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Abstract

For axi-symmetrically notched tension bars [Dyson, B.F., Loveday, M.S., 1981, Creep Fracture in Nimonic 80A under
Tri-axial Tensile Stressing, In: Ponter A.R.S., Hayhurst, D.R. (Eds.), Creep in Structures, Springer-Verlag, Berlin, pp.
406–421] show two types of damage propagation are shown: for low stress, failure propagates from the outside notch sur-
face to the centre-line; and for high stress, failure propagates from the centre-line to the outside notch surface. The objec-
tives of the paper are to: identify the physics of the processes controlling global failure modes; and, describe the global
behaviour using physics-based constitutive equations.

Two sets of constitutive equations are used to model the softening which takes place in tertiary creep of Nimonic 80A at
750 �C. Softening by multiplication of mobile dislocations is firstly combined, for low stress, with softening due to nucle-
ation controlled creep constrained cavity growth; and secondly combined, for high stress, with softening due to continuum
void growth. The Continuum Damage Mechanics, CDM, Finite Element Solver DAMAGE XX has been used to study
notch creep fracture. Low stress notch behaviour is accurately predicted provided that the constitutive equations take
account of the effect of stress level on creep ductility. High stress notch behaviour is accurately predicted from a normalized
inverse cavity spacing d/2‘ = 6, and an initial normalized cavity radius rhi/‘ = 3.16 · 10�3, where 2‘ is the cavity spacing,
and d is the grain size; however, the constants in the strain rate equation required recalibration against high stress notch
data. A void nucleation mechanism is postulated for high stress behaviour which involves decohesion where slip bands
intersect second phase grain boundary particles. Both equation sets accurately predict experimentally observed global fail-
ure modes.
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Nomenclature

Stress

r1 Uni-axial stress
rij Stress tensor
re(=3rijrij/2)1/2 Effective stress
r0 Normalizing stress
~Sij Stress deviation tensor
~J 1 Normalized first stress invariant
Rijð¼ rij=r0Þ Normalized stress tensor
Sijð¼ ~Sij=r0Þ Normalized stress deviation tensor
Re(=re/r0) Normalized effective stress

Strain
_e1 Uni-axial creep strain rate
_eij Creep strain rate tensor
_eoð¼ A ¼ P Þ Steady-state uni-axial strain rate
eo(= r0/E) Normalizing strain
kij(= eij/eo) Normalized strain tensor
_eeð¼ 2_eij _eij=3Þ1=2 Effective creep strain rate tensor

Damage

x1 Dislocation strain softening damage parameter
x2 Nucleation creep constrained cavity growth damage parameter
x3 Continuum cavity growth damage parameter
xf Damage level at failure

Material parameters

ef Creep failure strain
E Young’s modulus
Qs Activation energy for volume diffusion
qi Initial mobile dislocation density
n Norton law creep index
m Multi-axial stress rupture index
d Grain size
2‘ Cavity spacing
fh Grain boundary cavitated area fraction
rh Cavity radius
A, B, C, D, M, P, Q, b Material constants

Other parameters

dij Kronecker delta
W Energy dissipation rate potential
H ; ~H Unit step functions
t, s Real time and normalized time
h and q Stress-state parameters for continuum cavity growth
~að¼ Qr0Þ Normalizing stress parameter
~rð¼ r=ð1� x2ÞÞ Stress-damage term
p(= (x3)1/2/(d/2‘)) Parameters for continuum cavity growth
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1. Introduction

Modelling of high-temperature creep damage in metallic alloys has been done over a range of length scales,
and a brief review is presented here for completeness. Onck and van der Giessen (1997a,b) proposed a 2-D
micromechanics modelling method to study creep rupture mechanisms of polycrystalline materials using grain
elements. The grain boundaries are described by interfacial elements that incorporate the dominant creep
damage mechanisms, including cavity nucleation and growth at grain boundaries (Onck and van der Giessen,
1998; Nguyen et al., 2000a). Based on the physical mechanisms taking place at the microscopic length scale,
the model addresses macroscopic intergranular creep crack growth. The physical length scales of grain size
and grain boundary thickness are included in the computational model (Onck and van der Giessen, 1999;
Nguyen et al., 2000b). The effectiveness of the approach can be confirmed by comparison of damage fields
predicted from the micro-modelling techniques with experimentally determined distributions. Distributions
of micro-cracks ahead of a macro-crack predicted using the micro-mechanics modelling technique of Nguyen
et al. (2000b) compare well with those observed experimentally by Hayhurst et al. (1984a) in cracked copper
plates loaded in plain strain tension. This research, when judged alongside the modelling performed at the
grain scale by Dyson and McLean (1990) and by Cocks and Ashby (1982), shows the complementarity of
multi-scale modelling approaches: work by Onck and van der Giessen (1999) at the micro scale; modelling
by Dyson and McLean (1990) and by Cocks and Ashby (1982) at the micro- and meso-scale; and the Contin-
uum Damage Mechanics (CDM) modelling reported here at the macro-scale. In the research presented here a
macro-scale CDM approach is used which is informed by the results of grain or meso-scale models of Dyson
and McLean (1990) and of Cocks and Ashby (1982).

Ashby and Dyson (1984) examined most of the physically-based creep deformation and damage rate
equations that were developed prior to 1984 and reformulated them within the framework of CDM. They
demonstrated that each damage micro-mechanism, when acting alone, results in a characteristic shape of
creep curve. Although this put CDM on a physical basis and gave it a more extrapolative capability, Ashby
and Dyson also recognized that this single state-variable approach is only an approximation, and that cer-
tain engineering alloys may require two (or more) damage variables to describe the creep damage behaviour
adequately. For example, it has been proposed by Dyson and McLean (1990) that the long period of ter-
tiary creep found in high ductility nickel-base superalloys is a consequence of the mobile dislocation density
increasing with strain. However, the alloy fractures because of the gradual and parallel evolution of grain
boundary cavitation which, in turn, will result in some additional coupling between this damage and creep
strain rates.

