I, <) is a 
directed set, with the topology generated by {Z; u {w} : in I} we recover 
the preceding definition, as shown by the discussion following Definition 
1.8. We define lim inf,. _ ,,, F(w) as the set of XE W such that for each net 
(w;);e I in W with limit o, x belongs to lim inf,, , F(w,). We call F: W 4 X 
lower semicontinuous at u’~ E W if F( M”~) c lim inf,, _ ,,0 F(w). 

2. CONTINUITY OF POLARITIES 

In the sequel w0 is a point of a topological space W embedded in some 
topological space a; we set W” = W v (w 1 with o E C2\ Wand we keep our 
preceding convention about lim. +O,. We denote by (X, Y) a pair of 
topological vector spaces in duality. Unless otherwise stated the topology 
G of X is the weak topology cr(X, Y); the topology T of Y is stronger than 
the weak topology a( Y, X). We denote by X a subfamily of the family XX 
of weakly compact subsets of X. It generates a new convergence c on X as 
described before Lemma 1.6; it also gives rise to the topology on Y of 
uniform convergence on the members of X we call the X-topology. The 
family XC of circled convex elements of X is said to be saturating in f if 
for any K, L in y there exists ME &. with MI K, MI L. 

Let Q: W + Y be a multifunction whose values are cones in Y; we denote 
by P: W -+ X the multifunction given by P(w) = Q(w)‘, where the polar S” 
of a subset S of Y is given by 

S”={xEX:VyES (x,y)<l}, 

sothatS”coincideswithS:= {x~Y:Vy~S(x,y)<0} whenSisacone 
in Y. The following simple result is the key point of our study. Although 
it does not seem to have appeared in the following form several weaker 
versions of it are known (see [ 17, 301 for instance). 
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2.1. THEOREM. (a) Suppose the topology z on Y is stronger than the 
X-topology. Then if Q is lsc at wO its polar multtfunction P= Q0 is X-USC 
at wO. 

(b) Suppose 5 is weaker than the X-topology and x is saturating in 
X. Suppose the values of Q are closed convex cones. Then, if P = Q” is 
X-USC at tiO, Q is IX at w,,. 

Taking into account the characterization of lower semicontinuity of Q at 
w,, by lim inf,. _ M,~ Q(w) 3 Q( wO) and the characterization of X-upper semi- 
continuity of P obtained in Proposition 1.7 the preceding result is a conse- 
quence of the following theorem in which the closed convex hull of A in 
(X, O) is denoted by w(A ). 

2.2. THEOREM. (a) Suppose t is stronger than the X-topology on Y. 
Then, for any cone-valued multifunction Q: W-+ Y 

c-lim sup Q(w)’ c (lim inf Q(w))‘. 
,I’ - IO *’ -+ (0 

(b) Suppose T is weaker than the X-topology on Y and &. is 
saturating in X. Then for any multtfunction P: W+ X whose values are 
closed convex cones 

(c-lim sup P(w))” c lim inf P(w)“, 
IV + (0 N’ * 0, 

(c) When T is the X-topology on Y and %$ is saturating in X, for any 
cone-valued multifunction Q: W--t Y and P = Q” 

W(c-lim sup Q(w)) = (lim inf Q(w))” 
w  4 (0 w  + <” 

(c-lim sup P(w))” = lim inf P(w)“. 
w - (0 1(‘ + (0 

Let us observe that parts (a) and (b) of Theorem 2.2 are in fact just 
rephrasings of the corresponding assertions of Theorem 2.1: extending 
P and Q to WV(O) by setting Q(W)=liminf,.+,Q(o), p(w)= 
CC(lim sup., _ w  P(o)) we see that the corresponding assumptions and 
conclusions about P and Q on one hand, and p and 0 on the other hand, 
correspond. Now the first equality of Theorem 2.2(c) is a consequence of 
parts (a) and (b), taking polars in (b) so that 

c-lim sup P(w) c (lim inf Q(w))” c (c-lim sup P(w))” 
I< + m IV - UJ w - 0, 

since for A = c - lim sup,. _ Iu P(w) we have A”” = W(A). The second one 
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follows similarly by replacing Q by P” in (a) and taking polars there, as 
P(w)“” = P(w): 

(c-lim sup P(w))” clim inf P(u)\ c (lim inf P(w!)“),” c (c-lim sup P(w))‘. 
II’ - (0 11’ * (0 11’ + cr, 1,’ + tr, 

Proof: (a) Let us suppose T is stronger than the X-topology on Y 
and let .2 E c-lim sup,, _ (u P(w), with P(w)= Q(w)O: there exist nets 

(~fihc I -+ w  in W, (x,)~~,& ,C in (X, c) with X;E P(w,) for each i E I. Taking 
a subnet if necessary we may suppose (x,),~, is contained in some KEX. 
Now for any 3 E lim inf Q(w) we can find a subnet (MII~))~~ of ( w~)~~, and a 
net (yj)jEJ with limit 3 such that y, E Q(w,) for each j E J. As the topology 
r is stronger than uniform convergence on K we get limjtJ(x,, y, - j) = 0 
and 

This proves that 2 E (lim inf,. _ w  Q(w))‘. 

