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Abstract

By the sometimes so-called Main Theorem of Recursive Analysis, every computable real function is neces-
sarily continuous. Weihrauch and Zheng (TCS 2000), Brattka (MLQ 2005), and Ziegler (ToCS 2006) have
considered different relaxed notions of computability to cover also discontinuous functions. The present
work compares and unifies these approaches. This is based on the concept of the jump of a representation:
both a TTE–counterpart to the well known recursion-theoretic jump on Kleene’s Arithmetical Hierarchy of
hypercomputation: and a formalization of revising computation in the sense of Shoenfield.
We also consider Markov and Banach/Mazur oracle–computation of discontinuous functions and charac-
terize the computational power of Type-2 nondeterminism to coincide with the first level of the Analytical
Hierarchy.

Keywords: Hypercomputation, Recursion Theory, Type-2 Theory of Effectivity (TTE), Kleene and Borel
Hierarchies

1 Introduction

Every computable real function f is necessarily continuous!
Computability here refers to effective (ρ→ρ)–evaluation in the sense of x input

to a Turing machine by means of a ρ–name, that is a fast converging sequence of
rationals (qn); and y = f(x) output in form of a similar sequence (pm). Equivalently:
the pre-image f−1[V ] of an open set V ⊆ R is open ; and the mapping V �→ f−1[V ]
is effective in the sense that, giving an enumeration of (the centers and radii of) open
rational balls exhausting V , a Turing machine can output a similar list exhausting
f−1[V ]. This amounts to (θ<→θ<)–computability of V �→ f−1[V ].
How can we relax this notion to include also discontinuous functions f : X → R? 3

1 Supported by JSPS grant PE 05501. The author wishes to express further gratitude to his Japanese host
professor Hajime ISHIHARA for exuberant assistance and latitude!
2 Email: mziegler@jaist.ac.jp
3 Here and in the sequel, X denotes a fixed recursively open (i.e. θ<–computable) subset of R

D for some
D ∈ N.
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i) A representation (and thus a computability notion) for L2–functions or distri-
butions is devised easily and naturally [28]; but evaluation x �→ f(x) thereon
is neither effective nor mathematically well-defined.

ii) Granting a Type-2 machine access to an oracle like, say, the Halting problem
increases its recursion-theoretic power but does not lift the topological restric-
tion to continuous real functions; see e.g. [26, Lemma 8].

iii) Weihrauch and Zheng (2000) have considered (ρ→ ρ<)–computable functions
where the output representation ρ< encodes y = f(x) ∈ R as a rational se-
quence (pm) with y = supm pm. Such functions are in general only lower semi-
continuous [22], that is, the pre-image f−1[V ] is open for every V = (y,∞).
As a matter of fact, f is (ρ→ρ<)–computable if and only if a �→ f−1[(y,∞)]
is (ρ>→θ<)–computable [22, Theorem 4.5].

iv) Motivated by (a different) work of Zheng and Weihrauch (2001), [26] introduced
representations ρ′, ρ′<, ρ′′, . . . , ρ(d), ρ

(d)
< weakening ρ and ρ<. A real number

x is ρ–computable relative to the Halting problem ∅′ if and only if it is ρ′–
computable [10]. More generally, x is ρ–computable relative to ∅(d) if and
only if x is ρ(d)–computable [27]; similarly for ρ

(d)
< . These representations thus

parallel the levels Σd of Kleene’s Arithmetical Hierarchy.

v) Brattka relaxes the pre-image mapping V �→ f−1[V ] from being open and
effectively open and instead considers Σd–measurability [3]. This condition
requires that f−1[V ] be a Σd set in Borel’s topological hierarchy. For its ground
level Σ1(X) of open subsets of X, he thus recovers classical continuity; Σ2(X)
consists of the Fσ sets, and so on. The mapping V �→ f−1[V ] must furthermore
be effective in the sense that, given a θ<–name of V , a Type-2 machine must be
able to obtain a name of f−1[V ] in terms of the natural representation δΣd(X)

of Σd(X); δΣ1(X) ≡ θ<.

vi) Real nondeterminism had been introduced in [25,26, Section 5]. A correspond-
ing machine computing y = f(x) may make a binary choice at each step, as long
as any infinite output sequence (qn) constitutes a ρ–name of y. This notion has
been shown to include all (ρ→ρ(d))–computable functions [26, Theorem 28].

