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Let @ be the ring of integers in a local field K. We solve an open problem due
to M. H. Taibleson (1975, “Math. Notes,” Vol. 15, Princeton Univ. Press, Prince-
ton, NJ): Suppose f € L}(#). Does the Cesaro means of f converge to f almost
everywhere if K has characteristic zero? To this end we study the (H?,L?)
boundedness of the associated maximal operator o* to get the corresponding
interpolation result on Hardy—Lorentz spaces; in particular we obtain that o* is
of weak type (1,1). The proof mainly depends on certain estimates for the
oscillatory Dirichlet kernels, which are refinements of those obtained earlier by the
author (1997, J. Math. Anal. Appl. 208, 528-552). © 2000 Academic Press
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1. INTRODUCTION

In 1955, Fine [3] proved that, similar to the case of trigonometric
Fourier series, the Walsh—Fourier series of a function f in L'([0,1]) is
Cesaro summable almost everywhere; Fine’s proof was based on a crucial
lemma [3, Lemma 3].

In 1967, Taibleson [11] extended the pointwise convergence result for
(C,1) means of L!-functions defined on the ring of integers in a p-series
field K (char K = p, p a prime), using a p-series variant of Fine’s lemma
(it is known that the dyadic group, or the Walsh—Paley group can be
identified with the ring of integers in a 2-series field). Later, he asked in

" The author benefitted from helpful conversations with Professor C. W. Onneweer. He
thanks Professor F. Weisz for his kind suggestion on the use of an interpolation result.
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[12, Chap. II, p. 114] whether or not the conclusion holds for K of
characteristic zero.

From the late 1970s to the 1990s many authors [4, 6, 8, 15] have studied
the Cesaro summability of Hardy spaces on the Walsh—Paley group, dyadic
martingales, or even higher dimensional generalizations of the Walsh
system, but little progress was made for the above stated question on a
p-adic field.

In this paper we study the (C, 1) summability for Hardy spaces H<(&).
We prove the e-quasi-locality of o* by a close analysis of the behavior of
the Dirichlet kernels D,«(x) on #~' (Main Lemma). Thus o* maps H*
boundedly into Lf, < € < 1, and it follows by interpolation that o*
maps H<? boundedly into L=?, 0 < g < . As a corollary we obtain that
o* is of weak type (1,1) and hence the conclusion of the almost every-
where convergence of o, f for L' functions.

The Main Lemma reads as follows (we postpone the proof to Section 4).

MAIN LEMMA. (i) Suppose char K = p. Then D(x) > 0 for x € 2"
and

k ifxE(Jz,lB’1 + Pk, a_, € GF(q),

Dy(x) = 11 .
0 if otherwise in 2~ ',

(i) Suppose char K = 0. If x = (x_y, x4, ..., X,_ ), the sum
I(x) = )y |Dq/(x—lﬁ_1 + o tx BEY

+a BE+ e ta, B

¢ =k, 0.
< Cq( / k) q p” Ol ;
moreover,

O(x) ¢k
L PP c kg,

x=(x_q,..., Xp_1)

where x,;, a; € GF(q), ¢ = log, q. The mapping © : x — (Y°,Y',...,Y*™ 1)
=TIZ0Y’ is defined as in Claim 1 of Section 4 with Y’ = (y/, o, v} ,,
s Yiovo) Yo € GF(p); and the “norm” ||-|| is given by [0(x)] =
Zj;(l,II.YjII with ||Y?|| = 0 if Y/ € Case A4; sif Y/ € Case B, or C,(1 < s < k),
kif Y € Case D; and — if Y/ € Case E (consult Section 4 or [17, Sect. 4]
for descriptions of the cases A, B,,C,, D, E).
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Part (i) of the Main Lemma can be derived directly from the proof of
Lemma 5() in [17, p. 543]. Part (ii) is a refinement of the crucial estimate
for I, contained in the proof of Lemma 5(ii) in [17, Sect. 4, p. 549], where
we note that the estimate for I, in [17] is a special case of the Main
Lemma (ii).

Here we remark that one can also use a p-series variant of Fine’s lemma
(see Yano [16)]) to directly get the weak type (1,1) result when char K = p.
In this connection we refer to, in passing, [9, Chap. 1, Sect. 2.3] for a
related result on the integral of Marcinkiewicz. But the similar method
does not seem to apply for the p-adic cases (char K = 0) due to the
unavailability of a p-adic version of the decomposition formula for K,.,
the Walsh—Fejér kernels, given, e.g., in [8; 15, (8), (9)].

2. DEFINITIONS AND NOTATION

Let K be a locally compact, totally disconnected, nondiscrete (complete)
field [12]. If K is of finite characteristic, it is a field of formal Laurent
series over GF(q), the Galois field, g = p¢ (p a prime). If K is of
characteristic zero then K is either a p-adic number field or a finite
algebraic extension of such a field.

Denote by @ the ring of integers in K and B a prime element in K,
|Bl=¢g '. Then @ = {x € K:|x| < 1} and the fractional ideals »#* = {x
€ K :|x| < ¢~*}, whose characteristic function is denoted by b, ke
Since #/% is isomorphic to GF(q) (the prime ideal % :=%! = B#),
GF(q) will be identified with {ak}z;(],, a fixed full set of coset representa-
tives of & in @. With this identification, one can write «, = Zj;(}ak, J€i
(mod #), «, ; € GF(p), and {€}’_ being a basis of GF(q) over GF(p).
Thus every x € #* = B°¢@, s € Z, has a unique representation [12, p.
10; 17]

x=Yx,B, x,€GF(q).
/=5

Let x be a (fixed) character of K that is trivial on & but nontrivial on
21 I {u(k)f;_, is a complete set of coset representatives of @ in K
(with the natural ordering [12, p. 84]), { Xu(k)}j;o forms a complete or-
thonormal system on @. Write x; = X,
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As in [17, 19], choose the base values of the character x as follows:

if char K = p,

27 0 -1
_ exXp—-, m=_0,5=
x(e.B7) = P
1, p=1,...,c—1lorj+1;
if char K = 0,
2 0 ieN
. exXxp—-—, M= ,]E
x(e.87) = p’ (1)
1, p=1,...,c—1,jN.

