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Let λ be a partition of a positive integer n. Let C be a symmetric
rigid tensor category over a field k of characteristic 0 or char(k) > n,
and let V be an object of C. In our main result (Theorem 4.3)
we introduce a finite set of integers F (λ) and prove that if the
Schur functor SλV of V is semisimple and the dimension of V
is not in F (λ), then V is semisimple. Moreover, we prove that
for each d ∈ F (λ) there exist a symmetric rigid tensor category C
over k and a non-semisimple object V ∈ C of dimension d such
that SλV is semisimple (which shows that our result is the best
possible). In particular, Theorem 4.3 extends two theorems of Serre
for C = Rep(G), G is a group, and SλV is

∧n V or Symn V , and
proves a conjecture of Serre (1997) [S2].

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let G be any group, let k be a field and let Rep(G) be the category of finite dimensional represen-
tations of G over k. A classical result of Chevalley states that in characteristic 0, the tensor product
V ⊗ W of any two semisimple objects V , W ∈ Rep(G) is also semisimple [C]. Later on, Serre proved
that this is also the case in positive characteristic p, provided that dim V + dim W < p − 2 [S1].

In [S2], Serre considered the “converse theorems,” and proved that V ∈ Rep(G) is semisimple in
each one of the following situations: there exists W ∈ Rep(G) such that dim W �= 0 in k and V ⊗ W is
semisimple [S2, Theorem 2.4], V ⊗n is semisimple for some n � 1 [S2, Theorem 3.4],

∧n V is semisim-
ple for some n � 1 and dim V �= 2, . . . ,n in k [S2, Theorem 5.2.5], or Symn V is semisimple for some
n � 1 and dim V �= −n, . . . ,−2 in k [S2, Theorem 5.3.1].

Furthermore, Serre comments that it is easy to check that all the above mentioned results
from [S2] extend to categories of linear representations of Lie algebras and restricted Lie alge-
bras (when p > 0) [S2, p. 510]. Moreover, Serre explains how to extend his results Theorems 2.4
and 3.4 [S2] to any symmetric rigid tensor category over k, and says on p. 511 [S2]: “I have not
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managed to rewrite the proofs in tensor category style. Still, I feel that Theorem 5.2.5 on
∧n V and

Theorem 5.3.1 on Symn V should remain true whenever n! �= 0 in k, i.e., p = 0 or p > n.” This paper
originated in an attempt to prove this conjecture of Serre.

A further natural generalization of Serre’s results would be to consider any Schur functor Sλ , and
not only

∧n and Symn . Namely, to look for an extension of Theorems 5.2.5 and 5.3.1 in [S2], where
C is any symmetric rigid tensor category over k, and V ∈ C is an object for which SλV is semisimple
for some partition λ of n. This is precisely the main purpose of this paper.

The paper is organized as follows. In Section 2 we note that in fact Theorem 2.4 from [S2] holds
in a much more general situation than the symmetric one. More precisely, let C be any rigid tensor
category, and suppose that W ∈ C is isomorphic to its double dual W ∗∗ via an isomorphism i. This
allows to define a scalar dimi(W ) in k, and we show that if dimi(W ) �= 0 and V ⊗ W is semisimple,
then V is semisimple (see Theorem 2.3). Examples, other than C = Rep(G), are given by braided rigid
tensor categories C and by representation categories C of Hopf algebras whose squared antipode is
inner.

In Section 3 we note that Theorem 3.3 and Corollary 3.4 from [S2] hold in a much more general
situation than the symmetric one, as well. More precisely, let C be any rigid tensor category satisfying
the commutativity condition, and let V ∈ C . We show that if V ⊗n ⊗ V ∗⊗m is semisimple for some
m,n � 0, not both equal to 0, then V is semisimple. In particular, if V ⊗n is semisimple for some
n � 1 then V is semisimple (see Theorem 3.1). Examples, other than C = Rep(G), are given by braided
rigid tensor categories C .

In Section 4 we state the main result of the paper (Theorem 4.3), and prove various results in
preparation for its proof. Our main result extends Theorem 5.2.5 on

∧n and Theorem 5.3.1 on Symn

in the group case C = Rep(G) [S2], to any symmetric rigid tensor category C over k and any Schur
functor Sλ (so, in particular, it provides a proof to the conjecture of Serre [S2, p. 511]). More precisely,
let λ be a partition of a positive integer n, and assume that char(k) = 0 or char(k) > n. Let Sλ be the
associated Schur functor (see [D2]) and let V be an object of C . In Theorem 4.3 we introduce a finite
set of integers F (λ) and prove that if the dimension of V is not equal in k to an element of F (λ)

and SλV is semisimple, then V is semisimple. Moreover, we prove that for each d ∈ F (λ) there exist
a symmetric rigid tensor category C over k and a non-semisimple object V ∈ C of dimension d such
that SλV is semisimple (which shows that our result is the best possible).

Section 5 is devoted to the proof of Theorem 4.3.
All tensor categories will be assumed to be rigid, k-linear Abelian, with finite dimensional Hom

spaces, such that every object has a finite length, and End(1) = k.

2. From V ⊗ W to V in rigid tensor categories

Let C be a rigid tensor category (see e.g., [BK, Definition 2.1.2]). For an object V ∈ C we let

coevV : 1 → V ⊗ V ∗ and evV : V ∗ ⊗ V → 1

denote the coevaluation and evaluation maps associated to V , respectively. Recall that

(idV ⊗ evV ) ◦ (coevV ⊗ idV ) = idV .

The following two propositions were proved by Serre for C := Rep(G), G any group [S2]. However,
it is straightforward to verify that the same proofs work in any rigid tensor category C .

Proposition 2.1. (See [S2, Proposition 2.1].) Let V , W ∈ C , and let V ′ be a sub-object of V . Assume that
coevW : 1 → W ⊗ W ∗ and V ′ ⊗ W → V ⊗ W are split injections. Then V ′ → V is a split injection.

