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P. W. SHOR 

Massachusetts Institute qf Technology. Cambridge, Massachusetts 02139 

Communicated by the Managing Editors 

Received July 15, 1983 

The triangle conjecture sets a bound on the cardinality of a code formed by 

words of the form a’ba’. A counterexample exceeding that bound is given. This also 
disproves a stronger conjecture that every code is commutatively equivalent to a 
prefix code. i’s 1985 Academic Press, Inc. 

We let A = {a, b} be a two-letter alphabet and A* be the free monoid 
generated by A. A code over A is a set of words in A* such that any string 
of words in the code can be uniquely deciphered into its components. That 
is, if u,uz’..u,=ulu?...uk, with ui and ui words in the code, then j = k and 
ui = ~1~ for i = 1, 2,..., j. Equivalently, a code is a set of words in A* that 
generates a free submonoid of A*. 

Consider words of the form u’hu’, with i + j 6 m - 1 for some fixed m. It 
is easy to find codes made up of m such words, for example 
(b, ab, a’b,... urn- ’ b). Since each word has a distinct beginning, the code 
can be deciphered by pulling words from the left of any string. Perrin and 
Schtitzenberger [3,4] conjectured that this was the maximum possible; 
that is, any code consisting only of words of the form a’bd has at most m 
words, where i + j < m - 1. 

* The author was supported during this research by a National Science Foundation 
Graduate Fellowship. 
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THE COUNTEREXAMPLE 

Here we present a set of 16 words, with i +i 6 14, that form a code. The 
words are 

b 

ba 

ba’ 
ba13 

ba14 

a36 a8b 

a3ba2 a8ba2 

a3ba4 a8ba4 
a3ba6 a8ba6 

a”b 

a”ba 

a”ba’ 

We show that in a string of words from this code, the leftmost word is 
uniquely determined. Suppose we have 

aiobamai~baj~ . . = a+,aJ;a’;baj; . . . 

Then i, = i& and j, + i, =jh+ ii, that is, 

So if the leftmost word in a string is not uniquely determined, then the dif- 
ference of two j-values associated with the same i-value must be equal to 
the difference of two i-values. We can easily check that this does not hap- 
pen in the code given above. The j-values for i = 0 are (0, 1, 7, 13, 14}, and 
this has difference set ( 1, 6, 7, 12, 13, 14). For i = 3 and i = 8, we get 
{O, 2,4, 6}, giving a difference set (2,4, 6). For i= 11 we get a difference 
set of { 1, 2). All of these difference sets are disjoint from the one we get 
from the i-values { 0, 3, 8, 1 1 }, which is { 3, 5, 8, 11 }. Thus, the leftmost 
word is always uniquely determined. By pulling the leftmost word off a 
string of codewords, we obtain a shorter string of codewords. Repeating 
this process, we can decode the string. 

By doubling m, and replacing each word a’baj by two words, a2’baa and 
a2’ba3+ I, we get a larger code with the same ratio of (number of 
words)/m = 16/15. Hansel [2] has shown that this ratio cannot exceed 
l+&Th us, we have 

16/l 5 < supremum 
number of words 

max( i +j + 1) > 
<l+’ 

3’ 

where the supremum is taken over codes with words of the form a’baj. It 
might be of interest to determine this ratio exactly. 
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