Since any character y' that is trivial on @ but nontrivial on %! can be
expressed as x'(x) = x,(x) for some { € Z\ 2, it is easy to see that
results of this paper are independent of our choice of .

Define the (C, 1) kernels to be

1 n
K,(x) = — ¥ Dy(x),
k=1

where D,(x) are the Dirichlet kernels given by D, = Y121 x,.
The Cesaro means of f are the sums

n—1

af=K, 5= T (1= ) .

k=0

The maximal operator associated with Cesaro means is
o*f(x) = sup|a, f(x)|.
n>0

In the remaining part of this section we need certain concepts of Hardy
spaces and an interpolation result, in the local field setting.

Let us briefly recall the definition of atomic Hardy spaces [7]. For
0 < e<1,afunction a:@ — C is called a regular e-atom if there exists a
sphere I = x, + 2" such that

(i) suppaclI
() llall. <1117'/*
(iii) [,a(x)dx = 0.

The exceptional atom is the constant function ®,(x) = 1.
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DEerINITION 1. The Hardy space H€ := H¢(#) consists of those tem-
pered distributions f €. :=.'(#) admitting an atomic decomposition

f= Z /\kalu
k=0

where a, are e-atoms (regular or exceptional) with ¥|A,|€ < c. Moreover,

the norm |||l is the infimum of the numbers (X|A,[€)"/€ taken over all
such representations of f.

The (atomic) H€ spaces can also be characterized in terms of the
“Poisson” maximal function D*f = sup;  ¢|f * D,l, with

Dqk = qk(Dk. (2)

DEFINITION 2. Let 0 < € < 1. A distribution f €.%°' belongs to Hg if
and only if D*f € L¢, with the norm || fll < = [|[D*fll < %. Moreover, we
have ||fllye = Il (see [7] for its locally compact version on Vilenkin
groups).

If we let 1 < € < = in Definition 2, we will have H€ = L, 1 < € < o, as
is known.

The facts in Definition 2 are also included in Definition 3, below.

Recall that the Lorentz space L%(#), 0 < € < », 0 < g < = is the set
of all measurable functions f, with the quasi-norm

1/q

q dt
F— <oo

I£lle,q = (f: [<f(0]

and for g = o,

Iflle.o = sup '/ <f(z) < =,

t>0

where f denotes the nonincreasing rearrangement of f [1, 15].

DEFINITION 3. For 0 < e <o, 0 < g < o, the Hardy—Lorentz space
He:= H*1(@) %' consists of all distributions satisfying

I fllea = ID*fllc 4 < co.

It is easy to see that L€ = L, L=~ = L¢, (the weak-L® space), 0 < € <
«, Therefore, H¢=HS, 0 < e <%, and L' is continuously embed-
ded into H"” (the weak-H' space), because D* maps L' boundedly into
weak-L'. For € > 1, we also have H®? = =4,
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The dyadic martingale version of these facts is contained in [13, Chap. 5;
15] while we notice that {f = Dqk}kzo is a regular martingale on & for
fes’, where fxD,(x)=(f,D(x —-)) €E¥NF",7=A) being
the test function class (see [12, Chaps. IV, III] for its locally compact
version). So, saying a distribution fe€ HS (0 < e < 1) is equivalent to
saying the martingale {f = D ;. , € H; = H, as called in [15]. The same
is true for H< 9.

Borrowing the definition from [15], we say an operator T is e-quasi-local
if for any e-atom a with support I,

| Imafdx < c.. (3)
oI

Note that if 7 commutes with translations, then in order to show T is
e-quasi-local it is enough to show T satisfies the above inequality for any
e-atom a with support I =",

We will need the next local field analog of an interpolation theorem due
to Weisz (combining Theorem 1 and Theorem B in [15]).

THEOREM W. Let 0 < €, < 1. Suppose a sublinear T is €,quasi-local
and bounded on L*. Then

() T is bounded from H* to L
furthermore, we have by interpolation

(i) T is bounded from HS9 to L9 for every €, < e < @ and 0 < q
< . In particular, T is of weak type (1,1) whenever 0 < €, < 1.

We omit the proof; it is strictly parallel to Weisz’s proof in the context
of dyadic martingale Hardy spaces (see [13—15]); part (ii) is also the analog
of the Euclidean case (see [1, 2]). Here we remark that under the same
conditions of Theorem W, with 0 < €, < 1, one obtains that 7" is bounded
from H*< to L. Then, from this one may directly claim that T has to be of
weak type (1,1) (without recourse to part (i) of Theorem W). See [5, p. 312]
for a similar remark on R” settings (of course, though, Theorem W is
more general).