Proposition 2.2. (See [S2, Proposition 2.3].) Assume coevW : 1 → W ⊗ W ∗ is a split injection and that V ⊗ W
is semisimple. Then V is semisimple.
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One instance in which coevW : 1 → W ⊗ W ∗ is a split injection is the following. Assume that
W ∈ C is isomorphic to its double dual W ∗∗ , and fix an isomorphism i : W → W ∗∗ . This allows us to
define the (quantum) dimension dimi(W ) of W (relative to i) as the composition

dimi(W ) := evW ∗ ◦ (i ⊗ idW ∗) ◦ coevW .

Note that dimi(W ) ∈ End(1) = k. Now, clearly if dimi(W ) �= 0 in k, then coevW is a split injection.
(See Remark 2.2 in [S2].)

As a consequence of Propositions 2.1 and 2.2 we have the following theorem, which generalizes
Theorem 2.4 in [S2].

Theorem 2.3. Assume that W ∈ C is isomorphic to its double dual W ∗∗ and let i : W → W ∗∗ be an isomor-
phism. If V ⊗ W is semisimple and dimi(W ) �= 0 in k then V is semisimple.

Remark 2.4. 1) It is known that if C is braided, any object W is isomorphic to its double dual W ∗∗ .
So in particular, if H is a quasitriangular (quasi)Hopf algebra over k and V , W ∈ Rep(H) such that
V ⊗ W is semisimple and dim W �= 0 in k, then V is semisimple. The converse is not true.

2) If H is a Hopf algebra whose squared antipode S2 is inner (e.g., S2 = id) then any W ∈ Rep(H)

is isomorphic to W ∗∗ . Therefore Theorem 2.3 holds for Rep(H).
3) When C is symmetric, Serre already pointed out that Theorem 2.4 in [S2] holds for C , with the

same proof (see pp. 510–511 in [S2]).

3. From V ⊗n ⊗ V ∗⊗m to V in rigid tensor categories

The following theorem was proved by Serre for C := Rep(G), G any group [S2]. Serre also explains
that the same proof works in any symmetric rigid tensor category C . In fact, the symmetry is used
only to guarantee that for any V ∈ C the morphism

idV ⊗ coevV : V → V ⊗ V ⊗ V ∗

is a split injection. We just note that in fact this is the case in any rigid tensor category C satisfying
the following commutativity condition: there exists a functorial isomorphism c :⊗ → ⊗op such that
cV ⊗1 = c1⊗V = idV for any V ∈ C (e.g., C is braided, not necessarily symmetric). Indeed, let C be a
rigid tensor category satisfying the commutativity condition. Then, using the naturality of c, one has

(idV ⊗ evV ) ◦ cV ,V ⊗V ∗ ◦ (idV ⊗ coevV ) = (idV ⊗ evV ) ◦ (coevV ⊗ idV ) = idV . (1)

Therefore we have the following result, which generalizes Theorem 3.3 and Corollary 3.4 in [S2].

Theorem 3.1. Let C be a rigid tensor category satisfying the commutativity condition, and let V ∈ C . If
V ⊗n ⊗ V ∗⊗m is semisimple for some m,n � 0, not both equal to 0, then V is semisimple. In particular, if
V ⊗n is semisimple for some n � 1 then V is semisimple.

4. From SSSλV to V in symmetric rigid tensor categories

In this section we assume that C is a symmetric rigid tensor category over a field k, with a com-
mutativity constraint c (see e.g., [D1,D2] and [BK, Definition 1.2.7]).

4.1. Schur functors in C

Recall that given an object X ∈ C and a nonnegative integer m, the symmetric group Sm acts on
X⊗m via the symmetry c. Let β be a partition of m, and assume that char(k) > m if char(k) �= 0. Let
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Vβ be the corresponding irreducible representation of Sm and let cβ ∈ k[Sm] be a Young symmetrizer
associated with Vβ . Then cβ gives rise to a functor

cβ : C → C, X 	→ cβ

(
X⊗m)

.

Recall that the isomorphism type of the functor cβ does not depend on the choice of cβ . We shall call
Sβ X := cβ(X⊗m) ⊆ X⊗m the Schur functor of X associated with β .

Schur functors in symmetric rigid tensor categories were introduced (more conceptually) and stud-
ied by Deligne in [D2]. Among many other things, it is proved there that for any object X ∈ C ,
(Sβ X)∗ is canonically isomorphic to Sβ X∗ , a fact we shall use often in the sequel.

Example 4.1. Note in particular that S(0) X = 1, S(1) X = X , S(m) X = Symm X and S(1m) X = ∧m X .

4.2. The main result

Our goal is to generalize Theorems 5.2.5 and 5.3.1 from [S2] by replacing representations categories
Rep(G) of groups by any symmetric rigid tensor category C , and by replacing the Schur functors

∧n ,
Symn by any Schur functor. More precisely, let λ be a partition of a positive integer n and let V ∈ C .
Our goal is to find out when the semisimplicity of SλV implies the semisimplicity of V , in terms of
the dimension of V only.

Fix a partition λ of a positive integer n, with p := p(λ) rows and q := q(λ) columns, and let (i, j)
number the row and column of boxes for the Young diagram of λ. Let us introduce some notation.

• Let R(λ) denote the integral interval {−q, . . . , p}, and let T (λ) ⊆ R(λ) include 0 if λ is a hook (i.e.,
(2,2) /∈ λ), 1 if (3,2) /∈ λ, −1 if (2,3) /∈ λ, and −q, p if λ is not a rectangle. Set F (λ) := R(λ)\ T (λ).

• Let G(λ) denote the set of all values d in k for which there exists a symmetric rigid tensor
category C over k with a non-semisimple object V of dimension d such that SλV is semisimple.