Notice that proceeding from (ρ → ρ)–computability to (ρ → ρ(d))–computability
amounts to weakening the information to be output for the values (image) of the
function f under consideration; whereas proceeding from effective Σ1–measurability
(equivalent to (ρ→ρ)–computability) to, say, effective Σd+1–measurability amounts
to weakening the encoding on the pre-image side (i.e. the domain) of f .

1.1 Overview

The present work unifies and extends approaches iii), iv), and v) above. Some main
results are collected in the following

Theorem 1.1 Fix a function f : X → R and d ∈ N.

a) f is (ρ→ρ(d−1))–computable if and only if it is effectively Σd–measurable.
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b) f is (ρ→ρ
(d−1)
< )–computable if and only if the mapping R 	 y �→ f−1[(y,∞)] ∈

Σd(X) is well-defined and (ρ>→δΣd(X))–computable.

c) There exists a nondeterministically computable total real function which is not
(ρ→ρ(d))–computable for any d ∈ N whatsoever.

In particular, weakly evaluable functions (in the sense of iv) range arbitrarily
high on Borel’s taxonomy of discontinuity but are strictly succeeded by nondeter-
minism (vi). Theorem 1.1a) also gives one explanation for the dominance in [3] of
the Borel classes Σd over the (seemingly more symmetric ones) Δd.

Claims a) and b) in the above theorem turn out to actually hold even uniformly
in f . To this end, we introduce in Section 4 the notion of Σd–semimeasurability and
a representation for according functions: a generalization unifying both [27] and [3].
The central concept in the present work is that of the jump α′ of a representation α

(Section 2). For the case α = ρ, it coincides with the notion from [26] and simplifies
the proofs therein.

Motivated by revising computation, Section 3 considers an equally natural but
different kind of jump operator on representations. The power of Type-2 Nonde-
terminism [25,26, Section 5] is the topic of Section 5. And before concluding, we
also briefly dive into oracle–supported Markov and Banach/Mazur computability
(Section 6).

2 The Jump of a Representation

Ho has shown that a real number x is ρ–computable (that is admits effective ap-
proximations by a fast converging rational sequence) relative to the Halting problem
∅′ if and only if x is the (unconditional) limit of a computable rational sequence
[10, Theorem 9]. This has suggested the alternative name ρ′ for the naive Cauchy
representation encoding x as an ultimately converging rational sequence. Another
example, Brattka has weakened (and extended) the representation θ< ≡ δΣ1(X) for
open sets to δΣd(X) mentioned above. The present section unifies these and several
other notions.

We start with Cantor space {0, 1}ω which is usually and canonically represented
by the identity ı [21, Definition 3.1.2.1].

Definition 2.1 Let the representation ı′ :⊆ {0, 1}ω → {0, 1}ω encode an infinite
string σ̄ ∈ {0, 1}ω as (the pairing of) a sequence of infinite strings ultimately con-
verging to σ̄.

This amounts to the naive Cauchy representation of the effective metric Can-
tor space [2, Section 6]. An ı′–name for (σn)n is thus (an ı–name for) some(
(τ〈n,m〉)n

)
m

∈ {0, 1}ω such that, for each n ∈ N, σn = limm→∞ τ〈n,m〉. The name
ı′, reminiscent of the recursion-theoretic jump, is justified because Shoenfield’s Limit
Lemma immediately yields

Remark 2.2 Let O denote an arbitrary oracle. An infinite string is (ı–) computable
relative to O′ if and only if it is ı′–computable relative to O.
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Moreover we have

Lemma 2.3 a) Every ((ı → ı)–) computable string function F :⊆ {0, 1}ω →
{0, 1}ω is also (ı′→ ı′)–computable;

b) more precisely the apply operator (F, σ̄) �→ F (σ̄) is (ηωω × ı′→ ı′)–computable.

c) Every (ı′→ ı′)–continuous string function F :⊆ {0, 1}ω → {0, 1}ω is (Cantor–
)continuous.

d) Whenever α :⊆ {0, 1}ω → A is a representation for A, then so is α ◦ ı′.

e) α � β implies α ◦ ı′ � β ◦ ı′.

In b), ηωω denotes a natural representation for continuous string functions [21,
Section 2.3].

Proof.

a) follows from b).

b) Let τ̃m := F (τ̄m) where F :⊆ {0, 1}ω → {0, 1}ω is continuous. Then limm τ̃m =
F

(
limm τ̄m

)
.

c) See [2, Section 6].

d) immediate.

e) Let F denote a computable string function converting α–names to β–names.
By a), F has a computable (ı′→ ı′)–realization G :⊆ {0, 1}ω → {0, 1}ω. This
G converts (α ◦ ı′)–names to (β ◦ ı′)–names. �

The rest of this section relates several known representations to ones of the form
α ◦ ı′ for some α.