3. THE MAXIMAL OPERATOR o*

From [12, p. 97; 17] we know that
1Kl <A,

which implies that o* is bounded on L. If we can show that o* is
e-quasi-local (3 < € < 1), we will have the following main theorem by
Theorem W.
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THEOREM. Let 1< € < 1. Then o* is well defined on H¢ and satisfies
@ llo*flle < Clfllue
Moreover,

(i) ifi<e<wand 0 <q < =, then a* is well defined on H* and
satisfies

lo*flle,q < Cc lIfllmea.
In particular, o™ is of weak type (1,1), i.e.,
[{o*f> A} < CAYIfIh.

Remark. For € = g > 1, the theorem implies that o* is bounded on
L¢, which was proved in [18, Theorem 6] as a special case for the Riesz
means with R, = o*.

Our main concern will be to prove the result for char K = 0. We would
rather, however, treat both cases char K = p and char K = 0 in a compara-
ble way, through which it is hoped that the proof for the case char K = p
may somehow illustrate our method used to deal with the more compli-
cated case char K = 0.

Since o* commutes with translations, it is enough to show o * satisfies
(3) for any regular e-atom a centered at 0 with support %", in view of the
remark before Theorem W. Henceforth fix a to be such an atom.

The condition supp a €. 2" implies that 4 is constant on cosets of %# ",
so a(u(k)) = 4(0) = [,a = 0 whenever |u(k)| < g".

Let n =Y ,rq',0<r,<gq,r,+0. Then if n < q",

n—1 k
ga(x) = T (1= i) wn - o
k=0 n
recalling that |u(k)| = ¢’ if and only if ¢/~' <k < ¢/, j > 1. We have
o*a(x) = sup |o,a(x)|. (4)
n>qN

We begin with the following lemma. Set f = |a| throughout this section.
Define

K*f(x) = ;uEIKq/I*f(x)

N
Zf(x) =q" L a'lKylx f(x).

j>s
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LemMa 1. Ifx €2V, x| =q* (0 <5 < N), we have
o*a(x) < C(K*f(x) +Zf(x) + g*c~N*N/e),

Assuming Lemma 1, we apply Jensen’s inequality to get for 0 < e < 1,
x|=¢g* (0<s <N)

(O’*a)f(x) < C(K*fE(X) -h.?”fé(x) +q2(S—N)e+N)‘

Observe that the function R(x) = ¢gV/¢=?|x| (1 — ®,) € L¢ with || R]|.
< C.(3< e<1. In view of Lemma 1, to show that o*f satisfies (3) it
suffices to show the following two lemmas.

LEMMA 2. Suppose (i) char K =p, 0 < e <1 or (i) char K =0, 3< €
< 1. Then

f (K*f) dx < C..
xePN

LEMMA 3. Suppose 3< € < 1. Then

| (#htax<c.
xgPN

Proof of Lemma 1. Let n=rqg" +t, r>0, k>0, 0 <t <q* From
[17, Lemma 2], we have the recurrence formula

nK,(x) = q*D(x)(r = 1)K, ( B~*x) + tD (1) D,( B~*x)
+ D,( B x)q" K 1 (x) + x,( B~ x)tK () (%)

(cf. [12, p. 99, (6.29)] which should read as above; there was a minor
misprint).

Letn = Z]-/Zorjq", 0<r<qr,+0,and 1, = Zj-‘;o'rjqf I<k</+D.
Then (5) gives

/
nk,(x) = ; q'Dyi(x)(r; = DK, 1 B7x) Xy, (¥)

/
+ ) t/qu(x)Df/( 'Bijx)X"*t/H(x)
j=1

7/

| L D (B7x)@ K (%) Xy (¥) + 7oK (6) X (%)
j=1
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using  x,,¢,,(x) = x,( B0 x,(x), p,k >0, 0<7<g"[17, Lemma 1].
It follows that

|K, *a(x)| Sn_l(

I EI )*f(x)- (6)
1 2 3

Let />N, x| =g * (0 <s < N). For the first term on the RHS of (6),

«f(x) <g’n”! Zq’DqJ*f(x) + Zq’D,,J*f(x))
j>s
<0+ Cnl( Z qu)IIfIh
j=1

< CqZ(s—N)+N/e’

where we have used (2) and the conditions supp f €Y and ||fll. < g"/<.
Similarly,

n

)»

2
For the last term on the RHS of (6),

-y

3

*f(X) < Cq2(st)+N/e.

/ N
n #f(x) <Cn™ ' ) qj|qu|*f(x) + qu|qu|*f(x)

j>N j>s

+ Zq’qu*f(X))
=0

N

K*f(x) +Zf(x) + Cn_l( Z qzj)||f||1

/ .
2 q

>N

< C(K*f(x) +Z(x) + g*¢ NN/,

Combining the above inequalities proves Lemma 1.

Proof of Lemma 2. Like in the proof of Lemma 6 of [17], write, with

r=q’*,
r—1g*-1 k
pq + 7 -
KA()= Y X (1— ——— | x(B ) x.(1)
p=0 7=0 q

gk-1

rol pq"
= D,(1) 2_:0(1——) (B *t) = D,(B~ t)Z /Xf(t)
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If lt|=q %" (1 <k </), use (2) to get

|K, ()] < g**~|D,(B*1)|. (7)

Let />N and x€x,8° +x,,, B+ - +xy_ BV ' +2V, x, #0,
0 <s < N. Then the condition supp f €. 2" implies that, using (7),

K, e f(x) = [ I CRDILOIL

lt]=

< qzs—/+z /

ltl=q~*

F(x = )| Dy (B2 1) | dt

=g ! '[\I f(x = B 'u)| Dyesi(u) | du = 17(x).
ul=q
We consider the cases char K = p and 0 separately.
Case 1. char K = p. By the Main Lemma (i),

F(x)y<¢=' X ¢t f(x =B u)du
a,IEGF(q)* 0(,1[3 + P

¢ Y f S(x—1t)at,

a_1#0 a_y B +P
where the sum is taken over the set GF(g)* = GF(q)\{0}.
Notice that for t € a_, B* + 27, x — t € 2" provided
N-s—-1 N —s
(X5, Xy_q) = (a_l O,...,O) € GF(q) X - X G(q) = G(q)".