A two-damage state-variable power law creep model, proposed by Dyson and Gibbons (1987) has been
developed by Othman et al. (1993). The multi-axial creep constitutive equations make use of two features:
firstly the sinh-function (Garafolo, 1965), to describe the stress sensitivity of damage and creep rates over a
wide range of stress, for use in component analysis; and secondly, two-state variables to reflect the contri-
butions to the softening process made by constrained cavity growth, and multiplication of mobile disloca-
tions. These laws have been developed to describe the behaviour of nickel-base superalloys which are used
in the fabrication of load-bearing and thermally-stressed gas turbine components. Computer modelling of
the creep rupture behaviour, using these constitutive laws, has been carried out by Othman et al. (1994)
for notched tension bars, and the results have been compared with experimental data reported by Dyson
and Loveday (1981). It has been found from the experimental results that, at low stress levels (rN ffi 0.2ry

where rN is the net section stress at the notch, and ry is the material yield stress) damage evolution starts at
the notch surface/root and progresses inwards towards the notch centre-line (outside-in failure), which is
consistent with the computer modelling results using the physically-based two-damage variable sinh-consti-
tutive equations. However, for the high stress levels (rN P 0.5ry), experimental results reveal that fracture
initiates on the centre-line of the notch and progresses outwards to the notch surface (inside-out failure),
and the conventional two damage variable constitutive models could not predict this creep rupture behav-
iour well (Othman et al., 1994).

The objectives of this paper are to: (i) predict the global failure response shown in the experiments on
notched tension bars due to Dyson and Loveday (1981) i.e. for low stress, outside-in failure, and for high stress
inside-out failure; (ii) identify the damage mechanisms occurring in nickel-base superalloys under high tri-axial
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stressing; propose and calibrate the constitutive equations; (iii) make predictions of notch behaviour using the
equations and the Finite Element Solver DAMAGE XX (Hayhurst et al., 1984b) and (Vakili-Tahami et al.,
2005); and, (iv) compare predictions of failure strain and lifetimes made using finite element calculations and
the two sets of constitutive equations with the experimental results of Dyson and Loveday (1981). The equa-
tions considered are based on softening due to multiplication of mobile dislocations, firstly combined with
nucleation controlled creep constrained cavity growth; and, secondly combined with continuum void growth.

2. Damage mechanisms

Constitutive equations have been developed that reflect the physics of the softening processes taking place
in tertiary creep. The equations incorporate two features: firstly, they make use of the sinh-function to describe
the stress sensitivity of creep rates over a wide stress range; and, secondly, they make use of three-state vari-
ables to reflect the contributions to the softening process made by (i) multiplication of mobile dislocation; (ii)
cavity nucleation and growth; and, (iii) continuum void growth.

All nickel-base superalloys undergoing creep – with the exception of those having very low strains to failure
(less than 5%) – spend the majority of lifetime in the tertiary stage. This is also true when the stress is uni-axi-
ally compressive (Tilly and Harrison, 1973). That tertiary creep occurs equally in compression, as in tension,
accords with the scalar nature of dislocation accumulation and is consistent with the operation of an intrinsic
material mechanism rather than being a consequence of the type loading.

2.1. Softening due to multiplication of mobile dislocations

The micromechanism responsible for this generic behaviour is a progressive accumulation of mobile dislo-
cations as creep proceeds (Dyson and McLean, 1983; Ashby and Dyson, 1984): it has been termed dislocation
strain-softening and is shown schematically in Fig. 1a.

Creep in these materials is therefore not controlled by dislocation recovery but is best thought of in terms of
the kinetics of dislocation multiplication and subsequent motion. By treating the velocity of dislocation
around c 0 particles as one of diffusive drift, secondary and tertiary creep in these materials under variable
uni-axial loading conditions can be shown (Dyson, 1988) to be represented by
_e1 ¼ _e0ð1� x1Þ�1 sinhðMr1Þ; _x1 ¼ Cð1� x1Þ2 _e1; ð1Þ

where r1 is the uni-axial applied stress giving the uni-axial strain rate _e; _e0 / qi expð �ðQs=RT ÞÞ; Qs is the acti-
vation energy for volume diffusion; qi is the initial mobile dislocation density; M is a temperature and micro-
structurally sensitive parameter; and, x1 is a damage parameter ranging between zero and unity that is defined
by
x1 ¼ 1� ðqi=qÞ: ð2Þ

The parameter C reflects the propensity of the material for entering tertiary creep and its magnitude is

inversely proportional to qi. Since qi can be influenced by the material’s processing route, the magnitude of
C is a sensitive indicator of the minor variations usually encountered in batch to batch dislocation
substructure.

2.2. Softening due to void nucleation and growth

The second mechanism of grain boundary cavitation (Fig. 1b) is now discussed. Its presence or absence is
strongly sensitive to alloy composition and processing route: for example, it is clearly absent in single crystals.
Grain boundary cavitation is also a kinetic phenomenon and its influence on deformation resistance and on
fracture mode under an arbitrary stress state depends critically on cavity nucleation rate and growth rate.
When both parameters are large, relative to intrinsic deformation mechanisms, there is the potential for a
strong coupling between the extent of cavitation and creep rate through the mechanism of creep-constrained
cavity growth (Dyson and Loveday, 1981; Hutchinson, 1983; Anderson and Rice, 1984), leading to rapid ter-
tiary creep and a low fracture ductility.