Remark 4.2. 1) We have that F (λ) = −F (λ∗), where λ∗ is the conjugate of λ.
2) We have that G(λ) = −G(λ∗). Indeed, if (C, V ) is a counterexample for (λ,d) (i.e., C is a sym-

metric rigid tensor category over k with a non-semisimple object V of dimension d such that SλV
is semisimple) then (C � Supervect, V ⊗ 1−1) is a counterexample for (λ∗,−d), where Supervect
is the category of finite dimensional super vector spaces over k and 1−1 ∈ Supervect is the odd
1-dimensional space.

We can now state our main result concisely.

Theorem 4.3. Let n be a positive integer, n < char(k) in case char(k) �= 0, and let λ be a partition of n. Then
the sets F (λ) and G(λ) coincide (where we view the relevant integers as elements of k in an obvious way).

Example 4.4. Let C be a symmetric rigid tensor category over k, and let V ∈ C .
1) Theorem 4.3 implies for λ = (1n) (respectively, λ = (n)), that if SλV is semisimple and the di-

mension of V is not equal in k to an integer in the range 2, . . . ,n (respectively, −n, . . . ,−2), then V
is semisimple. For C = Rep(G), G is any group, this is Theorem 5.2.5 from [S2] (respectively, Theo-
rem 5.3.1 from [S2]).

2) Theorem 4.3 implies that if S(2,1)V is semisimple then so is V .

The proof of Theorem 4.3 is given in Section 5. The rest of this section is devoted to preparations
for the proof.
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4.3. Traces in C

For an object X ∈ C , let

ẽvX := evX ◦ c X,X∗ : X ⊗ X∗ → 1.

Recall that the dimension dim X ∈ k of X is defined by

dim X := ẽvX ◦ coevX : 1 → 1.

In [JSV] it is explained that the family of functions

TrU
A,B : Hom(A ⊗ U , B ⊗ U ) → Hom(A, B), A, B, U ∈ C,

defined by

TrU
A,B( f ) : A

idA⊗coevU−−−−−−→ A ⊗ U ⊗ U∗ f ⊗idU∗−−−−→ B ⊗ U ⊗ U∗ idB⊗ẽvU−−−−−→ B, (2)

is natural in U , A and B , and satisfies the following property (among other properties)

TrU⊗W
A,B ( f ) = TrU

A,B

(
TrW

A⊗U ,B⊗U ( f )
)
. (3)

Clearly, TrU
1,1(idU ) = dim U .

We have the following two easy lemmas.

Lemma 4.5. Let f : A ⊗ U → B ⊗ W and g : W → U be morphisms. Then

TrU
A,B

(
(idB ⊗ g) f

) = TrW
A,B

(
f (idA ⊗ g)

)
.

Proof. Follows from the naturality of Tr in U . �
Lemma 4.6. Let f : A ⊗ U → B ⊗ U and g : W → W be morphisms. Then

TrU
A,B( f ) ⊗ TrW

1,1(g) = TrU⊗W
A,B ( f ⊗ g).

Proof. Follows easily from the definition of Tr, and the facts that (U ⊗ W )∗ = W ∗ ⊗ U∗ with

coevU⊗W = (idU ⊗ cU∗,W ⊗W ∗) ◦ (coevU ⊗ coevW )

and

ẽvU⊗W = (ẽvU ⊗ ẽvW ) ◦ (idU ⊗ cW ⊗W ∗,U∗)

(see e.g., [BK]). �
4.4. Traces of permutations

Fix a nonnegative integer m, and an object X ∈ C . In the sequel we shall identify the symmetric
group Sm−1 with the stabilizer of 1 in Sm .
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Lemma 4.7. For any σ ∈ Sm and τ ∈ Sm−1 , TrX⊗m−1

X,X (σ ) = TrX⊗m−1

X,X (τστ−1).

Proof. Follows easily from Lemma 4.5. �
Lemma 4.8. We have that TrX⊗m−1

X,X ((1 · · ·m)) = idX .

Proof. For any i let us denote the cycle (1 · · · i) by σi . We are going to prove the lemma by induction
on m using the relation σm = (12)σm−1. We compute

TrX⊗m−1

X,X (σm) = TrX
X,X

(
TrX⊗m−2

X⊗X,X⊗X (σm)
)

= TrX
X,X

(
TrX⊗m−2

X⊗X,X⊗X

((
(12) ⊗ id

) ◦ (id ⊗ σm−1)
))

= TrX
X,X

(
(12) ◦ TrX⊗m−2

X⊗X,X⊗X (id ⊗ σm−1)
)

= TrX
X,X

(
(12) ◦ (

idX ⊗ TrX⊗m−2

X,X (σm−1)
))

= TrX
X,X

(
(12) ◦ (idX ⊗ idX )

)
= idX ,

where in the first equality we used (3), in the third equality we used the naturality of Tr in X ⊗ X , in
the fifth equality we used the induction assumption, and in the last equality we used (1). �
Lemma 4.9. Let σ1σ2 · · ·σN ∈ Sm be a product of disjoint cycles, where reading from left to right the numbers

1, . . . ,m appear in an increasing order. Then TrX⊗m−1

X,X (σ1σ2 · · ·σN) = dN−1idX , where d is the dimension of X .

Proof. Lemma 4.8 is the case N = 1. Now use Lemma 4.6 to proceed by induction on N . �
Proposition 4.10. Let σ ∈ Sm, and let N(σ ) denote the number of disjoint cycles in σ . Then

TrX⊗m−1

X,X (σ ) = dN(σ )−1idX ,

where d := dim X.