2.1 Weak Real Representations

Recall from [25,26, Section 2] the following

Definition 2.4 Consider the representations of R where a real y is encoded as

ρρρ : a rational sequence (pm) such that |y − pm| ≤ 2−m (i.e. fast convergence)

ρ<ρ<ρ< : a rational sequence (pm) such that y = sup
m

pm (i.e. lower approximation)

ρ′ρ′ρ′ : a rational sequence (pm) such that y = lim
m

pm (i.e. ultimate convergence)

ρ′<ρ′<ρ′< : a rational sequence (pm) such that y = sup
m

inf
n

p〈m,n〉 (equivalently: lim inf)

ρ′′ρ′′ρ′′ : a rational sequence (pm) such that y = lim
m

lim
n

p〈m,n〉

ρ′′<ρ′′<ρ′′< : a rational sequence (pm) such that y = sup
m

inf
n

sup
k

p〈m,n,k〉...

ρ(d)ρ(d)ρ(d): a rational sequence (pm) such that y = lim
n1

lim
n2

lim
n3

· · · lim
nd

p〈n1,n2,...,nd〉
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Since the limit (ρ′ of course coincides with the well-known naive Cauchy-
representation ρCn.) These encodings constitute a hierarchy

ρ � ρ< � ρ′ � ρ′< � ρ′′ � ρ′′< � . . . � ρ(d) � ρ
(d)
< � . . .

of representations introduced in [26, Section 2.2]. This hierarchy correspond to—and
is in particular as strict as—Kleene’s Arithmetical Hierarchy of hypercomputation

Δ1 � Σ1 � Δ2 � Σ2 ⊆ Δ3 ⊆ Σ3 ⊆ . . . ⊆ Δd+1 ⊆ Σd+1 ⊆ . . .

in the following way: A real number y is ρ(d)–computable if and only if y is ρ(k)–
computable relative to ∅(d−k) for some (or, equivalently, for every) 0 ≤ k ≤ d; and y

is ρ
(d)
< –computable if and only if y is ρ

(k)
< –computable relative to to ∅(d−k), see [27,

Section 7]. Notice how this extends Shoenfield’s Limit Lemma from discrete to the
continuous realm [27, Section 4].

2.2 Jump of the Cauchy Representation

Proposition 2.5 ρ ◦ ı′ ≡ ρ′.

In combination with Remark 2.2, this implies [10, Theorem 9]; and together
with Lemma 2.3b) it includes [26, Scholium 17].

Proof. A (ρ ◦ ı′)–name for x ∈ R is (basically) a sequence of rational sequences
eventually stabilizing (elementwise) to a fast converging Cauchy sequence (q(n,∞))n ;
that is a double sequence (q(n,m)) in Q such that

∀n ∃m0 ∀m ≥ m0 : q(n,m) = q(n,m0) ∧ |x − q(n,m0)| ≤ 2−n .

���: For each m, let (q(1,m), q(2,m), . . . , q(Nm,m)) denote the longest initial part of
(q(1,m), . . . , q(m,m)) satisfying

|q(n,m) − q(n′,m)| ≤ 21−n ∀1 ≤ n ≤ n′ ≤ Nm . (1)

Since (q(n,∞))n is a ρ–name and due to the eventual stabilization, Nm → ∞ as
m → ∞. Also, the sequence (Nm)m is computable from the above input. Consider
the following algorithm, starting with empty output tape:

For each m = 1, 2, . . ., test whether the initial parts of q(·,m) and q(·,m−1) up
to Nm coincide: (q(1,m), . . . , q(Nm,m)) = (q(1,m−1), . . . , q(Nm,m−1))? (For notational
convenience, set qn,0 :≡ ∞ and N0 := 0.) If so, then obviously Nm ≥ Nm−1; so ap-
pend (the possibly empty sequence) (q(Nm−1,m), . . . , q(Nm,m)) to the output. Oth-
erwise let nm be maximal with (q(1,m), . . . , q(nm,m)) = (q(1,m−1), . . . , q(nm,m−1));
obviously nm < Nm, so append (q(nm,m), . . . , q(Nm,m)) to the output in this case.