Fig. 1. Schematic representation of softening mechanisms of creep of superalloys: (a) multiplications of dislocation substructures; (b)
grain boundary cavity nucleation and growth, (c) continuum cavity growth.
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The damage parameter x2 is defined as the area fraction of cavitation under creep constraint that is orthog-
onal to the maximum principal tension stress r1. The damage, x2, represents grain boundary hole formation,
or cavitation. Most commonly, the cavities appear on boundaries which lie roughly perpendicular to the max-
imum principal tensile stress direction (Ashby and Dyson, 1984). At low stresses, the damage, x2, is in the
form of spherical cavities and the material fails by the linkage of cavities which have grown by creep con-
strained cavity growth.

With dislocation strain-softening appropriate to superalloy behaviour the uni-axial strain rate response, as
a function of x1 and x2, is given by:
_e1 ¼ _e0 sinhðbr1Þ=fð1� x1Þð1� x2Þng: ð3Þ

Creep constrained cavitation can either be nucleation or growth controlled; only nucleation control will be

considered in this paper since this accords with the limited data in the literature. Using a nucleation rate model
which is linear in strain rate, a failure criterion of x2 = xf (all cavitated facets perpendicular to r1 are then
essentially creep-constrained) gives:
_x2 ¼ D_e1; or

_x2 ¼ _e1xf =ef ;
ð4Þ
where ef is the strain at fracture under uni-axial tension (Dyson, 1992), and D = xf/ef.
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Using Eqs. (3) and (4), the creep constitutive and damage evolution equations for axial strain rates in super-
alloys, derived from physical mechanisms by Othman et al. (1993), are given as
_e1 ¼ _e0 sinhðbr1Þ=fð1� x1Þð1� x2Þng;
_x1 ¼ Cð1� x1Þ2 _e1; _x2 ¼ _e1xf =ef

ð5Þ
where n is given by n ¼ b~r1 cothðb~r1Þ, where ~r1 ¼ r1=ð1� x2Þ. The stress and damage level dependent value
of n reflects the change in slope of the log strain rate versus log stress curve for uni-axial creep data; and, the
value of n in Eq. (5) has been determined to describe this dependence.
2.3. Softening due to continuum cavity growth

The third mechanism of continuum void growth, shown schematically in Fig. 1c, is now considered. At ele-
vated temperatures, the grain-boundary damage mechanism of nucleation controlled creep constrained cavity
growth changes, at higher stresses, to the mechanism of continuum cavity growth. This damage mechanism
dominates the fracture of the material (Dyson, 1992) at high stress under tri-axial stress conditions; and,
the associated damage is quantified by the parameter x3. A void can grow by power-law creep of the sur-
rounding material which encompasses a grain boundary and the adjoining grain material (Hellan, 1975;
Edwards and Ashby, 1979; Cocks and Ashby, 1982). The void growth-rate has been computed numerically
(Needleman and Rice, 1980) or using bounding techniques (Cocks and Ashby, 1982). The latter approach
yields analytical expression for strain rate and void growth rate. Application of the continuity equation to
a grain boundary slab of material containing a void yields the following expressions, due to Cocks and Ashby
(1982), for damage rate dfh/dt and strain rate _eijð¼ deij=dtÞ
deij

dt
¼ 3_eo

2

Sij

re
sinhðQreÞ 1þ 2rhh

d

1

ð1� fhÞn̂
� 1

" #( )

dfh

dt
¼ _eeh

1

ð1� fhÞn̂
� ð1� fhÞ

( ) ð6Þ
where
n̂ ¼ Qr̂e cothðQr̂eÞ; r̂e ¼ re=ð1� fhÞ; re ¼ ð3rijrij=2Þ1=2
; _ee ¼ ð2_eij _eij=3Þ1=2

;

and where rh is the cavity radius, d is the grain size; Q is material constants for nickel-based superalloys; fh is
the cavitated area fraction of a grain boundary; and the parameter h has been determined by numerical tech-
niques (Needleman and Rice, 1980) and by bounding methods (Cocks and Ashby, 1982) to be:
h ¼ ~H sinhfqðJ 1=reÞg ð7Þ
where q ¼ f2ðn̂� ð1=2ÞÞ=3ðn̂þ ð1=2ÞÞg; J1 = (r1 + r2 + r3) and r1, r2 and r3 are principal stresses;
n̂ ¼ Qre cothðQreÞ; and ~H is a parameter to indicate the state of loading: for J1 tensile, ~H ¼ 1; and for J1

compressive, ~H ¼ 0. Whilst the original model of Cocks and Ashby (1982) includes dilatation, the present
model assumes conservation of volume, this is an acceptable assumption up to the latter stages of tertiary
creep.