One finds, by the condition supp f €.%¥, that the sum equals [,.f(u) du if
x is in a_, B* +2" for some a_, € GF(q)*; 0 if x is otherwise in
ﬁS\t@S+l‘

Thus we obtain the pointwise estimates: let |x| = ¢7* (0 < s < N). Then
Cq* =N/« ifxea B +P", a_, #0
0 if otherwise in &7\ #°*!,

I7(x) ﬁ{

It follows that for |x| = ¢,

K*f(‘x) < SupI/(x) < CqS_N+N/E(DUa_1#O{a—1 BS +=@N}a
/>N

where @, denotes the characteristic function of the set E.
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Therefore if 0 < e < 1,

N-1
J (K de= T [ (K*f) dx
xEP s=0 “lxl=q7*
N-1 o
SCY ¢t Mg Mg -1)<CY g =C,
s=0 j=1

which proves Lemma 2 for char K = p.
Case II. char K = 0. Since D is constant on cosets of ¥,
I(x) <q* ! > |Dyrvi(a B+ ag B0+

(a_y,aq,..., 0, ))EGF(g)*
a_ ;1 #0

ta, 2B

f(x =B 'u)du

'/;“71 Bl e, BT

_ q2s—/+2 Z |Dq/7571(a_1 B—l + e +a/_s_2’3/—s—2)|
(apsernsap )
a_;#0

/f(x —t)dt.

Again supp f c#" implies that if (a_;, ag,..., ay_,_,) # (x,, X, 1,
cesXy_) in GF(@N™S, then f(x —t)=0 for t€a_,B° + - +
ayn_ o BN +2%; and so

I/(x) < q2s7/+2

a Bt vty BT +P

-1 N—-s-2
Y |Dq/7;71(xsﬁ + o Hxy_ BV
Cay spsesapy )
eGF(g)"™N

N—s—1 /—s—2
+aN—s—1B ' + "'+a/—s—23 g )|
/;CSBS‘*' wdxy BN T ray o BN, BT S
< Cllflle - g*¢=

Z |Dq/—x—|(xs B_l + .- +xN—1 BN—S—Z

Cay 15 apy )

/f(x —t)dt

N—-s—1 /=5 —2
+aN—s—IB ' +”'+a/—s—23 : )|
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Now substitute /' —s — 1, N —s — 1 into /, k, respectively, in the Main
Lemma (ii) to establish that for /> N,

I7(x) < Clliflleq®s (£ = N) q* Nplo®I
< C(/ = N) gN=7q2s—N*N/eplow,

Hence if x €x,8° + -+ +xy_ BY '+ 2N (x, #0), 0 <s <N we ob-
tain the pointwise estimates

K*f(x) < Cq*s~ N+ N/eplO@I,

We evaluate the integral for 0 <s <N,0<e<1

f _ (K*f) dx = Z f N-1 N(K*f) dx
lx|l=q~° CT Xy ) EsBIE Ay BT +P
x,#0
< Cq_N Z qZ(s N)E+Np|\()(x)|\e
(gsenes Xn-1)
x;#0
< qu(s—N)e Z pHG(X)H
(Xgyenns Xn_1)
x,#0

< CqZ(S—N)s(N _ S)CqN—
— C(N _ s)cq(Zefl)(st)

by the second inequality in the Main Lemma (ii).
Therefore if 3 < € < 1,

N-1
[ (K ar= X [ (KFf) e
X &P s=0 "lxl=q7*°
N—-1
<C Z (N_ S)Cq(Ze—l)(s—N)
s=0

< C chqf(Zefl)j — Ce?
j=1

which proves Lemma 2 for char K = 0. The proof is complete.
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Proof of Lemma 3. First we establish the following estimates.
For [x|=¢~*,0<s <N

) < g NEN/EEN qid Uail#o(a,lﬁl"+gf}(x) if char K = p,
< PESLALZE Vil qufsfl(xB_S—l)| if char K = 0.
(8)

As in the proof of Lemma 2, we have for |x| = ¢7* (0 <s < N), with /
replaced by j (s <j < N)

[Kilx f(x) < g~/ fwa,f(x = B u)| Dyyi(u) [ du = ().

Consider the two cases char K = p and 0.
Case 1. char K = p. By the Main Lemma (i),

Pxy=¢7*1 ¥ gt f(x = Bt u) du
a_ Bl

a_, €GF(g)*

=gt Y / f(x —t)dr.

a_;1#0 a BI+F
Notice that for t € a_, B*+ P/, x —t € if and only if x, B°+

X BT+ +x, BT+ B We get that if x € a_, B+ for
some a_; € GF(g)*, then

[j(x) :qs+1[@jf(u) du = qﬁ—l[@}vf(u) du < Cqs—N+N/s;

if x is otherwise in #°\ #**!, then I’(x) = 0.
Thus for |x|=¢g* (0 <s < N)

N ) N o
Zf(x) =q7" L qIKlx f(x) <q™" X ¢’ (x)

j>s j>s
N
s—2N+N/e i
<Cq Y4 DQy, e g -
j>s

This is the first inequality in (8).
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Case 1I. char K = 0. A '
Fors <j<N,xe€x, B+ +x;,_ B+, x, #0