It remains to show that that yields a valid ρ′–name for x. Let ε = 21−n. Then
|q(n,∞)−q(n′,∞)| ≤ ε for all n′ ≥ n because q(n,∞) constitutes a ρ–name. Moreover
due to stabilization, there exists some maximal m with q(n,m) �= q(n,m−1). During
the phase no.m corresponding to that last change, the above algorithm will detect
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nm < Nm and thus output (a finite sequence beginning with) q(n,m). Moreover
as q(n,·) afterwards does not change anymore, all elements q(n′,m′) appended sub-
sequently will have n′ ≥ n and m′ ≥ m; in fact Nm′ ≥ n′ ≥ nm′ ≥ n, hence
|q(n′,m′) − q(n,m)| ≤ ε because q(n,m′) = q(n,m) and due to Equation (1). Therefore
the output constitutes a (naive) Cauchy sequence converging to x.

���: Let (qn)n be a sequence in Q ultimately converging to x. There exists an in-
creasing sequence (nm)m in N such that

∀k ≥ nm : |qnm − qk| ≤ 2−m−1 . (2)

The subsequence (qnm)m constitutes a ρ–name for x. For each single m, Condi-
tion (2) can be falsified (formally: is co-r.e. in the input). A Turing machine is
therefore able to iteratively try for nm all integer values from nm−1 on and fail
only finitely often for each m.

Trial no.� thus yields a sequence (n′
(�,m))m≤� of length � such that, for each m,

n′
(·,m) eventually stabilizes to nm satisfying (2). By artificially extending each

finite sequence to an infinite one, we obtain a ρ ◦ ı′–name for x. �

2.3 Jump of Lower Real Representation

Our next result includes, in view of Lemma 2.3a+c), [26, Theorem 11a+b) and
Theorem 15b+c)] because (ρ → ρ<)–continuity implies lower-semicontinuity and
(ρ<→ρ<)–continuity requires monotonicity [22].

Proposition 2.6 ρ< ◦ ı′ ≡ ρ′<.

Proof. A (ρ< ◦ ı′)–name for x ∈ R amounts to a sequence of rational sequences
eventually stabilizing (elementwise) to a sequence approaching x from below, that
is a double sequence (q(n,m)) in Q such that

∀n ∃m0 = m0(n) ∀m ≥ m0 : q(n,m) = q(n,m0) ∧ x = sup
n

q(n,m0(n)) .

���: Since the limit (which exists) coincides with the least accumulation point, we
have

x = sup
n

lim
m

q(n,m) = sup
n

sup
j

inf
m≥j

q(n,m) = sup
〈n,j〉

inf
m

⎧⎨
⎩

q(n,m) : m ≥ j

∞ : m < j

deduced a ρ′<–name for x.

���: Let (q(n,m) be the given double sequence in Q with x = supn infm q(n,m). We may
suppose that all single sequences q(n,·), n ∈ N, are monotonically nonincreasing;
and that the single sequence

(
infm q(n,m)

)
n

is nondecreasing: by proceeding (in
either order!) from q(n,m) to mink≤m q(n,k) and to max�≤n q(�,m), respectively.
Moreover one can assert each single sequence q(n,·) to eventually stabilize, thus
yielding a ρ< ◦ ı′–name of x: Consider for m ∈ N the function � · �m : Q → Q
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mapping every rational to the next lower dyadic rational having denominator
2−m; formally: a/b �→ 
a·2m/b�

2m where � · � = � · �0 denotes the usual floor function
on integers. Then proceeding from q(n,m) to �q(n,m)�m satisfies this requirement
without affecting x = supn infm q(n,m).

�

2.4 Jump of the Weierstraß Representation

The limit of a uniformly converging sequence of polynomials is of course continuous
again. Weierstraß has shown that the converse holds as well: Any continuous
function on a compact set is the uniform limit of a sequence of polynomials. This
leads to the Weierstraß Representation [ρ → ρ] of the class C(K) of continuous
functions f : K → R for compact K := [0, 1]D: a name of f ∈ C(K) is (an encoding
of the degrees and coefficients of) a sequence of polynomials Pn ∈ Q[X] with

sup
x∈K

|f(x) − Pn(x)| =: ‖f − Pn‖
!≤ 2−n . (3)

By the famous Effective Weierstraß Theorem, it is equivalent to several other natural
representations of C(K) [21, Section 6.1]. [25, Lemma 12b] and [26, Lemma 22]
employ a representation [ρ→ρ]′ for C(K) where the required fast uniform conver-
gence bound 2−n in Equation (3) is weakened to ‘ultimate’ uniform convergence
‖f − Pn‖ → 0. This kind of naive Weierstraßrepresentation, too, results from a
jump:

Proposition 2.7 [ρ→ρ] ◦ ı′ ≡ [ρ→ρ]′.