Proof. It is clear that for any σ ∈ Sm there exists τ ∈ Sm−1 such that τστ−1 decomposes into a
product of disjoint cycles σ1σ2 · · ·σN(σ ) , where reading from left to right the numbers 1, . . . ,m are in

an increasing order. Now, by Lemma 4.7, TrX⊗m−1

X,X (σ ) = TrX⊗m−1

X,X (τστ−1), and hence the result follows
from Lemma 4.9. �
4.5. The morphism θX,m,α,β

Given a partition α of a nonnegative integer m − 1, let α + 1 denote the set of partitions of m
whose Young diagram is obtained by adding a single box to the Young diagram of α.

Fix an object X ∈ C of dimension d := dim X , and partitions α of m − 1 and β ∈ α + 1. We define
the morphism

θα,β = θX,m,α,β : X → Sβ X ⊗ Sα X∗

as the following composition:

θα,β : X
idX ⊗coevSα X−−−−−−−→ X ⊗ Sα X ⊗ Sα X∗ cβ⊗cα−−−−→ Sβ X ⊗ Sα X∗. (4)
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Consider the morphism

Pα,β = P X,m,α,β : X → X,

given as the composition

Pα,β : X
θα,β−−→ Sβ X ⊗ Sα X∗ ↪→ X ⊗ X⊗m−1 ⊗ X∗⊗m−1 idX ⊗ẽvX⊗m−1−−−−−−−−→ X . (5)

In what follows we shall see that the morphism Pα,β is a scalar multiple of the identity morphism
idX by some polynomial pα,β(d).

If we identify Sm−1 with the stabilizer of 1 in Sm , then clearly

Pα,β = TrX⊗m−1

X,X

(
(idX ⊗ cα) ◦ cβ ◦ (idX ⊗ cα)

)
: X → X,

and hence, by Lemma 4.5,

Pα,β = TrX⊗m−1

X,X

(
(idX ⊗ cα) ◦ cβ

)
: X → X .

As an immediate consequence of Proposition 4.10, we get the following.

Corollary 4.11. Write (idX ⊗ cα) ◦ cβ ∈ k[Sm] as a k-linear combination of group elements: (idX ⊗ cα) ◦ cβ =∑
σ∈Sm

fα,β(σ )σ , and set

pα,β(d) :=
∑

σ∈Sm

fα,β(σ )dN(σ )−1.

Then Pα,β = pα,β(d)idX . In particular, if pα,β(d) �= 0 in k then θα,β is a split injection.

Let χβ be the character of Vβ , and let

eβ := dim Vβ

m!
∑

σ∈Sm

χβ(σ )σ

be the primitive central idempotent in k[Sm] associated with Vβ . Recall that eβ is equal to the sum
of all the (dim Vβ ) Young symmetrizers cβ associated with Vβ .

In the following theorem we compute the polynomial pα,β(d) explicitly, in terms of χβ .

Theorem 4.12. We have that

TrX⊗m−1

X,X

(
(idX ⊗ eα) ◦ eβ

) =
(

dim Vα

m!
∑

σ∈Sm

χβ(σ )dN(σ )−1
)

idX ,

and hence

pα,β(d) = 1

m!dim Vβ

∑
σ∈Sm

χβ(σ )dN(σ )−1.
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Proof. Clearly,

(idX ⊗ eα) ◦ eβ = dim Vα dim Vβ

(m − 1)!m!
∑

σ∈Sm

( ∑
τ∈Sm−1

χα(τ )χβ

(
τ−1σ

))
σ .

Therefore, by Proposition 4.10,

TrX⊗m−1

X,X

(
(idX ⊗ eα) ◦ eβ

) =
(

dim Vα dim Vβ

(m − 1)!m!
∑

σ∈Sm

( ∑
τ∈Sm−1

χα(τ )χβ

(
τ−1σ

))
dN(σ )−1

)
idX

=
(

dim Vα dim Vβ

(m − 1)!m!
( ∑

τ∈Sm−1

χα(τ )χβ

(
τ−1

( ∑
σ∈Sm

dN(σ )−1σ

))))
idX .

Set z(d) := ∑
σ∈Sm

dN(σ )−1σ . Clearly, z(d) is a central element in k[Sm], hence it acts by the scalar

χβ(z(d))/dim Vβ on Vβ . In particular, for any τ ∈ Sm , χβ(τ−1z(d)) = χβ(τ−1)χβ(z(d))/dim Vβ . We
therefore have

TrX⊗m−1

X,X

(
(idX ⊗ eα) ◦ eβ

) =
(

dim Vα

(m − 1)!m!
( ∑

τ∈Sm−1

χα(τ )χβ

(
τ−1))χβ

(
z(d)

))
idX .

Finally, recall that the multiplicity [ResSm
Sm−1

χβ : χα] of Vα in the restriction of Vβ from Sm to Sm−1

is equal to 1 (see e.g. [FH]), i.e.,

1

(m − 1)!
∑

τ∈Sm−1

χα(τ )χβ

(
τ−1) = [

ResSm
Sm−1

χβ : χα

] = 1.

We thus conclude that

TrX⊗m−1

X,X

(
(idX ⊗ eα) ◦ eβ

) =
(

dim Vα

m!
∑

σ∈Sm

χβ(σ )dN(σ )−1
)

idX ,

as claimed. �
In fact, the polynomial pα,β(d) is closely related to a well-known polynomial associated with the

partition β . Namely, let cpβ(d) := ∏
(i, j)∈β(d+ j− i) be the content polynomial of β , and recall that the

polynomial (in d) 1
dim Vβ

∑
σ∈Sm

χβ(σ )dN(σ ) equals cpβ(d) (see e.g. [MacD]). Hence, by Theorem 4.12,

pα,β(d)d = 1

m!cpβ(d). (6)

Corollary 4.13. Let α, β , X and d be as above, and let p(β), q(β) be the number of rows and columns in the
diagram of β , respectively.