At high stress levels, the timescales over which damage evolves by the nucleation controlled cavity growth
mechanism are long compared to those for the multiplication of mobile dislocations and for continuum cavity
growth. Hence, the mechanism of nucleation controlled cavity damage growth can be neglected at high stress
levels. It is therefore necessary to combine the strain rate equation and the damage growth rate equation for
softening due to continuum cavity growth, Eq. (6), with the damage rate equation for softening due to mul-
tiplication of mobile dislocations, Eq. (1), as follows:
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deij

dt
¼ 3_eo

2

Sij

re

sinhðQreÞ
ð1� x1Þ

1þ hp

ð1� x3Þn̂
� hp

( )

dx1

dt
¼ Cð1� x1Þ2 _ee

dx3

dt
¼ _eeh

1

ð1� x3Þn̂
� ð1� x3Þ

( ) ð8Þ
where x3 = fh; p = (x3)1/2/(d/2‘); d is the grain size; and 2‘ is the cavity spacing.
In the next section, Eq. (5), for combined softening due to mobile dislocations and nucleation controlled

cavity growth, which operates at low stress levels, and Eq. (8) for combined softening due to mobile disloca-
tions and continuum cavity growth, which operates at high stress levels, are expressed in a normalized multi-
axial form suitable for Continuum Damage Mechanics finite element studies of notched uni-axial tension bars.
3. Multi-axial forms and normalization of physics-based constitutive equations

In this section two sets of constitutive equations are developed for nickel-based superalloys for use at either
low stress levels or high stress levels. They will then be used in CDM finite element studies of uni-axial con-
stantly loaded Nimonic 80A notched tension bars at the temperatures of 750 �C (Dyson and Loveday, 1981).
3.1. Softening by multiplication of mobile dislocations and cavity nucleation and growth

3.1.1. Uni-axial relations

The form of the constitutive equations proposed for uni-axial conditions are those given by Eq. (5) due to
Othman et al. (1993), but modified using the unit function H to deal with a negative maximum principal stress.
Thus
_e1 ¼ A sinhðBr1Þ= ð1� x1Þð1� x2Þnf g;
_x1 ¼ CAð1� x1Þ sinhðBr1Þ=ð1� x2Þn;
_x2 ¼ DHA sinhðBr1Þ=fð1� x1Þð1� x2Þng

ð9Þ
where
A ¼ _e0; D ¼ xf =ef ; n ¼ B~r1 cothðB~r1Þ; and ~r1 ¼ r1=ð1� x2Þ:
3.1.2. Multi-axial relations

The energy dissipation rate is described by the scalar function:
w ¼ ðA=BÞ coshðBreÞ
where r2
e ¼ f3~Sij

~Sij=2g; ~Sij is the deviator stress tensor given by
~Sij ¼ rij � dijrkk=3;
dij is the Kronecker delta and rkk obeys the summation convection. The strain rate Eq. (9) with zero damage
then becomes
deij

dt
¼ _eij ¼

dw

d~Sij

¼ 3A~Sij

2re
sinhðBreÞ: ð10Þ
Introduction of the two state damage variables and in Eq. (10) leads to
deij

dt
¼ _eij ¼

3A~Sij

2re

sinhðBreÞ
ð1� x1Þð1� x2Þn

: ð11Þ
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Implicit in this formulation is the assumption of conservation of volume. This is accurate until the latter
stages of tertiary creep when the material density is known to change by a small amount. By introduction
of the following normalized terms
kij ¼ eij=e0; Rij ¼ rij=r0; Sij ¼ ~Sij=r0: ð12Þ

where r0 = e0E and E is the elastic modulus, the normalized time s may be defined as
s ¼
Z t

0

ðEA=r0Þdt ¼ ðEA=r0Þt ¼ ðA=e0Þt: ð13Þ
Eq. (11) and the last two expressions of Eq. (9) may be rewritten using these terms as
dkij=ds ¼ 3Sij sinhðaReÞ=f2Reð1� x1Þð1� x2Þng;
dx1=ds ¼ Ce0ð1� x1Þ sinhðaReÞ=ð1� x2Þn;
dx2=ds ¼ DHe0 sinhðaReÞfR1=Regm=fð1� x1Þð1� x2Þng:

ð14Þ
where
a ¼ Br0; ~Re ¼ ~re=r0; ~re ¼ re=ð1� x2Þ; n ¼ a~Re cothða~ReÞ; and;

H ¼
1 for r1=re > 0

0 for r1=re < 0

�
:

The stress state term (R1/Re)
m has been included in the third line of Eqs. (9) and (14). Guidance for this has

been provided from the limited data in the literature which quantifies the effect of stress state on cavity nucle-
ation; and, the choice of (R1/Re)

m is based on the work of Hayhurst (1972) and of Dyson and McLean (1977).
But similar ideas have been expressed by Lonsdale and Flewitt (1978) and by Cane (1979). The material
parameters selected in Eqs. (13) and (14) are those used by Dyson and Loveday (1981) for Nimonic 80A tested
at 750 �C. They have also been used by Othman et al. (1993) and by Dyson et al. (1996) in studies of notch
tensions bars. The values of the material constants A, B, D, m and xf are taken from the work of Dyson and
Loveday (1981) for statically determinate plain bar testpieces:
A¼ 2�10�6 h�1; B¼ 0:016 MPa�1; C¼ 300; D¼ 2; m¼ 2; xf ¼ 0:3 and E¼ 2�105 MPa;
and, for the kinematically determinate notch bar structure D is taken to vary linearly from D = 1.00, at
re = 425 MPa, to D = 2.31, at re = 154 MPa. This is discussed in detail in a following section.

3.2. Softening by multiplication of mobile dislocations and continuum cavity growth

The uni-axial form of these constitutive relationships is not presented here, since continuum cavity growth
is a mechanism which is usually inoperative under uni-axial stress, but predominates under multi-axial
stresses.