(b) Setting Q(W) = P(w)” we have P(w) = Q(W)’ as P(w) is a closed 
convex cone in (X, a). Let .G E Y\lim inf, -w Q(w); we want to prove that 
9 E Y\ (c-lim sup, _ w  P(w))“. By assumption there exists a neighborhood V 
of 0 in (Y, r) and a net (w~)~~, in W with limit w  such that 
Q(wi) n (j - V) = 0 for each i E I. As T is weaker than the X-topology we 
may suppose 

v= {ye Y: sup l(y,x)l GE, . . . . sup I(y,x)l GE) 
-GE K, XEK, 

for some E > 0 and some K,, . . . . K, in Xx. As x. is saturating in X we can 
find KE x. with K, u . . v K, c K so that V : = (c’K)’ is contained in V. 
Thus the XC-topology coincides with the X-topology and is stronger than 
T. The Mackey-Arens theorem guaranteeing that X is the dual of (Y, t), 
using the Hahn-Banach theorem, for each i E I we can find xi E X and ri E R 
with 

(x,, y)<r;< (xi, j-0) for any y E Q(wi), u E V. 

As Q(wi) is a cone we have ri> 0, hence (xi, u) < si := (xi, j) for each 
iE I. Thus s, > 0, and ii : = ES,:‘X~E ET c EVO = K. As K is compact in 
(X, a) we may suppose without loss of generality that (2i)iEl converges in 
K, hence in c. By assumption its limit 2 belongs to c-lim sup,,, P(w) as 
~i=~~,~l~j~P(wi) for each iEZ. Now (ai, ~)=Es;‘(x,, $)=E, hence 
(a, 9) =a, so that $E Y\(c-lim SU~,,,+~ P(w))“. 1 

2.3. COROLLARY. Let (X, a) be the weak* dual of a Its space (Y, t) and 
let P: W -+ X, Q: W + Y be multifunctions whose values are closed convex 
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cones. Then $8 is the family of closed convex circled equicontinuous subsets 
of (X, a), P is d-use iff Q is /SC. 

This follows from the facts that r coincides with the &-topology, the 
elements of d are compact in (X, CJ), and gC is saturating in 8. 

2.4. COROLLARY. Let (X, Y) be a pair of vector spaces in duality, X 
being endowed with the weak topology o(X, Y) and Y with the Mackey 
topology z( Y, X). Suppose that any weakly compact subset of X is contained 
in a convex weakly compact subset of X. Let P: W + X and Q: W -+ Y be 
multifunctions whose values at w E W are mutually polar convex cones. Then 
P is pseudo-use at wO lff Q is lsc at w,,. 

Proof This follows from the fact that the Mackey topology in this case 
coincides with the $&-topology. i 

We are especially interested in the following case. 

2.5. COROLLARY. Let X be the weak* dual of a Banach space Y. Then if 
P: W + X and Q: W + Y are multifunctions whose values are mutually polar 
cones, P is pseudo-ucs at wO iff Q is lsc at wO. 

By our previous results this is equivalent to c-closedness of P at w,; here 
this property can be written in the following way: for any net (w~)~~, with 
limit wO in W, for any weak*-convergent bounded net (x~)~~, with 
xi E F( wi) for each i E I lim xi E P( wO). 

For a sequence of weak* closed convex cones we can replace 
c-closedness by bw*-closedness. Although the converging sequences for c 
are exactly the converging sequences for the bw*-topology this fact does 
not follow immediately from what precedes. 

2.6. THEOREM. Suppose X is the dual space of a Banach space Y and 
(Q,) is a sequence of cones in Y. Then, endowing X with the bw*-topology, 
and Y with its strong topology 

W(bw*-lim sup Qz) = (lim inf Q,,)’ 
n n 

(bw*-lim sup Qi)’ = lim inf Qi’. 
n n 

Proof: The second equality is a consequence of the first one in which 
Q, is replaced by Qz’, taking polars and using the fact that the limit 
inferior of a sequence of closed convex cones in Y is a closed convex cone, 
and hence coincides with its bipolar. 