If(x) = q57j+1 Z |Dq,>.‘-71(a71 ’3*1 4o +aj7572[31*5*2)|
(a_y,..., Ay
a_1#0
* x — s+1u du
'/;71[3)71"' +C¥j,x,2,3j7572+9j73'"f( B )
_ 25— j+2 Z |Dq]—.\-—1(a_1 B—l 4o +aj_s_2’8j—s—2)|
(a_yy..., aj_
f(x —1t)dr.

a Bt B+ g, BT P

Fort € a_, B* + - +a;_,_, B/~' +2/, we note that x — t €2/ (>2Y)

provided (a_y, @, ..., @;_ ) # (x;, X, ..., X;_1). SO
P(x) =q» 72Dy s(x, B + 2, B+ o +x; B2

f(x—1t)dt

'/)-csﬂu— xBTS

= qzsij+2|qufsfl(XB7S71)|&Nf(u) du

< CqZS—j—N+N/e

qu—xf](xﬁ_“"l)|.
Thus for |x] = ¢™* (0 <5 <N)
N L. N
Zf(x) <q ™V L ql(x) < Cq N YD (x87 )]
j>s j>s

which is the second inequality in (8).
As a result of (8), we get that if char K = p, 1 < € < 1, using Jensen’s
inequality,

[ (2D (x) ax

X

N-1 N
N1 - s—N j
< Cq (1-e) Z q(s )E/ , Z q]€¢ua7]#0(a—lﬁs+9j) dx

s=0 lxl=q7* j>5
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N-1 N ]
=g Y g (g - 1) gt
s=0 j>s
N-1
N — s, e=1
CqN(l ) Z q( -N) {q(f ])s c<1
s=0

NN —s)gt Y, e=1
= C Zy=_01q(26_1)(s_N)’ % <e<1

=C..
Also, we get from (8) that if char K =0, ;< € < 1,

[ (2N () dx

XEP

<C Z qz(x N)e+N Z[ |qu,s,1(xB’s—1)|€dx

s=0 j>s lxl=q~

<C Z q2(s N)e+N—s Zf |Dq/—s-1(u)|e du

j>s lul=¢q
N-1 €
<C Z AR DY (f | D 1(u)|du| (¢ — 1)
j>s lul=q

(by Holder’s inequality)

<C Z q(2s 1)(s— N)Z(J_s) <C Z (N ce+1 (26 1)(s—N)

j>s

= CE< 0,

where we have used the estimate from [17, Lemma 5(ii)],
/\u|=q |Dqk(u)|du = 0(k°), ¢ =log,q

The proof is complete.

As a final remark, we give a corollary concerning the maximal operator
o associated with (C,1) means of power orders, for the p-series case.
Define

of(x) = sup|o-q/f(x)| = sup|Kq/*f(x)|.
/>0 />0



CESARO SUMMABILITY OF HARDY SPACES 641

Note that if a is an e atom satisfying conditions (i)—(iii) in Section 2 with
[ =",

ga(x) = ;ug|a'q/a(x)|,
>

then Lemma 2 implies that & is €,-quasi-local if char K = p and 0 < ¢, <
1. Thus we have a better estimate for ¢ than that for o* on the p-series
case.

COROLLARY. Suppose char K = p and 0 < €, < 1. Then & is bounded
from H to L. Moreover, & is bounded from H®? to L%? for every
0<e<xoand 0 < g < o,

4. PROOF OF THE MAIN LEMMA

We have only to prove part (ii) of the Main Lemma. We will follow the
spirit of the proof of Lemma 5 in [17]. It is to be noted that for the case
g = p (c = 1) the same proof goes more straightforwardly.

Let K be a finite algebraic extension of a p-adic field (char K = 0,
q = p°). Since every x € %#°, s € Z has a unique expression

o]
x = ZX/B/:

/=5

x, € GF(q), (GF(q) being identified with a fixed set of coset representa-
tives of & in @), we will write x = (x,, x,,,...) when convenient.
Recall that {e}-/ C@’\ﬂa is a basis of GF(q) over GF(p) = {0, 1,
..,p— 1L Letx—xlﬁ +x, B+ - Hx,_ B = BF+ -
+a, , BN Then simple induction shows that for each j, there exist
unique y’ ,...,y[_, and y/,...,v. , in GF(q) satisfying the following
equations (mod @) over K,

X_q B_lfj =y, B!
(x—1/372+x0 1)5 =y B +yip!
: 9)
(xo B+ x g BH+Hx BT
=y B BT+ 4yl BT
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and

(x—l B_k_z R P B_z + oy B_l)fj

=y BTy BTy BT
' . ke B _ (10)
(x—1B g gy B g B ta, B 1)61-
=y BT A ey BT

E R
FYL B eyl B

where i = X070V k€ Y = ZiZ0Yi, k€ Vi iV € GF(p).
From [17, Lemma 3] we have

c—1/-1

Dy (x+a) = ]_[U|D (687 (x+ a))| =d(x,a).

Also, from the formula for D,(; 87°x) in [17, p. 545] we derive, by the
expression (1) of x and the above Egs. (9), (10), that if y/ ; # 0,

/-1
1_!)|Dp(fjﬁﬂ(x +a))|
5=
_ |1 - exp((Zwi/p)y"_l’O)l
|1 - eXP(ZWi/P/H)(Yj—L,o + o +Pk)’£—1,o +Pk+17’l£,0 + o +P/7}—1,0)|

_ Sin((W/P)yjl 0)
sin(a/p ) (yhy o+ o AP 10 P o+ Y1)

Let H(Y/,T/) = T1{Z(|D,(¢; B~*(x + a))I. Then

c—1 c—1
d(x,a) = TTH(Y,T)) = [1H
j=0 j=0

where
Sin((W/P)yjq o)
sin(m/p ) (¥l + o APV 0 P T Yo o APV )
_ if y]—1,0 # 0,
;= T I j
p ifyl, o= =yi_1,
= ')’/{,0 == 7}—1,0 =0,
0 otherwise.