3.2.1. Multi-axial relations

By using the same procedure followed in Eqs. (10) and (11), a set of creep constitutive equations with two
damage state variables, x1 and x3, for tri-axial stressing can be written in the form:
deij

dt
¼ 3P

2

Sij

re

sinhðQreÞ
ð1� x1Þ

1þ hp

ð1� x3Þn̂
� hp

( )

dx1

dt
¼ PCð1� x1Þ sinhðQreÞ 1þ hp

ð1� x3Þn̂
� hp

( )

dx3

dt
¼ Ph

sinhðQreÞ
ð1� x1Þ

1þ hp

ð1� x3Þn̂
� hp

( )
1

ð1� x3Þn̂
� ð1� x3Þ

( )
;

ð15Þ
where P ¼ _e0, is material constants for nickel-based superalloys.
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3.2.2. Normalization

The normalized parameter defined by Eqs. (12) and (13) for strain, stress and time, carry over directly here;
and, Eq. (15) can be written using these terms:
dkij

ds
¼ 3

2

�Sij

Re

sinhð~aReÞ
ð1� x1Þ

1þ hp

ð1� x3Þn̂
� hp

( )

dx1

ds
¼ Ce0ð1� x1Þ sinhð~aReÞ 1þ hp

ð1� x3Þn̂
� hp

( )

dx3

ds
¼ e0h

sinhð~aReÞ
ð1� x1Þ

1þ hp

ð1� x3Þn̂
� hp

( )
1

ð1� x3Þn̂
� ð1� x3Þ

( )

h ¼ ~H sinhfqð~J 1=ReÞg; ~J ¼ ðR1 þ R2 þ R3Þ;
~a ¼ Qr0 and n̂ ¼ ~aR̂e cothð~aR̂eÞ:

ð16Þ
The normalized time variable may now be defined as in Eq. (13) as
s ¼
Z t

0

ðEP=r0Þdt ¼ ðEP=r0Þt ¼ ðP=eoÞt: ð17Þ
Calibration of the values of P and Q in Eq. (15) must be carried out to reflect behaviour at high stress under
tri-axial stress states of the type found in notched tension bars. Calibration of P and Q is discussed in a sub-
sequent section.

3.3. Role of Tri-axiality in both Models

In equation set (14), for softening by the combined mechanisms of multiplication of mobile dislocations
and of nucleation controlled creep constrained cavity growth, the multi-axiality is given by the term
ð
P

1=
P

eÞ
v in the third equation. Here it is the maximum principal tension stress which predominates. In con-

trast, for softening by the combined mechanisms of mobile dislocations and continuum cavity growth, given
by Eq. (16), the multi-axiality is given by the term h ¼ ~H sinhfqð~J 1=

P
eÞg which appears in all three of the

governing equations. Here it is the normalised first stress invariant ~J 1 which predominates. Hence it is
expected that in the high tri-axial stress field of the axi-symmetric notched tension bar, when the levels of
applied load are high, that softening due to continuum cavity growth will predominate over the

P
1 controlled

nucleation controlled creep constrained cavity growth mechanism.

4. Numerical procedures

A Continuum Damage Mechanics (CDM) finite element solver, DAMAGE XX (Hayhurst et al., 1984b)
and (Hayhurst et al., 2005), was used for the numerical computations. The numerical procedure used to solve
the boundary value problem for creep deformation and damage evolution was that used by Hayhurst et al.
(1984b). It is based on the finite element method and employs constant strain triangular axi-symmetric finite
elements. The procedure takes the elastic solution as its starting point and integrates with respect to the nor-
malized time, the normalized creep strains, kij, and creep damage variables x1 and x2 for combined softening
due to dislocation multiplication and nucleation controlled cavity growth, and x1 and x3 for combined soft-
ening due to dislocation multiplication and continuum cavity growth. The integration is carried out over a
series of discrete normalized time steps using a fourth order Runge–Kutta technique; this procedure involves
the repeated solution of the boundary value problem to determine the field quantities required for the numer-
ical solution. Creep damage, as represented by the two damage state variables, develops monotonically with
time throughout the structure, and failure of an element is deemed to have occurred when the damage state
variables, x2 and x3 attain the values of 0.5 and p/4, respectively. Material elements are then unable to trans-
mit or sustain load and they are removed from the model. In the case of nucleation controlled creep con-
strained cavity growth the failure condition of x2 = xf = 0.5 has been selected for the notched bar, rather



Fig. 2. Definition of loading conditions and geometry of the axi-symmetrically notched tension bar studied. B/a = 1.9, R/a = 0.5, h/b = 3,
where h is the length of the bar modelled and r0 is the uniform remote boundary stress.
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than the value of x2 = xf = 1/3 taken for calibration with the uni-axial plain bar testpieces. This is because the
plain bar behaves as a statically determinate structure, whereas the notched bar behaves as a kinematically
determinate structure {i.e. a failing element has its displacement field determined by those of the surrounding
unfailed elements}, and a higher value of xf is required to permit the stresses to redistribute to zero, prior to
removal of an element, (Hayhurst et al., 2005) and (Mustata et al., 2006). In the case of ductile void growth,
the failure condition x3 = xf = p/4 has been selected (Riedel, 1986) since the stress levels are high in the
notched bar; and, once x3 = p/4 has been achieved, then linkage of adjacent voids takes place catastrophically
by time independent plastic collapse. The higher value of xf is required to permit complete stress redistribution
in the constrained, tri-axial stress flow field. Following removal of an element, the boundary value problem is
redefined to allow either a crack, or damage zone, to develop and spread. Once the boundary value problem
has been redefined, the time integration is continued by taking the field variables just before the local failure
occurred as the new starting point. The procedure is then repeated until complete failure of the cracked mem-
ber occurs.

