JOURNAL OF COMBINATORIAL THEORY, Series A 38, 110-112 (1985)

Note

A Counterexample to the Triangle Conjecture*

P. W. Shor

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Communicated by the Managing Editors Received July 15, 1983

The triangle conjecture sets a bound on the cardinality of a code formed by words of the form $a^i b a^j$. A counterexample exceeding that bound is given. This also disproves a stronger conjecture that every code is commutatively equivalent to a prefix code. \bigcirc 1985 Academic Press. Inc.

INTRODUCTION

We let $A = \{a, b\}$ be a two-letter alphabet and A^* be the free monoid generated by A. A code over A is a set of words in A^* such that any string of words in the code can be uniquely deciphered into its components. That is, if $u_1 u_2 \cdots u_j = v_1 v_2 \cdots v_k$, with u_i and v_i words in the code, then j = k and $u_i = v_i$ for i = 1, 2, ..., j. Equivalently, a code is a set of words in A^* that generates a free submonoid of A^* .

Consider words of the form a^iba^j , with $i+j \le m-1$ for some fixed m. It is easy to find codes made up of m such words, for example $\{b, ab, a^2b, \dots a^{m-1}b\}$. Since each word has a distinct beginning, the code can be deciphered by pulling words from the left of any string. Perrin and Schützenberger [3, 4] conjectured that this was the maximum possible; that is, any code consisting only of words of the form a^iba^j has at most m words, where $i+j \le m-1$.

* The author was supported during this research by a National Science Foundation Graduate Fellowship.

THE COUNTEREXAMPLE

Here we present a set of 16 words, with $i + j \le 14$, that form a code. The words are

b	$a^{3}b$	$a^{8}b$	$a^{11}b$
ba	a^3ba^2	a^8ba^2	$a^{11}ba$
ba^7	a^3ba^4	a^8ba^4	$a^{11}ba^{2}$
ba ¹³	a³ba ⁶	a^8ba^6	
ba ¹⁴			

We show that in a string of words from this code, the leftmost word is uniquely determined. Suppose we have

$$a^{i_0}ba^{j_0}a^{i_1}ba^{j_1}\cdots = a^{i_0}ba^{j_0}a^{i_1}ba^{j_1}\cdots$$

Then $i_0 = i'_0$, and $j_0 + i_1 = j'_0 + i'_1$, that is,

 $j_0 - j'_0 = i'_1 - i_1$.

So if the leftmost word in a string is not uniquely determined, then the difference of two *j*-values associated with the same *i*-value must be equal to the difference of two *i*-values. We can easily check that this does not happen in the code given above. The *j*-values for i = 0 are $\{0, 1, 7, 13, 14\}$, and this has difference set $\{1, 6, 7, 12, 13, 14\}$. For i = 3 and i = 8, we get $\{0, 2, 4, 6\}$, giving a difference set $\{2, 4, 6\}$. For i = 11 we get a difference set of $\{1, 2\}$. All of these difference sets are disjoint from the one we get from the *i*-values $\{0, 3, 8, 11\}$, which is $\{3, 5, 8, 11\}$. Thus, the leftmost word is always uniquely determined. By pulling the leftmost word off a string of codewords, we obtain a shorter string of codewords. Repeating this process, we can decode the string.

By doubling *m*, and replacing each word $a^i b a^j$ by two words, $a^{2i} b a^{2j}$ and $a^{2i} b a^{2j+1}$, we get a larger code with the same ratio of (number of words)/*m* = 16/15. Hansel [2] has shown that this ratio cannot exceed $1 + \sqrt{2}$. Thus, we have

$$16/15 \leq \text{supremum}\left(\frac{\text{number of words}}{\max(i+j+1)}\right) \leq 1 + \frac{1}{\sqrt{2}},$$

where the supremum is taken over codes with words of the form $a^i b a^j$. It might be of interest to determine this ratio exactly.

P. W. SHOR

ACKNOWLEDGMENT

I would like to thank Jeff Kahn for bringing this problem to my attention and for his help in working on it.

References

- 1. C. DE FELICE, On the triangle conjecture, Inform. Process. Lett. 14 (1982), 197-200.
- 2. G. HANSEL, Baïonnettes et cardinaux, Discrete Math. 39 (1982), 331-335.
- D. PERRIN AND M. P. SCHÜTZENBERGER, Un problème élémentaire de la théorie de l'information, in "Théorie de l'Information," Colloq. Internat. CNRS No. 276, pp. 249–260, 1977.
- 4. D. PERRIN AND M. P. SCHÜTZENBERGER, A conjecture on sets of differences of integer pairs, J. Combin. Theory Ser. B 30 (1981), 91–93.
- 5. J. E. PIN AND I. SIMON, A note on the triangle conjecture, J. Combin. Theory Ser. A 32 (1982), 106-109.