(11)
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Using (11) and the relation 1 < %, x € (0, 7] we shall evaluate H,

%mx— 2>

by the following cases A—FE, which appears rather tedious.

Put Y/ = (y/ oo os¥io10h TV = (¥lgs- ., ¥} 1.0)- Hereby case A(o)
means that Y/ belongs to Case A4 and I'/ belongs to subcase (o) (denoted
by Y/ €A and T’ € (o), resp.; or simply (Y/,T’) € A(c)). More pre-
cisely, in the subcases below, (a) means the condition 0 < y)_, , <p — 1;

(), 1 <i</—kmeans vy}, = =7v}/,,=0but y,,_ 1’0#0 and
(b,_,) mcj:ans Y}-1,0= " = vlo = 0. Furthermore, (¢;), 1 <i </—k
means y/ ;= " =Y/, 0=p—1but y., ,<p—-1 and (cp )

means y) ;=
B(o), C (o), D(O')

Y{.o =p — 1. Similar notations apply for cases

k-1
Case A. y’107&00<yk10<p—1(thereare(p—1)p “p(p —
2) tuples in Y7/ € A). Consider the subcases of A.
/ k—1
Ala) Tf0 <yl ,<p—1,by(1D) there are p - p 2 - p(p —2) tuples
in IV > (> means “such that” for a moment)

H; = p;

here and below « = B denotes the relation ¢, B < a < B, ¢; a positive
constant.
F—k=2

A(b) If y), ,=0but y.,,# 0, there are p - p 7 p(p—1) tuples

in V>
H; = p*.
/—k—3

A(by) Iyl o= 7v}yo=0but v/, #0, there are p - P p(p-—

1) tuples in I'V =

H;=p’.
A(b,_;) Tty y= - =yl,=0ote y/_,,# 0), there is 1 tu-
plein I'V =
o k1
Hy=p=tt

l—k-2
Ale) Iyl y=p—1but y,,,<p—1, there are p - P p(p—
1) tuples in TV =
H. :pz.

]
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Alc)) If vy}, o=7vls9=p—1 but y.;,<p—1, there are
/—k—3

p - p(p—1) tuplesin IV >

~ 3
H;=p
Ale, ) 1t Yio10= " =7vlo=p — 1note y/_, , <p — 1), there
is 1 tuple in IV
~ p/—k+1
H; = p™**

Case By y. 1 0#0, yl.1,=0 but y/ ,,#0 (there are (p —

1)p p(p—l)tuples in Y/ € B)).
Consider the subcases of B;.
skt
B(a) If0 <yl ,,<p—1thereare p - p 2 p(p—2tuplesin IV

H, = p.
/ k—2

B(by) If yl,,=0but y/,,+ 0 there are p -~ p 7 p(p—1) tuples
inT/>

~ 2
H = p"
B(b, ) Ifyl o=+ =yl 1o=0Dbuty,+#0,there are p —
1 tuples in TV >
~ n/k
Hy=p
B(b, ) If 7}—1,0 == 7’1{,0 = 0 (note YI£—1,0 = O but YIj;—z,o # 0),
there is 1 tuple in T/ 2
~ pl—k+2
H; = p” ="

For subcases B,(c,)-By(c,_,), the same estimates as in A(c,)-A(c,_,)
apply, respectively.
In general, we obtain, via a similar argument, that for case B, (1 <s <
k): yl, 0 #0,y/ 10= " =yl ,o=0but y, . # 0 (there are (p —
k—s—
Dp - p p(p — Dtuplesin Y/ € B,1 <s <kand p — 1tuplesin Y/ € B,
for s = k), the subcases B,(a), Bs(b,), and By(c;) (1 <i </ — k) admit the
same estimates as in subcases A(a), A(b,), and A(c,), resp., except for
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subcase B((b, ), where v/ | = - =y[,=0 (note y] , = = =
yl_so=0but y/ ., + 0)and so there is 1 tuple in I'/

. (F—k+1)+s
H =~p -

Similarly, for case C, (1 <s <k):y/ ¢ #0,y[ ;o= " =yl ,o=p
k—s—1

-1 but y/ , ,,<p—1 (there are (p — Dp - p(p—1) tuples in
Y/ e C,,1 <s<kand p— 1tuplesin Y/ € C, for s = k), the subcases
C(a), C (b,), and C/(c;) (1 <i </ — k) admit the same estimates as in
subcases B(a) B(b) and B(c,), resp., except for subcase C(c/ )
where y/_ ;o= =vylo=p—1 (ote y[_, = =yl ,=p—1
but y/ ( ,,<p—1) andso there is 1 tuple in [V >

. (F—k+1)+s
H =~ p -

Case D. yl, o =yfo= " =yj_1 =0 (there is 1 tuple in Y/ € D).
The only subcase with H; #0is D(b, ), where vj_, 0= " =1vl,and
so there is 1 tuple in IV 5