The geometry of the notched bar due to Dyson and Loveday (1981) is shown in Fig. 2. A single quadrant of
the notched tension bar was selected for investigation. The quadrant was subdivided into triangular elements
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Fig. 3. Variation of notch diametral failure strain (a) and time to rupture of notched bar (b) with net section stress. The solid lines show
predictions for nucleation controlled creep constrained cavitation (AB) and continuum cavity growth (CD); the symbols denote the
experimental results of Dyson and Loveday (1981).
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by the finite element mesh generation package, Femgen.1 The size of these elements was redefined in the
notched region of the bar, where a high level stress concentration occurs. A less well refined mesh was selected
in the parallel portion of the testpiece where uniform stresses exist that change little over time. With regarding
to the selection of the overall coarseness of the mesh it was acknowledged that damage finite element solutions
can be critically mesh sensitive; and guidance was taken from previous investigations (Hayhurst et al., 1994;
Dyson et al., 1996; and Vakili-Tahami and Hayhurst, 2007). Solutions were obtained with progressively
refined meshes; and, whilst recognizing the need to have a minimum element size greater than approximately
seven grain diameters to meet CDM requirements, the coarsest mesh was selected which gave lifetimes and
temporal variations of damage fields that showed convergence and were acceptably repeatable. The mesh
selected for the numerical investigation contains 642 constant strain triangular elements and 363 nodes for
the notched bar. The half band width of the stiffness matrix was optimised to the minimum possible, using
special purpose software to automatically re-number the element nodes. The procedure of optimising the band
width of the stiffness matrix is important for the efficient usage of computer resources, and also to achieve
accuracy of the numerical computations. The optimised mesh was then input into the Continuum Damage
Mechanics Solver DAMAGE XX.

The loaded boundary of the mesh was subjected to a constant normalized stress Rzz = 1; and the bound-
aries of symmetry were subjected to the conditions Rrz = 0 and of zero normal displacement. The computa-
tions were carried out on a SUN workstation. The computed results of stresses, strains, displacements,
damage state variables, were stored for subsequent examination by the postprocessor Femview.1

Finite element computations were carried out on the notched bar (Dyson and Loveday, 1981) with r0 as the
stress at the outer boundary of the notched bar. For example, a value of r0 = 166.2 MPa is applied to produce
an average axial stress at the notch throat of rN = 600 MPa. Presented in the next sections are the notched bar
computer modelling results for: diametral notch strains at failure, eR(/); lifetimes, tR; and, creep damage fields.
Introduced first are the low stress predictions made with the nucleation controlled creep constrained cavity
growth damage mechanism, these are followed by the high stress predictions for the ductile void growth dam-
age mechanism.
1 Femgen and Femview are tradenames of FEMSYS Ltd. (TNO DIANA BV). Schoemakerstraat 97, 2628 VK DELFT, The
Netherlands.
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5. Behaviour at low stress: predictions made using the nucleation controlled creep constrained cavity growth model

The results are presented in three sections: 5.1, diametral notch strains at failure, eR(/), 5.2, lifetimes, tR;
and, 5.3, the creep rupture damage fields.

5.1. Predictions of notch diametral failure strain

The experimental results of Dyson and Loveday (1981) are presented as the x-symbols in Fig. 3a, where
they are compared with the predictions made using Eq. (14) and the CDM finite element technique, denoted
by the line AB. To achieve these results two requirements have been identified:

(a) That xf = 0.5 be used to allow stress redistribution prior to element removal. This is not unexpected
since other estimates for xf can be as high as p/4 for the same mechanism (Riedel, 1986).

(b) That the value of D in Eq. (14) be permitted to vary with stress. This variation was assumed to be linear
between D = 1.00, at re = 425 MPa, and D = 2.31, at re = 154 MPa. Fig. 3a shows that the correct trend
is predicted for diametral failure strains eR(/) when stresses are below rN = 425 MPa. An error of the
order of 15–19% may then be observed.

5.2. Predictions of notch bar lifetimes

Predictions of lifetimes made using the constitutive parameters given at the end of Section 3.1, with the
exception of xf = 0.3 being replaced by xf = 0.5, are presented in Fig. 3b. It is apparent that the predictions
consistently underestimate the experimental lifetimes for values of rN below 425 MPa. The predictions are of
the order of 2.4 times lower than the experimental results. The indication is that the values of the constitutive
parameters A and B are not optimal; the high slope of the line AB suggests that the stress level sensitivity,
given by B = 0.016 is too strong. It is worth recalling here that these values are those used in previous inves-
tigations, as outlined at the end of Section 3.1. For the work of Othman et al. (1993) the values of A, B, C and
D were rounded to comply with values arrived at from physics-based evaluations. For this reason the param-
eters have not been recalibrated.

5.3. Comparison of predicted damage fields at failure with micro-structural evidence

At lower stresses, rN 6 500 MPa, the behaviour is dominated by nucleation controlled cavity growth.
Predicted damage fields on a diametral plane of the notch throat are shown in Fig. 4a for rN = 154 MPa
close to failure of the testpiece. High damage levels 0.4 P x2 P 0.5, which represent failure, are shown in
the vicinity of the notch surface. The rectangular box region with side AB shown in Fig. 4a may be com-
pared with the same region of the micrograph due to Dyson and Loveday (1981) shown in Fig. 4b. Both
figures show clearly that grain boundary cavitation has initiated on the notch surface and that damage
growth takes place from the notch surface/root inwards towards the testpiece centre line i.e. outside-in
failure.

6. Behaviour at high stress: predictions made by the continuum void growth model

Before predictions can be made using this model, physical parameters have to be assigned for the nickel-
based alloy Nimonic 80A at the temperature 750 �C. These are the normalized inverse cavity spacing d/2‘;
the normalized initial cavity size x3i = (rhi/l)

2; and the values of C, P and Q. It is evident from Fig. 3 that there
are a set of three constraints which have to be satisfied, these are: the notch diametral failure strain eR (/), and
the notch bar lifetime tR at the stress rN = 600 MPa must match the experimental data. And, since the exper-
imental data at rN = 600 MPa does not fall on the lines AB, the predicted lines eR(/) v rN, and tR v rN for the
high stress behaviour must intersect the lines AB at the same stress level. The selection of the five parameters d/
2‘, x3i, C, P and Q is now addressed.