This result includes [10, Theorem 16]. The proof proceeds similarly to that of
Proposition 2.5 because Equations (1) and (2) are still decidable and co-r.e. when
replacing rational numbers q with rational polynomials Q and absolute value |q|
with maximum norm ‖Q‖:
Fact 2.8 Given q0, . . . , qm, b ∈ Q (in binary encoding, say), sup0≤x≤1 |q0 + q1x +
. . . + qmxm| = b is decidable: by virtue of constructive root bounds, see e.g. [11].

2.5 Iterated Jumps

Climbing up in Kleene’s Arithmetical Hierarchy corresponds to iterated jumps of
the Halting problem. We proceed similarly with our hierarchy of representations:

Definition 2.9 Let ı(d+1) := ı(d) ◦ ı′ = ı′ ◦ ı(d).

Straight forward inductive application of Remark 2.2 shows that ı(d)–
computability is equivalent to ı–computability relative to ∅(d). If F and G are
partial (ı→ ı′)–computable string functions, then their composition G◦F is (ı→ ı′′)–
computable by Lemma 2.3a).

Theorem 2.10 For each d ∈ N, it holds ρ(d) ≡ ρ ◦ ı(d) and ρ
(d)
< ≡ ρ< ◦ ı(d).
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Proof. The induction start d = 1 has been treated in Propositions 2.5 and 2.6,
respectively. Since a ρ(d+1)–name of x ∈ R is the join of ρ(d)–names of elements
xn with x = limn xn, Proposition 2.5 together with Lemma 2.3e) also provides the
induction step; similarly for ρ

(d+1)
< . � �

As a consequence, we obtain the following extension of [26, Theorems 11 and
15]:

Corollary 2.11 Fix f : X → R.

a) If f is (ρ(d) → ρ(d))–continuous, then it is continuous. If f is (ρ(d) → ρ(d))–
computable, then it is also (ρ(d+1)→ρ(d+1))–computable,

b) If f is (ρ(d) → ρ
(d)
< )–continuous, then it is lower semi-continuous. If f is

(ρ(d)→ρ
(d)
< )–computable, then it is also (ρ(d+1)→ρ

(d+1)
< )–computable.

c) If f is (ρ(d)
< →ρ

(d)
< )–continuous, then it is monotonically nondecreasing. If f is

(ρ(d)
< →ρ

(d)
< )–computable, then it is also (ρ(d+1)→ρ

(d+1)
< )–computable.

The proof of [26, Theorem 11] covers as many as five pages of text and
treated only very small values of d. Now it boils down to a mere application of
Lemma 2.3a+c) inductively in d.

2.6 Borel Set Representations

The representation θ< encodes an open subset U of X as a list of (centers and radii)
of open rational balls exhausting U . For a topological space X, the Borel Hierarchy
starts with the class Σ1(X) of open subsets U of X and proceeds inductively from
Σd(X) to the class Σd+1(X) of countable unions

⋃
m(X \ Sm) over complements of

sets Sm from Σd(X). Brattka has renamed θ< to δΣ1(X) and generalized it to higher
order Borel sets:

Definition 2.12 Consider the following representations of Borel subsets of X:

δΣ1(X)δΣ1(X)δΣ1(X) encodes U ∈ Σ1(X) as a list Bm of open rational balls s.t. U =
⋃
m

Bm

δΣ2(X)δΣ2(X)δΣ2(X) encodes S ∈ Σ2(X) as a list Bm of open rational balls such that

S =
⋃

m

(
X \ ⋃

n B〈m,n〉
)

...

δΣd(X)δΣd(X)δΣd(X) encodes S ∈ Σd(X) as (the join of) Σd−1–names of sets Sm ∈ Σd−1(X)

such that S =
⋃

m(X \ Sm).

It turns out that these natural representations are related to jumps, too:

Proposition 2.13 θ< ◦ ı′ � δΣ2(X)

∣∣Σ1(X).