Since c-convergence implies bw*-convergence we have 

C5(bw*-lim sup Qi) ~>(c-lim sup Q:) = (lim inf en)’ 
” n 
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by Theorem 2.2(c). Suppose there exists 4 E hw*-lim sup Q,, with 
.t~ X\(lim inf Q,,). Then we can find F~lirn inf Q,, and r > 0 with 
(.i-, ,v) 3 3r. Let (y,,) be a sequence with limit y such that for some m E N 
and any n 3 m, y,, E Q,,. Let 

K=jO,r ‘y)u {r ‘(y,,-?;):n~Nj. 

By [ 121 or [ 151 K” is a neighborhood of 0 in the bw*-topology on X. Let 
k >, m be such that (j,?j/ I/y, - $11 <r for n 3 k. 

We can find n>k such that (,i--K”)nQi#@. Let x,E(.<-K~)~Q,:, 
so that (x,, - 1, I’,~ - 9) 2 -r, (x,, - .+ 9) > -r, 

a contradiction with x,, E Q,“. Since (lim inf Q,,)’ is closed convex we get 
(lim inf Qn)O xW(hw*-lim sup Qn) and equality holds. 1 

Given a topology p on a set X and a convergence c on X a multifunction 
P: W + X is said to converge as M‘ -+ o if 

c-lim sup P( H?) c lim inf P(w): 
IV - IO II) - (1, 

where the limit inferior is taken with respect to p. This happens when 
o E W and P is lsc at o and c-closed at w. This definition is a natural 
extension of Mosco’s convergence [27]. Its full interest occurs when one 
can guarantee that 

lim inf P( w ) c c-lim sup P( w ) 
1v + (4, ,v + ,A) 

since then there exists a unique subset between these two limits. 
When c is the convergence associated with a topology ~7 on X weaker 

than p and a family x of compact subsets of (X, a) this occurs under each 
one of the following assumptions: 

(a) Any point of (X, p) has a neighborhood belonging to xx. 

(b) Any compact subset of (X, p) is contained in some element of-X, 
p is metrizable, and the filter of neighborhoods of w  has a countable basis. 

Assumption (a) is satisfied when (X, r~) is a dual Banach space with its 
weak* topology and its norm topology p. 

2.7. PROPOSITION. Suppose (/I’, Y) is a dual pair, X and Y being endowed 
with topologies p and T, respectively, which are stronger than the weak 
topologies and provided with families X and 9 qf weakly compact sets and 
the associated convergences c. Suppose p is stronger than the 9-topology, T 
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is weaker than the ,X-topology, and x, is saturating in xx. Zf P: W + X, 
Q: W + Y are multtfunctions whose values are mutually polar convex cones 
and if P converges as w + o then Q converges as w -+ co. 

Proof. Using Theorem 2.2(a) with the roles of (X, p, x, P) and 
(I’-, t, Y, Q) interchanged we have 

c-lim sup Q(w) c (lim inf P(w))“; 
,c - w 1,’ + (0 

using our assumption on P and Theorem 2.2(b) we get 

(lim inf P(w))” c (c-lim sup,,_, P(w))” clim inf Q(w). 1 
I< + cu M’ - (0 

2.8. COROLLARY. Let (X, Y) be a dual pair, X and Y being endowed with 
the Mackey topologies and provided with the families J%‘~ and &, of convex 
weakly compact subsets of X and Y. Then for mutually polar multtfunctions 
P: W + X, Q: W + Y with closed convex cones values P converges as w --, w 
iff Q converges as w -+ o. 

Thus the convergences we introduced lead to a completely symmetric 
situation even when one deals with nonreflexive Banach spaces. 

3. CONTINUITY OF INTERSECTIONS AND CONICAL HULLS 

It is easy to see that when F: W + X is a multifunction and H is a subset 
of X the multifunction G: W+ X given by G(w) = F(w) n H is not 
necessarily lower semicontinuous when F is lower semicontinuous. 
However, we need only a special case of this situation. For the general case 
see [4,31]. 

3.1. LEMMA. Let (E, c) be a convergence vector space and let ,I? = E x R, 
H= E x { 1 }. Let Q: W-+ J? be a cone-valued multifunction and let 
C: W + E be given by C(w) x { 1 } = Q(w) n H. Then for any wO E W 

(a 1 if lim sup 111 _ x,o Q(w) c Q( w,,) then lim supn, _ n,g C(w) c C( w,); 

(b) iflimsu~..,,,,~ Q(w) 3 Q( wO) then lim sup,, _ M,O C(w) 3 C( w,); 

(c) if Q(wO) clim inf,,,,,,o Q(w) then C(w,) c lim inf,.,,., C(w); 

(d) ifQ(wo)zliminf,.+,,,,,Q(w) then C(w,)~liminf,,,,,,,C(w). 