= = (kDT
H; =p”=p i omh

Case E. y/ | ,=0but y],+# 0 for some 0 <n <k — 1. Then

H =0,

Now we are able to do the sum I(x) =X, , ., , d(x, @). For each
x=x_,B '+ 4x,_, B =(x_,,...,x,_,), consider the mapping
@ 'GF(q)/*k = TI520(Y/, GF(p)”™*) given by (o, ..., a, ) =

S0 (Y, TY), where Y/ = (y/y g, vl 10) TV = (vl ooy v)1) are
determmed by the last equation in (10); clearly if x is given, then Y/ are
given, 0 <j <c— 1

Using essentially the same argument as in the proof of Lemma 8 of [17],
we can show that the mapping O, is a bijection for given x (and Y”’s).
Hence, putting IT5-4T/ = (I'°,T",..., T,

c—1
(= X nmwwr—z 14,
To,r,..., Fc—l)] l—[; [}l“/j
Denote by 7" the set of all cases in Y’ with H; # 0 and . the set of all
cases in I'/. Write 7= {4, B,,C,,D,E, 1 <s < k} and = {(a), (b)‘(c‘)
l<i</— k) Let I(r X o) ‘denote the sum of all terms [TZH(Y/, TV)
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C

indexed by TI{Z)T/ € o = [I{_jo; € FX =+ X.¥=.9° for given
C

I—[I‘f;(}Yf e 7= l_[f;(}frj € I X -+ X .7, where l_[f;(}I‘f € ¢ means for each
j, e ;. Then given 7, there are (2/— 2k + 1)° cases in o €.5¢ for
I(7 X o) (because there are 2/ — 2k + 1 cases in .¥).

We have

c—1
)= ¥ Iexo)= ¥ T [14,

oces " o=T1¢{o; H;;&Ffeaj:()

Claim 1. I(t X o) < g™ *1pl®™Il (with obvious convention p~* = 0
if 1OCOIl = —oo); here the mapping ©:x — TT;Z0Y’, Y/ = (y/, ...,
yl_1,0) is defined by the last equation in (9) and the “norm” || - || is given by
10Ol = X5Z4llY7[| with

0 ifY eA
. s ifYeBorC,l<s<k
Y’ = o ’ ’
if Y €D

—o0 if Y/ eE.

Note that the RHS of the above inequality is independent of o.

If Claim 1 is true, we will obtain the first inequality of the Main Lemma

(ii):
I(x) < (27 = 2k + 1) g7 F+1plowl
<C(/- k)cq/—kpnmx)n.

So we need to verify Claim 1. Indeed, by definition

c—1 c—1
I(T X a')sN(l_[Fan sup  [TH(Y',TY)
j=0 Mé-irieqi=0
c—1 ) c—1 ) )
= [IN(IV e ;) I] sup H(Y',TV)
j=0 j:OFng'j
c—1 ]
= [IN(IV € 9;) sup H,,
j=0 I‘fE(r/-

where N(I'V € 0;) denotes the number of tuples in I'V € g; and the

supremum supr;c, is taken over all e o, for given Y; € 7, (in
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subcase 7,(¢;)); the notation for the “product case” is then self-evident. It
is enough to show that

J = N(Fj S (fj)rsjup H(Y/',[‘j) Sp/fk+1+|\yf\|.
€9;

But this can easily be verified by our analysis of those subcases discussed
earlier. For instance,
(0 Let 7, = A, o; = b. Then from A(b,)
F—k=-2
NI/ eb)=pp(p—1)
sup  H(Y/,TV) < p?
(Y1, Ty e A(b,)
so that

JSP/_k+1

Yl = 0if Y/ € A).
(i) Letr =B (1 <s<k), g, =0, ;. Then from B(b, ;)
NV eb, ) =1
sup H(Yj,l"j) Sp(/*k+1)+5’
By(b,_y)

so that
/—k+1+s

J<p
Y/l =s if Y/ € B)).
(i) Let 7,=B, g=c; (l1<s<k, 1 <i</—k). Then from
BJ(c), 1 <i </ — k, we have
F—k—i—1
N(IVe¢)= pp (p-1)
sup H(Y/,T7) < p™*!,
B(c))
so that

J Sp/_k+1 Sp/—k-%—1+s

(IY/ll = s if Y/ € B)), and from B,(c,_,) we have
N(ec,)=1

sup H(Y/,TV) <p”**1,
By(c,_;)
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so that

—k+1+s

J<p
(iv) Let 7, =D, g, =b,_,. Then from D(b,_,)

N(IVeb, ) =1

sup H(Yf,I‘f) Sp(/—k+1)+k
D(b,_,)

Y/l = k if Y/ € D).

The other cases can be checked similarly.

Finally we prove the second inequality of the Main Lemma (ii). Noting
from [17, Lemma 8] that the mapping ©:x — I1523Y’ (as defined in
Claim 1) is a bijection, we have

Q= Y plemI = Y Tzl
x=(x_1,Xg,-.-, Xp_1) 1‘[,?;011/1'
EGF(q)k+l

Similar to the estimation of I(x), let Q(7) denote the sum of all terms

indexed by [1¢ZY/ € 7= [1{_r;, 7; €.7. Then there are (2k + 2)° cases
C

in r€ X - x.7 such that p=-i"l & 0 (because there are 2k + 2
cases, namely, 4, D, B,,C, in 7 such that [[Y’|| # —o). We compute