Recall that Σ1(X) denotes the class of open subsets of X which θ< ≡ δΣ1(X) is
a representation for. Of course the restriction of δΣ2(X) is thus necessary for the
equivalence to make sense.
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Proof. A (θ< ◦ ı′)–name for U ∈ O(X) consists of two rational double sequences
(c(n,m)) and (r(n,m)) such that each single sequence c(n,·) and r(n,·), n ∈ N, eventually
stabilizes to some c(·,∞) and r(·,∞) where U =

⋃
n∈N

B(c(n,∞), r(n,∞)) and B(c, r)
denotes the open ball with center c and radius r.
Both representations admit effective countable unions: apply Lemma 2.3a) to [21,
Example 5.1.19.1] and see [3, Proposition 3.2(5)], respectively. It therefore suffices
to show them equivalent on open rational balls, that is we may suppose w.l.o.g.
U = B(cm, rm) for all m ≥ m0.
So let

An :=

⎧⎪⎨
⎪⎩

B
(
cm, rm · (1 − 2−n)

)
: (ck, rk) = (ck+1, rk+1)∀k ≥ m

∅ : otherwise
,

so U =
⋃

n An. Moreover the closed set An can be ψ>–computed, uniformly in n and
the given sequences (cm) and (rm): start generating B(· · · ); if the co-r.e. condition
“∀k ≥ m” eventually turns out to fail, the machine may still revert to a ψ>–name
for ∅ by adding further negative information to the output. Hence we obtain a
δΣ2(X)–name for U . �

The following extends [21, Example 5.1.17.2] and [27, Corollary 6.6a)]:

Example 2.14 For reals a < b, the open interval U = (a, b) ⊆ R is Σd–computable
if and only if +b and −a are both ρ

(d−1)
< –computable.

Conjecture 2.15 The converse of Proposition 2.13 holds as well: δΣ2(X)

∣∣Σ1(X) �
θ< ◦ ı′.

Problem 2.16 Recalling the weak representations of regular sets ◦ψ< and θ> from
[24, Definition 3.3], characterize them in terms of ı′ and some known representa-
tions!

3 Revising Computation

This section provides some motivation and related background to the jump α′ of
a representation α as well as for a different kind of jump α̂ to be introduced in
Section 3.3 below.

An important (though somewhat hidden) point in the definition of a Type-2 ma-
chine is that its output tape be one-way ; compare e.g. [21, top of p.15]. This
condition allows to abort a real number computation as soon as the desired preci-
sion is reached, knowing that this preliminary approximation will not be reverted.
It also is crucial for the Main Theorem to hold.

In the Type-1 setting, revising computations have been studied well. Here a
machine writes only a finite string, but it does not terminate and may revert its
output an arbitrary finite number of times. The model with this semantics goes
under such names as Limiting [6], Trial-and-Error [16], Inductive [4], or General [17]
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Turing Machines. It is motivated by the capabilities of early display terminals (see
Section 3.2 below) as well as by Shoenfield’s Limit Lemma.

A sequence (σn)n of finite strings (Type-1) converges (to a finite string) if and
only if the sequence σn,i of i-th symbols eventually stabilizes for each i. For infinite
strings (Type-2 setting) however, one has to carefully distinguish both conditions:
symbol-wise convergence underlies Definition 2.1 whereas overall stabilization will
be required in Definition 3.6.

Both appear naturally when formalizing the output displayed by a (not neces-
sarily terminating) program to a terminal as explicated in Section 3.2. They also
arise as input fed to a streaming algorithm:

3.1 Revising Input: Streams

Many practical applications are desired to run ‘forever’: a scheduler, a router, a
monitor all are not supposed to terminate but to continue processing the stream
of data presented to them. This has led to the prospering field of Data Stream
Algorithms 4 . It distinguishes various ways in which the input can be presented to
the program [12, Section 4.1]:

• In the Time Series Model, all data items (binary digits, say) are to be enumerated
in order; in particular, they must not later be reverted.

This corresponds in TTE to the identity presentation ı of an infinite string by itself.

• The Turnstile Model on the other hand permits (finitely many) later updates to
previously enumerated items.

This corresponds to the presentation ı′ from Definition 2.1.

3.2 Revising Output: Terminals

Recall the two most basic ascii control characters understood already by the ear-
liest text display consoles [23]: BS and CR . The first, called “backspace”, moves
the cursor left by one position, thus allowing the last printed symbol to be over-
written; whereas the second, “carriage return”, commands to restart output from
the beginning (of the present line).

Example 3.1 The character sequence
G o o d b y e CR H e l l o, M r s BS BS BS w o r l d

will display as: Hello, world.

So consider a program generating an infinite sequence of characters including
BS and CR ; how do they appear on an (infinitely long, one-line) display? Let us

require that each character position does settle down eventually, leading ultimately
to the display of a truly infinite string (without BS and CR ).