Fig. 4. Comparison of (a) predicted (x2); and, (b) experimentally observed damage fields on a diametral plane at the notch throat, with
rN = 154 MPa close to failure of the notch bar (Dyson and Loveday, 1981). The prediction is for damage due to: nucleation controlled,
creep constrained cavitation, x2; and, dislocation sub-structure softening, x1. The figures are of different magnification, and the left-hand
edge of (a) coincides with the notch bar centre-line; the micrograph, (b) has been taken of the region defined by the rectangle with vertical
right-hand edge AB shown in (a).

D.R. Hayhurst et al. / International Journal of Solids and Structures 45 (2008) 2233–2250 2245
6.1. Selection of constitutive parameter C

The parameter C has been calibrated for Eq. (9), in particular: _x1 ¼ Cð1� x1Þ2 _ee, where e2
e ¼ ð2eijeij=3Þ.

Since the stress level sensitivity is embodied in the term _ee it would be expected that the same value of
C = 300 should hold at the higher stress levels. A value of C = 300 is therefore assumed.

6.2. Selection of the inverse cavity spacing d/2l

Rearrangement of the first and third equations of Eq. (16) yields an expression for dkij/dx3 which is weakly
dependent on stress and independent of x1. This reveals that the magnitudes of the failure strains eR(/) are
likely to be weakly dependent on rN; and, controlled by the initial damage or cavity size, x3i, and the normal-
ized inverse cavity spacing, d/2‘. The grain size is given by Dyson et al. (1976) as d = 20 lm, and the inverse
cavity spacing, as observed on typical failure surfaces (Pandey et al. (1985) and Zhang and Knowles (2002)) is
of the order d/2‘ = 6. This value has been assumed here.

6.3. Strategy for the determination of P, Q and x3i

Firstly the need to consider different values of P and Q for low and high stress levels is addressed i.e. P5A

and Q5B. It may be argued that P an Q should take identical values to A and B determined in Section 3.1 for
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the combined mechanism of softening by multiplication of mobile dislocations and cavity nucleation and
growth at stress levels below yield. However, preliminary investigations with P = A and Q = B reveal the
inability of the model to predict the transition between low–high stress behaviour shown in the experimental
data. In this way the acceptability of different values of A and B for low stresses, and of P and Q for high
stresses may be justified because the applied stress levels are in excess of yield; and, the time-independent plas-
tic strains for rN = 600 MPa are significant. The initial dislocation densities can therefore be expected to be
different from those at lower stresses, and the stress level sensitivity to increase i.e. Q > B.

In this way it was recognized that there are three unknown parameters: P, Q and x3i; and, that three inde-
pendent pieces of information are required to define them. The first is that the experimental lifetime tR = 8.5 h,
at rN = 600 MPa; the second is that the diametral strain at failure, eR(/) = 11.3% at rN = 600 MPa: and, the
third is that the curves of eR(/) v rN and tR v rN for both high and low stress behaviour (c.f. Fig. 3) intersect at
the same stress level rN P 500 MPa. The procedure followed to satisfy these conditions is now described.

6.3.1. Selection of the initial values of P and Q

Sensitivity studies in which P, Q and x3i were varied, revealed that the tR v rN curve was weakly dependent
on the value of x3i, this observation was used in a two step procedure. The first step took as a starting point a
value of x3i � 10�4; and following several iterations the values of P and Q were determined which gave the
experimental lifetime of tR = 8.5 h at rN = 600 MPa, and resulted in a line similar to CD (c.f. Fig. 3b) which
intersected the line AB at a value of rN P 500 MPa.

6.3.2. Selection of the final values of P, Q and x3i

The second step took these first estimates of P and Q and fixed them while x3i was varied to produce eR(/) v
rN and tR v rN curves of the type denoted by CD in Fig. 3a and b, respectively. Initial trials produced curves
which either did not intersect with the lines AB, or intersected at different stress levels. Progressive iteration,
and trial and error refinement, in which all three parameters, P, Q and x3i, were sequentially adjusted, yielded
the following data set: x3i = 1 · 10�5; d/2‘ = 6; C = 300; P = 3.4 · 10�8 h�1; and Q = 3 · 10�2 MPa�1.

This dataset was used to generate the lines in CD in Fig. 3a and b.

6.4. Comparison of predicted damage fields at failure with micro-structural evidence

Fig. 5a and b show predictions of the damage fields x1 and x3, respectively, on a diametral plane at the life
fraction of t/tR = 0.83 for rN = 600 MPa, i.e t � 8.1 h and tR � 9.7 h. Fig. 5a shows the value of x1 to have
Fig. 5. Comparison of predicted damage fields on a diametral plane at notch throat with rN = 600 MPa, at the life fraction t/tR = 0.83.
The predictions are for (a) dislocation substructure, softening, x1 and (b) damage due to creep continuum cavity growth damage, x3. The
x1 damage field saturates across the notch throat at the life fraction t/tR = 0.83.



Fig. 6. Comparison of (a) continuum cavity growth damage (x3) predicted using equation set (16); and, (b) experimentally observed
damage fields on a diametral plane at the notch throat, with rN = 600 MPa, close to failure of the notch bar (Dyson and Loveday, 1981).
Both figures are of the same magnification, and the left-hand edges coincide with the notch bar centre-line.