Proof Assertion (a) is trivial. Let us show assertion (b). Given 
XE C(w,) we have (x, 1)~ Q(w,); hence there exists a net (w~)~~, in W with 
limit w,, and a net (a,)i,, in Z? with limit (x, 1) such that .?i~ Q(wi) for each 
ie Z. Writing ii = (xi, ri) we have (ri) + 1, hence r, > 0 for i large enough 

409’156 2-2 
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and x = lim, r,- ‘x, with r,- ‘x, E C(M.,) for i large enough, so that 
s E lim sup ), _ ,,,,, C(M~). The proof of assertions (c) and (d) is similar. 1 

3.2. PROPOSITION. Let H he u closed ujjfinne hyperplane of u tvs A’. 
Suppose 0 E X\ H. Let Q: W-+ A’ he a cone-vcrlued multifunction and let 
C: W+Xhegiven by C(w)=Q(w!)nH. Then,for any W”E W 

(a) if Q is closed at w0 then C is closed at w0 ; 

(b) if Q is lower semicontinuous at w0 then C is lower semicontinuous 
at wO. 

Proof: If h E H and if H, denotes the hyperplane H, = H - h parallel to 
H and passing through the origin, we can identify X with H, x R, H with 
H, x ( I} and the result follows from Lemma 3.1. 1 

Let us now tackle the inverse process. Namely, given a multifunction 
F: W -+ X, under what conditions can we transfer continuity properties of 
F to continuity properties of the multifunction i? W+ X given by 
I = R + F(w), the conical hull of F(w)? This problem was considered in 
[9, 16,40,41] in the finite-dimensional case and our results are only slight 
extensions of the results of [16,41]. Lower continuity properties are easily 
transferred. 

3.3. PROPOSITION. If F: W + X is a muItifimction from W into a con- 
vergence vector space (A’, c), if I? W + X is given by F(w) = R + F(w), and lf 
F( wO) c lim inf, j w. F(w) then 

P( wO) c lim inf P(w). 
M’ + !q 

Proof: Let i E @w,). Either 2 = 0 and then ZZ E lim inf,, j ~,~ p(w), else 
,i? = rx with r > 0, X E F(w,). Then, by assumption, for each net ( w~)~~, in W 
with limit w,, and each cofinal subset J of I we can find a subnet (w~)~ E K 
Of tWj),EJ and a net (x~)~. K in X with (x~)~~ K -5 X and .‘ck E F(wk) for 
each k E K. Then (rxk) -5 rx = ,? and 1 E lim inf,, _ “,” f(w). 1 

We cannot expect to transfer so easily closure properties from F to i? In 
fact, as a multifunction closed at a point w0 has a closed value at this point, 
the relation P may be nonclosed at w0 even if F is closed at w0 and 
constant. For instance, taking W arbitrary, X= R2, 

F(w)= {(x,,x2)~R2: x,x22 1, x1 20, x,20} 

we have F(w) = { (0, 0)) u 10, +cc [ x 10, +co [ and g cannot by closed. 
However, if we add to P the recession cone of F(w) we get a closed multi- 
function. This prompts us to introduce the following definition. 
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3.4. DEFINITION. The asymptotic cone K, C to a subset C of a 
convergence vector space (X, c) is the set of vectors UE X such that 
(E;‘x;) 2 u for some net (ti)i,, in 10, +co[ with limit + cc and some net 
(Xi)ie, of c: 

K,C=limsup t-‘C. 
r-5 

It iseasy tosee that ifC=R+(Cx (l})istheconeofR=XxRgenerated 
by Cx (lf then 

K,Cx {O) =cl(&d-x (O), 

where cl A denotes the closure of a subset A of 2. In fact 

Our notation stems from the fact that when X is a Banach space and when 
0: X+ S denotes the stereographic projection of X into the unit sphere of 
8=Xx R, K,Cx (0) is the contingent cone to the image of C by 0 at 
(0, 1). 

3.5. Remark. When C is closed and star shaped with respect to some 
point X~E C (i.e., x0 + [0, l](C- x0) c C) it is easy to see that K, C 
coincides with the recession cone to C 

o+c= {UEX:VrER+ x,fruEC}. 

As is well known, this cone does not depend on the choice of x0 in st C, 
the set of points with respect to which C is starshaped. 

The following lemma is the key step for the following more concrete 
criteria. 