1) If d �= 1 − q(β), . . . , p(β) − 1 in k then the morphism θα,β is a split injection.
2) Suppose β is a hook. If d �= 1 − q(β), . . . ,−1,1, . . . , p(β) − 1 in k then the morphism θα,β is a split

injection.
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Proof. 1) Since d �= 0 in k, the result follows from (6) and Theorem 4.12.
2) By Theorem 4.12, pα,β(0) = 1

m!dim Vβ

∑
σ χβ(σ ), where the sum is taken over all the m-cycles σ

in Sm . But it is well known (see e.g. [MacD]) that χβ vanishes on an m-cycle when β is not a hook,
and that χ(m−s,1s)(σ ) = (−1)s for any 0 � s � m and m-cycle σ . Therefore θα,β is a split injection
when d = 0 as well.

We are done. �
Example 4.14. For the partition α = (1m−1), Sα X = ∧m−1 X is the (m − 1)th exterior power of X .
Hence, by Corollary 4.13, if

(d−1
m−1

) �= 0 in k, then the corresponding morphism θ(1m−1),(1m) is a split
injection. This is a generalization of Lemma 5.1.12 in [S2] in the group case.

4.6. Extensions in C

Let U , V , W ∈ C and let f ∈ Hom(V , W ), g ∈ Hom(W , U ). We shall denote by f∗ and g∗ the
k-linear maps

f∗ : Ext1(U , V ) → Ext1(U , W ) and g∗ : Ext1(U , V ) → Ext1(W , V )

induced by f and g , respectively. Namely, given an extension

E : 0 → V → X → U → 0,

the extensions

f∗(E) : 0 → W → Y → U → 0 and g∗(E) : 0 → V → Z → W → 0

are obtained using the pushout

V

f

X

W Y

and the pullback

X U

Z W ,

g

respectively.
We shall need the following two lemmas.

Lemma 4.15. For any objects A, B, X ∈ C , the k-linear spaces Ext1(B, A ⊗ X) and Ext1(B ⊗ X∗, A) are canon-
ically isomorphic.

Proof. One associates to an element

0 → A ⊗ X → W → B → 0
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in Ext1(B, A⊗ X) an element in Ext1(B ⊗ X∗, A) in the following way: since the functor −⊗ X∗ : C → C
is exact, tensoring our exact sequence with X∗ on the right yields the extension

E : 0 → A ⊗ X ⊗ X∗ → W ⊗ X∗ → B ⊗ X∗ → 0.

The corresponding extension

0 → A → W̃ → B ⊗ X∗ → 0

in Ext1(B ⊗ X∗, A) is given by (idA ⊗ (evX ◦ c X,X∗))∗(E). This assignment defines a k-linear map
Ext1(B, A ⊗ X) → Ext1(B ⊗ X∗, A), and it is straightforward to verify that its inverse map is con-
structed similarly, using the exact functor − ⊗ X and the map (idB ⊗ (c X,X∗ ◦ coevX ))∗ . �
Lemma 4.16. Let α be a partition of a nonnegative integer m − 1, let β ∈ α + 1 and let A, B, X ∈ C . Suppose
that θα,β = θX,m,α,β is a split injection. Then the k-linear map

(idB⊗X ⊗ coevSα X )∗ : Ext1(A, B ⊗ X) → Ext1(A, B ⊗ X ⊗ Sα X ⊗ Sα X∗)
is injective.

Proof. Indeed, since θα,β is a split injection, we have that

(idB ⊗ θα,β)∗ : Ext1(A, B ⊗ X) → Ext1(A, B ⊗ Sβ X ⊗ Sα X∗)
is injective. But,

(idB ⊗ θα,β)∗ = (idB ⊗ cβ ⊗ idSα X∗)∗ ◦ (idB⊗X ⊗ coevSα X )∗.

We are done. �
4.7. The filtration on SλV defined by a sub-object of V

Fix a sub-object A of V for the rest of the section, and consider the short exact sequence

(V ) : 0 → A → V → B → 0; (7)

it is an element in the k-linear space Ext1(B, A). Then (V ) defines a filtration on SλV in the following
way. For each 0 � i � n set

Ti :=
∑

S⊆{1,...,n}, |S|=i

V S(1) ⊗ · · · ⊗ V S(n),

where V S( j) = V if j /∈ S and V S( j) = A if j ∈ S . Clearly, the Ti define an Sn-equivariant filtration T∗
on V ⊗n:

V ⊗n = T0 ⊇ T1 ⊇ · · · ⊇ Tn ⊇ Tn+1 = 0,

whose composition factors are

Ti/Ti+1 ∼=
⊕

S⊆{1,...,n}, |S|=i

V S,1 ⊗ · · · ⊗ V S,n, 0 � i � n,

where V S, j = B if j /∈ S and V S, j = A if j ∈ S .
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The filtration T∗ induces a filtration F∗ on SλV :

SλV = F0 ⊇ F1 ⊇ · · · ⊇ Fn ⊇ Fn+1 = 0,

where Fi := cλ(Ti) is the image of Ti under the Schur functor cλ . Let

V i := Fi/Fi+1, 0 � i � n, (8)

be the composition factors of F∗ , and let

V 2
i := Fi−1/Fi+1, 1 � i � n. (9)

Since the filtration T∗ is Sn-equivariant, we have

V i
∼= cλ(Ti/Ti+1) ∼=

⊕
μi, νn−i

Nλ
μ,ν(Sμ A ⊗ Sν B), (10)

where Nλ
μ,ν := [ResSn

Si×Sn−i
Vλ : Vμ ⊗ Vν ] are the Littlewood–Richardson coefficients (see e.g., [FH]).