D.R. Hayhurst et al. / International Journal of Solids and Structures 45 (2008) 2233–2250 2247
reached its saturation level across the notch throat. At this same time the field of x3 is shown in Fig. 5b. Mod-
est values of damage x3 � 0.5 are concentrated on the centre-line of the bar at the notch throat. It is therefore
evident that in the remaining 1.6 h, x3 damage propagates across the notch section towards the notch root, to
yield the pattern shown in Fig. 6a, close to failure of the testpiece. This reflects the very powerful stress-state
influence on void growth and linkage. High levels of damage p/4 > x3 > 0.6, which represent failure, are
shown in Fig. 6 in the vicinity of the notch throat close to the testpiece centre-line. Fig. 6a may be compared
with the same region in the micrograph due to Dyson and Loveday (1981) shown in Fig. 6b. Both figures show
clearly that continuum cavity growth has caused damage evolution from the testpiece centre-line to the notch
surface. Fracture is therefore caused by cavity nucleation and ductile void continuum growth (Dyson and
Loveday, 1981) for rN > 500 MPa; and, the direction of damage growth shows inside-out failure.

6.5. Significance of initial cavity size or x3i

A value of the initial damage level x3 = x3i = 1 · 10�5 = (rhi /‘)2, where rhi is the initial cavity radius fol-
lowing nucleation, was required to yield the results summarized in Fig. 3. Given that the ratio of the grain size
to the cavity spacing 2‘ has been assumed to be d/2‘ = 6, and that d=20 lm, then the radius of the nucleated
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Fig. 7. Schematic of an isolated grain undergoing void initiation. Second phase particles/precipitates are intersected by slip bands of
approximate width 10 · 10�9 m. Voids are nucleated on particles/precipitates by de-cohesion, and subsequently grow by ductile void
growth mechanisms.
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void is rhi = 5.27 · 10�9 m. This is of the order of one half of the thickness of a narrow slip band; and, a pos-
tulated mechanism for cavity initiation is shown schematically in Fig. 7. Here the slip bands intersect with sec-
ond phase grain boundary particles/precipitates A; the stress levels, at 750 �C are not high enough to cause
incoherency of A with the matrix, as would be the case in fracture under monotonic loading; and, instead dec-
ohesion is postulated where the slip bands intersect with A. The radius of the nucleated void is of the order of
half the slip band width. The voids then grow, in a stress-state sensitive manner, according to Eq. (16). This
postulated mechanism would explain why high stress creep fracture surfaces (c.f. Pandey et al., 1985) have a
similar appearance to those for high-temperature fast fracture under monotonic loading.
7. Discussion

The investigation has been motivated by experimental creep rupture data on uni-axially loaded notched
bars carried out by Dyson and Loveday (1981). Two extreme failure modes were observed: one for low stress,
showing failure propagation from the outside notch surface to the inside or centre-line of the testpiece; and,
the second for high stress, showing failure propagation from the inside of the specimen to the outside of the
notch surface. The objectives were to identify the physics of the processes responsible for this global response,
rather than to focus on localized characteristics within the notch; and, to describe the global behaviour using
physics-based constitutive equations, accepting the necessity to compromise some numerical accuracy.

Whilst the above objectives have been successfully achieved, it is evident that more test data is required at
very high net section stresses rN > 600 if the high stress constitutive equations are to be calibrated directly with
greater accuracy. Also in practical situations when engineering components are subjected to combined low–
high load cycling, the highest stresses will most likely fall within the mid-range, where the two sets of consti-
tutive equation will interact. However, test data for mid-range net section stresses 450 < rN < 550 MPa was
not available, and hence development of constitutive equations for these conditions would, at best, have been
tenuous. Had such data been available, and a synthetic model developed for the entire stress range, it would
have been desirable to check predictions against test results for an independent test geometry where stresses
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operate at high levels, even for short times; e.g. a deeper notch with a sharper notch radius. However, due to
the absence of such test data the development of a synthetic formulation has not been attempted.

8. Conclusions

1. The two constitutive equation sets have been shown to be capable of predicting the two different damage
evolution directions: at low stress, damage growth from notch root towards the notch centre-line (outside-
in failure); and, at high stress damage growth from the notch centre-line to the notch root, (inside-out
failure).

2. Two sets of constitutive equations have been proposed: firstly for low notch stress behaviour, the combined
softening by multiplication of mobile dislocations and cavity nucleation and growth; and, secondly for high
notch stress levels, combined softening by multiplication of mobile dislocations and continuum cavity
growth. With appropriate selection of constitutive parameters the respective equation sets accurately pre-
dict all of the respective features for both low and high stress behaviour. This includes lifetime, diametral
failure strain and modes of damage evolution.

3. For the low stress nucleation controlled creep constrained cavity growth mechanism, it was necessary to
allow the value of D in Eq. (14) to vary with stress, in order to model the experimentally observed variation
of uni-axial failure strain with stress level (Dyson and Loveday, 1981).

4. For the continuum ductile void growth model, it was found necessary to recalibrate Eq. (15) against the
high stress notch bar experimental data, by adjusting the constitutive parameters P, Q and x3i, whilst main-
taining C at the value C = 300, for low stress behaviour. The value of the normalized inverse cavity spacing
was assumed to be d/2‘ = 6. The value of x3i = 1 · 10�5 was principally found to be necessary to predict
diametral notch failure strains, and to a lesser extent notch bar lifetimes.

5. For the ductile void growth mechanism, the value of x3i = 1 · 10�5 is equivalent to a void radius of
5.27 · 10�9 m. A mechanism of void nucleation is postulated where a slip band of approximate width
10 · 10�9 m intersects with second phase grain boundary particles/precipitates to cause decohesion and
void nucleation.
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