3.6. LEMMA. Suppose F: W + X is a multifunction with uahes in a 
convergence vector space X. Suppose 

(a) 0 E X\lim sup,,, _ ,,,. F(w); 

(b) limsup,,,,,F(w)cF(w,) 

(~1 hm supfl, H.) + (+ =, wO) t-‘F(w)cK,F(w,). 

Then lim sup, _ wg ~(w)dlX+F(~~)uK,F(w~). 

Proof. Let ~.~limsup,,,,~(w) and let (w~)~~,-‘w~, (ii),,,+2 with 
ii E f( wi) for each i E I. Let us write ii = rixi with ri E R + , xi E F(wi). Taking 
a subnet if necessary, we may suppose (ri)iE I has a limit r in [0, +a]. We 
cannot have r = +co as otherwise we would have 0 = lim r; ‘gi = limj,, xi, 
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a contradiction with assumption (a). If r E 10, +rj[ we get that (.Y,) = 
(r;~ ‘ii?,) -+ r ’ 2, hence .? E [w + F(w~). Finally if r = 0, taking t, = yi 1 we get 
by assumption (c) that .? = lim t, ‘x, E K, F(M.~). 1 

Let us give an instance in which closedness can be transferred from F to 
E or rather to Fh given by 

Fh(w):= R+F(w)u K,F(w). 

Note that when C is a closed subset of X not containing 0, 
Ch = [w + C u K, C is the closed cone generated by C. 

3.7. PROPOSITION. Suppose F: W -+ X is a multifunction with closed 
convex values in a convergence vector space X. Suppose 

(a) 0 E X\lim sup,, j n,. F(w); 

(b) F is closed at w,; 

(c) for each net (w,)~, r with limit w0 in W, lim sup,, , F(w,) is non- 
empty. 

Then the multijiinction Fh defined above is closed at wO. 

Assumption (c) is satisfied if lim inf,,, “,. F(w) is nonempty. It is also 
satisfied if F is subcompact at w,,. Using the the terminology of [29], 
(c) can be rephrased as: F is lsc at (w,, X). 

Let us consider first the asymptotic part of the preceding result. 

3.8. LEMMA. With the assumptions and the notations of the preceding 
proposition one has 

lim sup K, F(w) c K, F(w,). 
II’ - “‘0 

Proof: Let u E lim sup,, _ ,,,g K, F(w): we can write v = lim vi with 
VIE K,F(w,), where (wi)iEl is a net in W with limit wO. Using assumption 
(c) we can find a subnet (w,)~,, of (w~)~~,, a subnet (vj)jEJ of (v,),~,, and 
a converging net (z~)~,, with zj E F(w,) for each Jo J. Let z = lim,,, zj. Then 
for each je J, using Remark 3.5 and the fact that F(w,) is closed convex, 
we have for any r E [w, zj + rv, E F(wj). Thus z + ru = limj(zj + rvj) E F( wO) 
by assumption (b). This proves that v = lim,, n~‘(z + no) belongs to 
~,F~wo). I 

3.9. LEMMA. Let F: W + X be a multifunction such that lim sup,, _ ,~o F(w) 
cF(w,). Suppose (t,),.,,- +oo in R,, (w~)~~~+w~ in W, (ij)j,J-+a with 
xi : = tjij E F(w,) for each j E J and .? # 0. Let z E X be such that for each 
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r E Iw + there exists a cofinal subset K of J, a net (z~)~~ K with limit z in X, 
a net (.Y~)~~ K with limit s E [r, + 00 [ in Iw with 

(1 - q’s,) Zk + t;‘SkXk E F(Wk). 

Then ~2 E K, F( wO), 

When F has convex values we can take sj = r for each jE J and set 
K = {k E J : rt,- ’ d 1 }, a cofinal subset of J. Then the assumption 
(1 - t; ‘sk) zk + t; ‘skxk E F(wk) is fulfilled if zk E F(wk). 

Proof: Let us prove that 2 E K, F( wO) by showing that for each r E Iw + 
there exists s 2 r with z + S.?E F(w,). We take K and (s~)~~ K as in the 
statement. Then s = lim sk belongs to [r, +co [ and 

y,:= (l-tt,‘s,)z,+t;‘s,x,+z+s~. 

As y, E I;(w,) we get that z + si E hm sup, E K F(Wk) = F(w,). 1 

End qf the proof of Proposition 3.7. Using assumption (c) of Proposi- 
tion 3.7 we see that if (ti),E,, (w;)~~,, (ii),,, are nets with limits + cc, wO, 
x, respectively, such that tjij E F(w,), we can find subnets (tj)jEJ, (ijZjEJ, 
and a net (zj)jeJ with limit z E lim SUP,~, F(w,), zj E F( w,) for each jE J. 
Applying the preceding lemma with sk = r for k in the cotinal subset K of 
Jo J with t, > r we conclude that condition (c) of Lemma 3.6 is fulfilled 
whenever 2 is nonnull while the conclusion ,? E K, F(w,) is trivial if .% = 0. 