4 which usually focuses on the (space) complexity of randomized approximations of discrete problems,
though
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Definition 3.2 A –name of σ̄ ∈ {0, 1}ω is an infinite string over {0, 1, CR , BS }
which leads to the display of σ̄ in the above sense.

Now this is exactly what we had already considered in Definition 2.1:

Remark 3.3 ≡ ı′.

Each occurrence of the control character CR leads to the entire display being
purged. In order for already the first character to eventually stabilize, a valid

–name may thus contain at most finitely many CR ’s. Let us now consider a
terminal incapable of processing BS , that is, restrict to {0, 1, CR }ω. Then any
valid name will make the displayed text settle down not only character-wise but
globally. This motivates a different jump operator α �→ α̂ formally introduced in
the sequel:

Remark 3.4
∣∣
{0,1, CR }ω

≡ ı̂.

Hopefully you, most valued reader, are now indeed curious enough to read on
and learn about the computational power induced by this

3.3 Other Kind of Jump

[26, Section 5.1] characterizes the computational power of Chadzelek and Hotz’
quasi-strongly δ–Q–analytic machines in terms of Type-2 machines by introducing
the representation ρH as follows:

Definition 3.5 A ρH–name for x ∈ R is a sequence (qn)n in Q such that

∃N ∈ N ∀n ≥ N : |qn − x| ≤ 2−n

This representation is non-uniformly equivalent to ρ yet uniformly (in terms of
reducibility that is) lies strictly between ρ and ρ′.

Similarly to Section 2, we now generalize this particular construction into a
generic way:

Definition 3.6 For a representation α :⊆ {0, 1}ω → A, write α̂ := α ◦ ı̂.
The representation ı̂ :⊆ {0, 1}ω → {0, 1}ω in turn encodes an infinite string

σ̄ = (σn)n ∈ {0, 1}ω as a sequence of infinite strings τ̄m = (τ(n,m))n ∈ {0, 1}ω,
m ∈ N, such that there is some M ∈ N with τ̄m = σ̄ for all m ≥ M .

In contrast to Definition 2.1, the sequence (τ̄m) is thus required to ultimately
stabilize uniformly in the position index n.

In view of Claim f) of the following lemma, Claims a) to c) generalize [26,
Lemma 31]; and Claims d+e) generalize [26, Proposition 32b+a].

Lemma 3.7 Fix representations α of A and β of B.

a) An element a ∈ A is α–computable if and only if it is α̂–computable.

b) It holds α � α̂ � α′. The converse reductions are in general discontinuous.
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c) For any function f :⊆ A → B, (α→ β̂)–computability is equivalent to (α̂→ β̂)–
computability.

d) Every (α → β)–computable function f is also (α̂ → β̂)–computable; even uni-
formly in f .

e) An (α̂→ β̂)–computable function need not be (α→β)–continuous.

f) ρ̂ ≡ ρH.

Proof. It suffices to treat the case (A,α) = (B, β) = ({0, 1}ω, ı)—except for f) of
course.

a) Encode the M from Definition 3.6 into the machine computing (τ(n,m))(n,m)

and make it output (τ(n,M))n .

b) The positive claims are immediate, the negative ones are straight-forward dis-
continuity arguments.

c) By a), every (ı → ı̂)–computable function is (̂ı → ı̂)–computable, too. For
the converse implication, take the Type-2 Machine M converting ı–names for
x ∈ R to ı̂–names for y = f(x). Let (σ̄m) be given with σ̄m = σ̄M for all
m ≥ M , M ∈ N unknown.

Now simulate M on σ̄1 (implicitly supposing M = 1) and simultaneously
check that σ̄1 = σ̄m for all m ≥ 1. If (or, rather, when) the latter turns out to
fail, restart under the presumption M = 2 and so on. The check will however
succeed after finitely many tries (after reaching the ‘true’ M used in the input).
We thus obtain a finite sequence of output strings, that is a valid ı̂–name for
f(σ̄).

d) The apply operator (F, σ̄) → F (σ̄) is (ηωω × ı̂→ ı̂)–computable: if τ̄m = σ̄ for
all m ≥ M , then also F (τ̄m) = F (σ̄) for all m ≥ M .

e) Consider the discontinuous function F (1ω) := 1ω, F (σ̄) := 0ω for σ̄ �= 1ω. We
assert it to be (ı→ ı̂)–computable; the claim the follows by c).