Y on-L T pmi

=T1¢- 7. T T1¢-dyd
T H]=0TJ H,:(]Y er

Q

c—1
ZN( [Ty e T)pz;f&wﬂ
T j=0

c—1

c—1 c—1 » ‘
= Z nN(Yj e T,-) anY’H = Z nN(Yj e Tj)pnwu,
r J=0 j=0 ~ 20

where N(Y’ € 7;) denotes the number of tuples in Y’ € 7; (the notation
N(l_[j;olYf € 7) is then self-evident), and we note that ||Y/|| depends on
the case 7, € 7 only.
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Claim 2. N(Y' € 7)pIV'l < pk+1

If Claim 2 is true, we will obtain the second inequality of the Main
Lemma (ii):

c—1
Q< (2k+2)T]pr! < Ckeq*.
j=0

It remains to verify Claim 2. But this also easily follows from our
analysis of the cases in 7. For instance, (i) let 7; = 4. Then from Case A
we learn that

k-1
N(Y €d)=(p-1)p = p(p-2),
lY/l=0 forY/ €A,
so that
N(Y/ eA)pHY/H < pk+i
(i) Let 7, =B, (1 <5 <k). Then from Case B, we learn that if
1 <s <k,
k—s—1
N(Y €B)=(p-1)p ~p(p-1),
Y] = s for Y/ € B,

so that
N(Y/ € B,)p!"'l < pk+!
if s =k,
N(Y' eB,)=p -1,
IY/l=k  for Y/ €B,,
so that

N(Yf c Bk)pHYfH < pkt!

(iii) The same is valid for 7, = C; (1 < s < k).
(iv) Let 7, = D, then from Case D we learn that

N(Y' e D) =1,
Y/l = k for Yl e D
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so that

N(Y/ € D) p™l = pk < pk+1,

This proves Claim 2 and hence concludes the proof of the Main Lemma.

th
th

€S

Remark. A little more careful inspection of the proof will verify that
e estimates in the Main Lemma (ii) are the best possible, in the sense
at the inverse inequalities hold up to a constant multiple.

It is natural (compare the classical case in [10]) to conjecture that the
timate in the main theorem is sharp in the sense that o* is not

bounded from H'/? to L!/2. Nevertheless, it would be interesting to verify

th
ta

10.

11.

12.

13.

14.

15.

at o* maps H'/? into weak-L'/? (= L'/**) using the estimates ob-
ined in the proof of the main theorem.

REFERENCES

. C. Bennett and R. Sharpley, “Interpolation of Operators,” Pure and Applied Mathemat-
ics, Vol. 129, Academic Press, San Diego, 1988.

. C. Fefferman, N. M. Riviere, and Y. Sagher, Interpolation between H?” spaces: The real
method, Trans. Amer. Math. Soc. 191 (1974), 75-81.

. N.J. Fine, Cesaro summability of Walsh—Fourier series, Proc. Natl. Acad. Sci. U.S.A. 41
(1955), 588-591.

. N. Fujii, A maximal inequality for H'-functions on a generalized Walsh—Paley group,
Proc. Amer. Math. Soc. 77 (1979), 111-116.

. J. Garcia-Cuerva and J. L. Rubio de Francia, “Weighted Norm Inequalities and Related
Topics,” North-Holland Math. Stud., Vol. 116, North-Holland, Amsterdam, 1985.

. F. Moricz, F. Schipp, and W. R. Wade, Cesaro summability of double Walsh—Fourier
series, Trans. Amer. Math. Soc. 329 (1992), 131-140.

. C. W. Onneweer and T. S. Quek, Multipliers on weighted Hardy spaces over locally
compact Vilenkin groups, J. Austral. Math. Soc. Ser. A 48 (1990), 472-496.

. F. Schipp, W. R. Wade, P. Simon, and J. Pal, “Walsh Series: An Introduction to Dyadic
Harmonic Analysis,” Hilger, Bristol /New York, 1990.

. E. M. Stein, “Singular Integrals and Differentiability Properties of Functions,” Princeton

Univ. Press, Princeton, NJ, 1970.

E. M. Stein, M. H. Taibleson, and G. Weiss, Weak type estimates for maximal operators

on certain H? classes, Rend. Circ. Mat. Palermo Suppl. 1 (1981), 81-97.

M. H. Taibleson, Fourier series on the ring of integers in a p-series field, Bull. Amer.

Math. Soc. 73 (1967), 623-629.

M. H. Taibleson, “Fourier Analysis on Local Fields,” Math. Notes, Vol. 15, Princeton

Univ. Press, Princeton, NJ, 1975.

F. Weisz, “Martingale Hardy Spaces and Their Applications in Fourier Analysis,”

Lecture Notes in Math., Vol. 1568, Springer-Verlag, New York /Berlin, 1994.

F. Weisz, Martingale operators and Hardy spaces generated by them, Studia Math. 114

(1995), 39-70.

F. Weisz, Cesaro summability of two-dimensional Walsh—Fourier series, Trans. Amer.

Math. Soc. 348 (1996), 2169-2181.



CESARO SUMMABILITY OF HARDY SPACES 651

16. S. Yano, Cesaro summability of Walsh—Fourier series, Tohoku Math. J. 9 (1957),
267-272.

17. S. Zheng, Riesz type kernels over the ring of integers of a local field, J. Math. Anal.
Appl. 208 (1997), 528-552.

18. S. Zheng, On Riesz type kernels over local fields, Approx. Theory Appl. (4) 11 (1995),
24-34.

19. W. Zheng, W. Su, and H. Jiang, A note to the concept of derivatives on local fields,
Approx. Theory Appl. (3) 6 (1990), 48-58.



	1. INTRODUCTION
	2. DEFINITIONS AND NOTATION
	3. THE MAXIMAL OPERATOR  sigma*
	4. PROOF OF THE MAIN LEMMA
	REFERENCES