3.10. Remark. We gave Lemmas 3.6 and 3.9 as separate statements 
although they seem to be rather technical. The reason lies in the fact that 
they can be applied to nonconvex situations. Even more nonconvexities 
can be considered with the following variant of Lemma 3.9. 

3.11. LEMMA. Let X be a normed vector space endowed with a con- 
vergence c weaker than the norm convergence. Let F: W+ 2’ be a multifunc- 
tion such that lim~up,~,,,,,F(w)cF(w,). Suppose (ti)i.,+ +co in iw,, 
CWi)itl -+ w. in W, xi E F(wi) with (ti’x,) -+ 2 # 0. Suppose that there exists 
m>O such that for each rE Iw, there exists a cofinal subset J of I, a 
c-converging net (z,)~~ J with IzI 6 m for z = lim, E J zj, and a converging net 
bj),E.J in [r, 00 [ such that 

(1 -sit,-‘)z,i-s,t,-‘xjEF(wj) for each jE J. 

Then ,2 E K, F( wo). 

Proof: Let us show that for each r E R + we can find z, E X with Iz,I <m 
and s, E [r, +oo [ s.uch that y, : = z, + s,i E F(w,). Then we have 
i=s;‘(yr-zz), y,~F(w~), and as Is,~z,~ <r-‘m -+O as r + CC we also 
have (s,rz,) 2 0, (s,‘y,) & 2, so that 2 E K, F(w,). 
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Given (t,L,,, (w,Ltl, (x,Jitl as in the statement and Y E R + we consider 
the nets (z,)~~~ and (s,),,~ and we denote by Z~ and s, their respective 
limits. By assumption Iz,j d m, s, 2 Y and 4’; E F( IV,) for yi = ( 1 - .sjt, ’ ) 2, + 
sit;--‘x,. Then (y,) -+-7,+s& so that z,+s,~EF(M”~). b 

3.12. EXAMPLE. Let X= R2, W= [0, 11, F: W-t X being given by 

F(~)=(~=(X’,X~)EX:X’~~,X~~O,X’W~~,.~~W~~,X’X~=~). 

Clearly lim,. _ 0+ F(w)= F(0). Let us check the assumptions of the 
preceding lemma. Given (ti),e,+ +a~, (w~)~~,-+O, xie F(w,) with 
(t;‘x,) +i= (u, v)# (0,O) we may suppose u>O, u=O (the case u=O, 
u>O being analogous). Then we take si=s= max(r, 1) and, for (ui, ui) = 
t; ‘x 0 

z;= (0, (1 -sty’)- ’ (s-lUi~‘-sui)). 

Then we have (zi) -+ (0, s- ‘up ‘) and we can take m = u ’ since 

(1 -st;-‘) z, + st,-‘x,e F(wi). 

3.13. COROLLARY. Let (X, o) and ( Y, c) be a pair of tvs in duality and 
let c be the convergence on X associated with o and a family x of compact 
subsets of (X, a) such that XC is saturating in %C and 7 is weaker than the 
x-topology. Let F: W + X be a closed convex-valued multtfunction such that 

(a) F is closed at w,; 

(b) for each net (w~)~~, with limit up0 in W, lim supiG, F(w,) is non- 
empty. 

Then the polar multifunction F” is lower semicontinuous at wO. 

Proof We have 

F”(w)=(y~Y:k’x~F(w)(x,y),<1} 

= {YE Y:(Y, l)~C(F(w)x {1>,“1”), 

where Xx R and Y x R are paired through the coupling functional 
((x,r),(y,s))=(x,y)-rs. Proposition 3.7 shows that P given by 
P(w) = (F(w) x {l})” is closed at wO. It follows from Theorem 2.2(b) and 
Proposition 3.2(b) that F” is lsc at w,,. 1 

3.14. PROPOSITION. Suppose (X, Y) is a dual pair as in Proposition 2.7. Zf 
F: W -+ X is a closed convex-valued multifunction which converges as 
w -+ wO, then G: W+ Y given by G(w)= F(w)O converges as w -+ wO. 