For each integer 0 � i � n, let λ − i denote the set of all partitions of n − i whose Young diagram
is obtained from that of λ after deleting i boxes (by convention, λ − n consists of one element (0)).
By the Littlewood–Richardson rule (see e.g., [FH]), Nλ

μ,ν = 0 if μ /∈ λ − (n − i) or ν /∈ λ − i. Therefore,

V i
∼=

⊕
μ∈λ−(n−i), ν∈λ−i

Nλ
μ,ν(Sμ A ⊗ Sν B). (11)

(However, Nλ
μ,ν can still equal 0 for some pairs μ ∈ λ − (n − i), ν ∈ λ − i, e.g., for λ = (2,2),

N(2,2)

(12),(2)
= 0.)

Observe also that for any μ′ ∈ λ − (n − i + 1), μ ∈ λ − (n − i) and ν ∈ λ − i, cμ defines a morphism

cμ ⊗ idSν B : Sμ′ A ⊗ V ⊗ Sν B → V 2
i .

Since V 2
i is a subquotient of SλV , the following lemma is clear.

Lemma 4.17. If SλV is semisimple then the exact sequence

(
V 2

i

)
: 0 → V i → V 2

i → V i−1 → 0 (12)

splits for any 1 � i � n.

4.8. The semisimplicity of V

Let 1 � i � n be an integer, μ′ ∈ λ − (n − i + 1) and ν ∈ λ − i. Tensoring our exact sequence (V ) by
Sμ′ A on the left yields the extension

E1 : 0 → Sμ′ A ⊗ A → Sμ′ A ⊗ V → Sμ′ A ⊗ B → 0. (13)

Tensoring E1 by Sν B on the right yields the extension

E2 : 0 → Sμ′ A ⊗ A ⊗ Sν B → Sμ′ A ⊗ V ⊗ Sν B → Sμ′ A ⊗ B ⊗ Sν B → 0. (14)
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Set

μ′+ := {
μ ∈ μ′ + 1

∣∣ Nλ
μ,ν �= 0

}
, ν+ := {

ν ′ ∈ ν + 1
∣∣ Nλ

μ′,ν ′ �= 0
}
. (15)

The following lemma is clear.

Lemma 4.18. Let 1 � i � n be an integer, and let μ′ ∈ λ − (n − i + 1), ν ∈ λ − i. Then for any μ ∈ μ′+ and
ν ′ ∈ ν+ , the triple (cμ ⊗ idSν B , cμ ⊗ idSν B , idSμ′ A ⊗ cν ′) defines a morphism of extensions E2 → (V 2

i ):

0 Sμ′ A ⊗ A ⊗ Sν B

cμ⊗idSν B

Sμ′ A ⊗ V ⊗ Sν B

cμ⊗idSν B

Sμ′ A ⊗ B ⊗ Sν B

idSμ′ A⊗cν′

0

0 V i V 2
i V i−1 0.

Fix an integer 1 � i � n, and μ′ ∈ λ − (n − i + 1), ν ∈ λ − i. For any μ ∈ μ′+ and ν ′ ∈ ν+ , define the
following two subsets of the ground field k:

Ai
(
μ′,μ,ν

) := {
d

∣∣ pμ′,μ(d) = 0
} ⊆ k (16)

and

Bi
(
μ′, ν, ν ′) := {

d
∣∣ pν,ν ′(d) = 0

} ⊆ k. (17)

Example 4.19. By convention, λ − n = {(0)}. Therefore, for any μ′, ν ∈ λ − 1, we have that
A1((0), (1), ν) = Bn(μ′, (0), (1)) = ∅. On the other extreme, by Corollary 4.13, B1((0), ν,λ) =
An(μ′, λ, (0)) = {1 − q(λ), . . . , p(λ) − 1} if λ is not a hook, and B1((0), ν,λ) = An(μ′, λ, (0)) =
{1 − q(λ), . . . ,−1,1, . . . , p(λ) − 1} if λ is a hook.

Set a := dim A, b := dim B for the rest of the paper.

Lemma 4.20. Let 1 � i � n be an integer, and let μ′ ∈ λ − (n − i + 1), ν ∈ λ − i. Let μ ∈ μ′+ , and let ν ′ ∈ ν+
be such that b /∈ Bi(μ

′, ν, ν ′). Then (cμ)∗(E1) = 0 in Ext1(Sμ′ A ⊗ B,Sμ A).

Proof. By Lemma 4.18 and a standard fact on extensions (see e.g., [MacL]), we have that

(cμ ⊗ id)∗(E2) = (id ⊗ cν ′)∗
(

V 2
i

)
.

Since by Lemma 4.17, (V 2
i ) = 0, we have that (cμ ⊗ id)∗(E2) = 0 in Ext1(Sμ′ A ⊗ B ⊗Sν B,Sμ A ⊗Sν B).

Let

f : Ext1(Sμ′ A ⊗ B,Sμ A) → Ext1(
Sμ′ A,Sμ A ⊗ B∗)

be the isomorphism given by Lemma 4.15, let

Ext1(
Sμ′ A,Sμ A ⊗ B∗) (id⊗coevSν B∗ )∗−−−−−−−−−→ Ext1(

Sμ′ A,Sμ A ⊗ B∗ ⊗ Sν B∗ ⊗ Sν B
)
,

and let

g : Ext1(
Sμ′ A,Sμ A ⊗ B∗ ⊗ Sν B∗ ⊗ Sν B

) → Ext1(Sμ′ A ⊗ B ⊗ Sν B,Sμ A ⊗ Sν B)
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be the isomorphism given by Lemma 4.15 (composed with the appropriate commutativity constraints).
Then, it is straightforward to verify that

0 = (cμ ⊗ id)∗(E2) = (
g ◦ (id ⊗ coevSν B∗)∗ ◦ f

)(
(cμ)∗(E1)

)
.

Now, by our assumption on b and Theorem 4.12, the morphism θB∗,n−i+1,ν,ν ′ is a split injection.
Therefore, by Lemma 4.16, (id ⊗ coevSν B∗ )∗ is injective, and the result follows. �

We are now ready to prove the key proposition for the proof of Theorem 4.3.