Proof This follows from Proposition 2.7, setting P(w) = (F(w) x { I f )“, 
Q(w) = P(w)” and taking Lemma 3.1 into account. 4 
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4. APPLICATION TO THE FENCHEL CONJUGACY 

In this section we consider the following problem. Given a net (fr)ie, of 
closed nonimproper convex functions on X, to what extent can we assert 
that the net (fl);,, of Fenchel conjugates converges if the net (fi)ie, con- 
verges? This problem has been considered by many authors and is treated 
in detail in the book [2] in the case of sequences. Here we consider the 
case of a family of functions (f,,),,,, W parametrized by a topological space 
W embedded in some topological space Q with o E cl W in Q (this point 
of view is equivalent to the point of view of nets or filters of functions). 

Using epigraphs of functions one can define natural and important 
concepts of convergence for functions on a topological space X, or more 
generally on a convergence space (X, c). Recall that the epigraph of 
f: A’--+ R is the set 

E(f)=&= {(x, r)EXX IR :f(x)<r}. 

4.1. DEFINITION. The epilimit superior of the family (f,),%,, W of func- 
tions on the convergence space (X, c) is the function f denoted by 
els f whose epigraph is the limit inferior of the epigraphs of f,, as MEW. W’ 
w-+0: 

E( els f,) = lim inf E(S,,.). 
LC - w  w-w 

The epilimit inferior of (f,,,),, ,+, is the function denoted by eli,,,,f,, 
whose epigraph is the limit superior of the epigraphs of J,,. as w  + o: 

E( eli fW) = lim sup E(f,,). 
11’ - (0 w-w 

Both limits can be characterized in terms of (fW) and nets, and when X is 
a topological space, in terms of neighborhoods (see [2]) but we do not use 
these characterizations here. 

Let us recall that the conjugate functional associated f: X-+ R = 
iw u { + cc } is the functional f*: Y -+ w  given by 

f*(v)=SuP [<x3 v> -f(x)l. 
.r E x 

A similar definition holds for g : Y + R. In the sequel we suppose f is non- 
improper (i.e., f is not identically + cc and does not take the value - co), 
so that f * is nonimproper too. 

Our study relies on the following geometrical interpretation of this 
conjugacy correspondence. Let us associate to f: X -+ iw ’ = IF! u { + cc } the 
cone generated by E(f) x { 1) in Xx [w x R: 

JYf)=~+(af)x (1)). 
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This set is the image by the involution S: (x, r, s) -+ (x, s, r) of the epigraph 
of the mapping T: Xx R + R ’ obtained by homogenizing .f: ,r(O, 0) = 0 and 
,P(x,r)=$(r- ‘x) for (x, r)EXx]O,+cX,[, ,f(x, r)= +rx: for (x, r)E Xx 
]-co, 0] with (x, r) # (0,O). Similarly, if h: Y-t R” we set 

!ag,=~+(E(g)x {lH. 

Now let us define a coupling functional ( , ) on Xx R* x Y x R* by 

( (x, r, s), ( y, 2, u) ) = (x, y > - ru - st. 

This coupling functional is obviously strongly nondegenerated. It yields a 
striking interpretation of the conjugacy correspondence similar to [33, 
Theorem 14.41. We include a proof for completeness as the arguments of 
the proof of [33, Theorem 14.41 are valid for finite-dimensional spaces 
only. 

4.2. LEMMA. For any f: X + 68 one has 

E(f*)x {l}=P(f)% YXRX (1). 

If moreover f is convex lsc and nonimproper then P( f )" is the closure of the 
convex cone Q(f*) generated by E(f*)x (1). 

Proof: By our definitions 

E(f*)={(y,t)EYxuwxEXt>(X, y)-f(x)} 

={(y,t)EYxR:V( x, s) E E(f) s + t 2 <x9 Y )> 

={(y,t)EYx[W:V(X,S)EE(f) <(x,s, I), (Y,41))<0}. 

Therefore (y, t)EE(f*) iff (y, t, l)~P(f)‘. 
Now let us suppose that f is convex lsc and nonimproper. Let us first 

show that (0, -1,0) does not belong to cl P(f ). Otherwise we could find 
a net ((xi, s,, tl))lE, in P(f) with limit (0, -l,O), and, as P(f) is a convex 
cone, for any r E R + and any (x,, sO) E E(f) we would have 

(X0, SO, 1) + rk, si, 2,) = (1 + rti) 
( 
y$, yy$ 1 E P(f) 

I > 

for i so large that 1 + rt, > 0 

(x0, so - r) = lim 

as E(f) is closed. As r is arbitrary in R + this would imply f(xo) = -co, a 
contradiction. 
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As (0, -1,0) does not belong to cl p(f) we can apply the Hahn-Banach 
theorem which yields (y, t, u) E P(f)’ with 

u=((O,-l,O), (.Y,t,u))>O. 

Let D=YxRxR+. As P(f)“cD, since ~(f)+{O)xR+x{O}cP(f) 
and as (y, t, u) E p(f)’ A int D we have 

P(f)’ = P(f)O A D = cl( P(f)O n int(D)) 

by a well-known fact about convex sets. Therefore P(f)’ is the closed cone 
generated by I’(f)’ n Y x R x (1 > = E(f*) x { I}. 1 

4.3. PROPOSITION. For any family (g,),, t w of extended real-valued func- 
tions on Y one has, if T is stronger than the X-topology and if X is equipped 
with the convergence c associated to CT and X, 

( els g,,.)* d eli g,:. 
,,’ - ,!I ,I - (I, 

As observed by Dolecki [ll], this inequality can be shown directly when- 
ever X and Y are endowed with convergence or topologies making the 
pairing Xx Y -+ R jointly lsc. 

Proof Let g=els g ,,,, Q(o)=Q(g), Q(w)=Q(g,,.) for WE W. Since by 
Proposition 3.3 

Q(w) c lim inf Q(w) 
II’ + (I, 

Theorem 2.2(a) implies that 

c-lim sup Q(w)” c Q(w)‘. 
(I’ - (1, 

Using Lemmas 3.1 and 4.2 in which the roles of X and Y are interchanged, 
taking the intersection with the aftine subspace Xx R x (1 } of Xx R2 we 
get the result. [ 

4.4. PROPOSITION. For any family (f,.),,,. ,+, of closed nonimproper convex 
functions on X satisfying the assumption 

for each net (w~)~~, in W with limit UI there exists K E X’, 
a subnet (w~)/~~ of (w;);~, and a net (x,)~,, in K with 
lim SUpfi,(Xj) < +cO, W) 

j.51 
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one has, provided that t is weuker than the .W-topology on Y and ~4:. is 
saturating in .x., 

( eli .f;, )* 3 els ,f’,T. 
II - <‘, M -* ,I, 

ProoJ: Let .f= (eli,, +Cj,jl;V)** so that E(f’) 3 lim SUP~+~,~ E(J,) when 
Xx R is endowed with the product convergence of c and of the natural 
convergence of R. Assumption (H) can be rephrased as: for any net (MI,),, , 
in W with limit w lim sup E(,f,,,) is nonempty. Thus ,f is not the constant 
function with value + CE and without loss of generality we may suppose ,f 
does not assume the value - ncl as the inequality is obvious when 
f * = $00. Proposition 3.7 ensures that 

lim sup P(.f,v) = cl P(f), II’ - ,I, 

so that, by Theorem 2.2(b) 

P( f )” c lim inf P( fw)". IV - (0 

Then Lemmas 3.1 (c) and 4.2 yield the result 

E(f*) c lim inf E(f ,*). 1 II' - ,I> 

Although the following corollary could be deduced from Theorem 2.2(c) 
by similar methods, we deduce it from the preceding two propositions. 

4.5. COROLLARY. Suppose the topology T on Y is the %C-topology and x 
is saturating in %C. Then for any ,family (f,),., w of closed nonimproper 
convex functions on X satisfying the condition (H) one has 

( eli ,f,,.)* = els f ,T. II 4 (2, IV + <iI 

Proof. Using Proposition 4.4, putting g, = f ,*, and taking the con- 
jugates in Proposition 4.3, one has, since lim inf E(f z) is closed and 
convex. 

els fz=(els f:)**2 ( eli f,,)* 2 els f,*. 1 w-w H' + (0 M1 - <I, ,I - 0, 

In the following statement, given a dual pair (X, Y), a family (fw,)w, ,+, of 
extended real-valued functions on X is said to epiconverge to f: X + tQ : = 
[--oo,+co] if 
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where the epilimit superior is taken with respect to the Mackey topology 
and the epilimit inferior is taken with respect to the convergence c 
associated with a(X, Y) and the family WX of convex weakly compact 
subsets of X. Then e-lim,,, f, stands for els,., (” f, and elico+w fw,. The 
following corollary extends the famous JolyyMosco result. 

4.6. COROLLARY. Let (X, Y) be a dual pair of tvs and let ( fw),., w be 
a family of closed nonimproper conuex funciions on X. Then (f,,.),-, w 
epiconverges to a closed nonimproper convex function f on X ijjf (f T),,,. w 
epiconverges to f *. 

ProofI This follows from the symmetry of the statement and from 
Corollary 4.5 in as much as condition (H) is satisfied when 
lim inf,. _ t,) E( f,,,) = E(f) is nonempty. 1 
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