Proposition 4.21. Assume there exist an integer 1 � i � n, a pair of partitions μ′ ∈ λ − (n − i + 1), ν ∈ λ − i
and a pair of partitions μ ∈ μ′+ , ν ′ ∈ ν+ , such that a /∈ Ai(μ

′,μ,ν) and b /∈ Bi(μ
′, ν, ν ′). Then (V ) = 0 in

Ext1(B, A).

Proof. By Theorem 4.12, the morphisms θA,i−1,μ′,μ and θB,n−i+1,ν,ν ′ are split injections. Consider now
the following commutative diagram:

Ext1(B, A)
f

Ext1(B, A ⊗ Sμ′ A ⊗ Sμ′ A∗)
g

∼=

Ext1(B,Sμ A ⊗ Sμ′ A∗)

∼=

Ext1(B ⊗ Sμ′ A, A ⊗ Sμ′ A)
(cμ)∗

Ext1(B ⊗ Sμ′ A,Sμ A),

where f := (idA ⊗ coevSμ′ A)∗ , g := (cμ ⊗ idSμ′ A∗ )∗ , and the two vertical isomorphisms are given by
Lemma 4.15. Observe that g f = (θA,i−1,μ′,μ)∗ is injective. It is now clear that the proposition follows
from Lemmas 4.16 and 4.20. �
5. The proof of Theorem 4.3

5.1. F (λ) ⊆ G(λ)

We have to show that if d ∈ F (λ) then d ∈ G(λ), i.e., that there exists a symmetric rigid tensor
category C over k with a non-semisimple object V of dimension d such that SλV is semisimple. This
follows from the following two observations.

1) Let r, s be nonnegative integers such that r + s � 2. One can introduce on the superspace V := C
r|s

a structure of a non-semisimple representation of some supergroup (e.g., the supergroup of upper
triangular matrices). On the other hand, if λ contains a box (r + 1, s + 1) then SλV = 0 (see
e.g., [D2]), so SλV is automatically semisimple while V is not.

2) Suppose λ = (qp) is a rectangle. If V is a non-semisimple group representation of dimension
p > 1, then SλV = (

∧p V )⊗q is 1-dimensional, so is automatically semisimple, while V is not.
Finally, for −q, use now Remark 4.2.

We are done.

5.2. G(λ) ⊆ F (λ)

Let C be any symmetric rigid tensor category over k, and let V ∈ C be an object of C . We have
to show that if dim V /∈ F (λ) and SλV is semisimple then so is V (i.e., dim V /∈ G(λ)). To this end,
it is enough to show that if dim V /∈ F (λ) then there exist an integer 1 � i � n, a pair of partitions
μ′ ∈ λ − (n − i + 1), ν ∈ λ − i, and a pair of partitions μ ∈ μ′+ , ν ′ ∈ ν+ , satisfying the conditions of
Proposition 4.21.
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Let λ∗ denote the conjugate of λ. Write

λ = (λ1, . . . , λp) and λ∗ = (
λ′

1, . . . , λ
′
q

)
,

where q = λ1 � · · · � λp � 1 and p = λ′
1 � · · · � λ′

q � 1.

5.2.1. The general case
In this subsection we prove that if dim V /∈ R(λ) then the exact sequence (V ) splits.
If i = 1, A1((0), (1), ν) = ∅ for any ν ∈ λ − 1 (see Example 4.19), so there is no condition on a.

Therefore, if b is not equal in k to an element of B1((0), (1), ν) for some ν ∈ λ − 1, we are done. So
suppose b is equal in k to some element of

B1
(
(0), (1), ν

) = {1 − q, . . . , p − 1},
which we shall continue to denote by b (so now b ∈ Z).

Subcase 1. Suppose that b > 0, and set i := p −b + 1; then 2 � i � p. Let μ′ := (λp−i+1, . . . , λp − 1)

be the last i rows of λ without the last box, and let ν := (λ1, . . . , λp−i) be the first p − i rows of λ. Let
μ := (λp−i+1, . . . , λp) and let ν ′ := (λ1, . . . , λp−i,1). It follows easily from the Littlewood–Richardson
rule that μ ∈ μ′+ and ν ′ ∈ ν+ .

We now use (6) to find out that

Ani

(
μ′,μ,ν

) = {
d ∈ k

∣∣ pμ′,μ(d) = 0
} = {1 − λp−i+1, . . . , i − 1} (18)

and

Bni

(
μ′, ν, ν ′) = {

d ∈ k
∣∣ pν,ν ′(d) = 0

} = {1 − q, . . . , p − i}, (19)

where ni := ∑p
j=p−i+1 λ j . We therefore see that b = p − i +1 /∈ Bni (μ

′, ν, ν ′). Now, if a /∈ Ani (μ
′,μ,ν),

we are done. Otherwise, we are done by our assumption on dim V (since dim V = a + b).
Subcase 2. Suppose that b = 0. Then 0 /∈ Bn(μ′, (0), (1)) = ∅ for any μ′ ∈ λ − 1. Now, if

a /∈ An(μ′, (0), (1)), we are done. Otherwise, we are done by our assumption on dim V .
Subcase 3. Suppose that b < 0, and set i := q + b + 1; then 2 � i � q. Let μ′ := (λ′

q−i+1, . . . , λ
′
q − 1)

be the last i columns of λ without the last box, and let ν := (λ′
1, . . . , λ

′
q−i) be the first q − i columns

of λ. Let μ := (λ′
q−i+1, . . . , λ

′
q) and let ν ′ := (λ′

1, . . . , λ
′
q−i,1). It follows easily from the Littlewood–

Richardson rule that μ ∈ μ′+ and ν ′ ∈ ν+ .
We now use (6) to find out that

Ani

(
μ′,μ,ν

) = {
d ∈ k

∣∣ pμ′,μ(d) = 0
} = {

1 − i, . . . , λ′
q−i+1 − 1

}
(20)

and

Bni

(
μ′, ν, ν ′) = {

d ∈ k
∣∣ pν,ν ′(d) = 0

} = {i − q, . . . , p − 1}, (21)

where ni := ∑q
j=q−i+1 λ′

j . We therefore see that b = i −q − 1 /∈ Bni (μ
′, ν, ν ′). Now, if a /∈ Ani (μ

′,μ,ν),
we are done. Otherwise, we are done by our assumption on dim V .

5.2.2. The non-rectangle case
Assume λ is not a rectangle. We have to show that dim V = p and dim V = −q are allowed. Let b,

i be as in Subcase 1 of 5.2.1.
Let μ′ := (λp−i+2, . . . , λp) and ν := (λ1, . . . , λp−i+1 − 1) be the last i − 1 rows of λ and the first

p − i + 1 rows of λ without the last box, respectively. Choose μ ∈ μ′+ with i − 1 rows (it exists since
λ is not a rectangle!) and let ν ′ := (λ1, . . . , λp−i+1). It follows easily from the Littlewood–Richardson



S. Gelaki / Journal of Algebra 324 (2010) 3183–3198 3197
rule that ν ′ ∈ ν+ . Moreover, we now have that Ani (μ
′,μ,ν) = {1 − λp−i+2, . . . , i − 2}, where

ni := 1+∑p
j=p−i+2 λ j . Hence, i −1 /∈ Ani (μ

′,μ,ν) and b = p − i +1 /∈ Bni (μ
′, ν, ν ′). We thus conclude

that dim V = p is allowed in this case, as claimed.
The claim that dim V = −q is allowed follows now from Remark 4.2.

5.2.3. The case (3,2) /∈ λ or (2,3) /∈ λ

Suppose (3,2) /∈ λ. We have to show that dim V = 1 is allowed.
Subcase 1. Let b, i be as in Subcase 1 of 5.2.1.
First note that for 2 � i � p − 2, λp−i+1 = 1. Hence b /∈ Bni (μ

′,μ,ν) and 1 − b /∈ Ani (μ
′,μ,ν)

(see (18), (19)).
Now, for i = p −1 (so b = 2), take μ′ := (1p−1), μ := (1p), ν := (q −1, λ2 −1) and ν ′ := (q, λ2 −1).

It follows easily from the Littlewood–Richardson rule that μ ∈ μ′+ and ν ′ ∈ ν+ . Moreover,
−1 /∈ A p(μ′,μ,ν) and 2 /∈ B p(μ′, ν, ν ′).

For i = p (so b = 1), take μ′ := (q,1p−2), μ := (q,1p−1), ν := (λ2 − 1) and ν ′ := (λ2). It follows
easily from the Littlewood–Richardson rule that μ ∈ μ′+ and ν ′ ∈ ν+ . Moreover, 0 /∈ A p+q−1(μ

′,μ,ν)

and 1 /∈ B p+q−1(μ
′, ν, ν ′).

Subcase 2. Let b, i be as in Subcase 2 of 5.2.1.
Take μ′ := (λ2 − 1), μ := (λ2), ν := (q,1p−2) and ν ′ := (q,1p−1). It follows easily from

the Littlewood–Richardson rule that μ ∈ μ′+ and ν ′ ∈ ν+ . Moreover, 1 /∈ Aλ2 (μ
′,μ,ν) and

0 /∈ Bλ2 (μ
′, ν, ν ′).

Subcase 3. Let b, i be as in Subcase 3 of 5.2.1.
First note that for 2 � i � q − 2, λ′

q−i+1 = 1. Hence b /∈ Bni (μ
′,μ,ν) and 1 − b /∈ Ani (μ

′,μ,ν)

(see (20), (21)).
Now, for i = q − 1,q (so b = −2,−1), take μ′ := (λ1, λ2 − 1), μ := (λ1, λ2), ν := (1p−2) and

ν ′ := (1p−1). It follows easily from the Littlewood–Richardson rule that μ ∈ μ′+ and ν ′ ∈ ν+ . More-
over, 2,3 /∈ An+2−p(μ′,μ,ν) and −1,−2 /∈ Bn+2−p(μ′, ν, ν ′).

We therefore conclude that dim V = 1 is allowed in this case, as claimed.
Finally, the claim that dim V = −1 is allowed in the case (2,3) /∈ λ follows now from Remark 4.2.

5.2.4. The hook case
Assume λ is a hook. We have to show that dim V = 0 is allowed.
Subcase 1. Let b, i be as in Subcase 1 of 5.2.1.
Since λp−i+1 = 1 for i < p, we get from (18) that −b /∈ Ani (μ

′,μ,ν). On the other hand,
for i = p (so b = 1), take μ′ := (1p−1), μ := (1p), ν := (q − 1) and ν ′ := (q). It follows easily
from the Littlewood–Richardson rule that μ ∈ μ′+ and ν ′ ∈ ν+ . Moreover, −1 /∈ A p(μ′,μ,ν) and
1 /∈ B p(μ′, ν, ν ′).

Subcase 2. Let b, i be as in Subcase 3 of 5.2.1.
Since λ′

q−i+1 = 1 for i < q, we get from (20) that −b /∈ Ani (μ
′,μ,ν). On the other hand,

for i = q (so b = −1), take μ′ := (q − 1), μ := (q), ν := (1p−1) and ν ′ := (1p). It follows eas-
ily from the Littlewood–Richardson rule that μ ∈ μ′+ and ν ′ ∈ ν+ . Moreover, 1 /∈ Aq(μ

′,μ,ν) and
−1 /∈ Bq(μ

′, ν, ν ′).
We therefore conclude that dim V = 0 is allowed in this case, as claimed.
This concludes the proof of the theorem.
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