Given σ̄ = (σn)n , for each n = 1, 2, . . . test σn = 1 and, as long as this holds,
append 1 to the output. Otherwise restart the output to 0ω. Since this restart
takes place (if at all) after finite time, we obtain in either case a valid ı̂–name.

f) Given (τ̄m)m with τ̄m = σ̄ for all m ≥ M , consider for each m the longest
initial segment of τm constituting the beginning of a valid ρ–name. This is
computable because dom(ρ) is r.e.; and it yields a ρH–name for ρ(σ̄), i.e. we
have “ρ̂ � ρCn”. The converse reduction proceeds similarly. �

4 Real Hypercomputation and Degrees of Discontinu-
ity

Computability of a function f : X → R in Recursive Analysis means (ρ → ρ)–
computability; equivalently [21, Lemma 6.1.7]: the pre-image f−1[V ] = {x : f(x) ∈
V } of any open V ⊆ R is again open (that is in Σ1(X)) and the pre-image mapping
V �→ f−1[V ] is (θ< → δΣ1(X))–computable. In particular, every computable real
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function is necessarily continuous.
How can we extend the notion of computability to incorporate also (at least

some) discontinuous functions?

Recalling the introduction, one may

iii) consider (ρ→ρ<)–computable functions.

A function f : X → R is (ρ → ρ<)–continuous if and only if it is low-
ersemicontinuous, i.e., f−1[V ] is open for any V = (y,∞). It is (ρ → ρ<)–
computable if and only if the mapping R 	 y �→ f−1

[
(y,∞)

] ∈ Σ1(X) is well-
defined and (ρ>→δΣ1(X))–computable [22, Theorem 4.5(1) and Corollary 5.1(2)]. A
natural representation (here denoted by [ρ→ρ<]) of lower-semicontinuous functions
on X encodes f as the join of the θ<–names of the open sets f−1[(y,∞)], y ∈ Q; cf.
[22, Definition 3.2].

Another approach due to Brattka, it is equally natural to

v) consider functions f : X → R for which the pre-image f−1[V ] of any open
V ⊆ R belongs to the Borel class Σd(X) (is Σd–measurable) and the mapping
V �→ f−1[V ] is (θ<→δΣd(X))–computable (called effectively Σd–measurable).

The comprehensive paper [3] thoroughly studies this notion and its consequences.
It is as general as to include also partial and multi-valued functions on arbitrary
computable metric spaces but in that respect goes beyond our purpose. [3] also
introduces a natural representation δΣd(X→R) for Σd–measurable functions as the
join of δΣd(X)–names of the sets f−1[V ], V running through all open rational balls.
For reasons which will be come clear soon, the present work prefers to write [ρ→
ρ(d−1)] for δΣd(X→R).

Let us unify these two Approaches iii) and v):

Definition 4.1 Call f : X → R be Σd–lowersemimeasurable if f−1
[
(y,∞)

] ∈
Σd(X) for all y ∈ R. It is effectively Σd–lowersemimeasurable if R 	 y �→
f−1

[
(y,∞)

]
is in addition (ρ>→δΣd(X))–computable. The representation [ρ→ρ

(d)
< ]

of all Σd+1–lowersemimeasurable functions is defined to encode f : X → R as the
join of δΣd(X)–names of f−1

[
(y,∞)

]
for all y ∈ Q.

Obviously [ρ→ρ(d)] ≡ [ρ→ρ
(d)
< ] ∧ [ρ→ρ

(d)
> ], exploiting f−1[U ∩ V ] = f−1[U ] ∩

f−1[V ] and [3, Proposition 3.2(4)] as well as ρ(d) ≡ ρ
(d)
< ∧ ρ

(d)
> by Lemma 2.3a) and

Theorem 2.10.
The main result of the present section connects these notions to weak function

evaluation (ρ→ρ(d)) and (ρ→ρ
(d)
< )—recall Section 1, Approach iv)—with the repre-

sentations from Section 2.1. In fact, justifying the above names for representations
of (lowersemi)measurable functions, we show

Theorem 4.2 a) The uniformly characteristic function 1 : Σd(X)×X → {0, 1},
defined by (S, x) �→ 1S(x) := 1 if x ∈ S and 1S(x) := 0 if x �∈ S, is (δΣd(X) ×
ρ→ρ

(d−1)
< )–computable.
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b) The apply operator (f, x) �→ f(x) of Σd+1–lowersemimeasurable functions on
X is

(
[ρ→ρ

(d)
< ] × ρ→ρ

(d)
<

)
–computable.

c) Every (ρ→ρ
(d)
< )–continuous function f : X → R is Σd+1–lowersemimeasurable;

every (ρ→ρ
(d)
< )–computable one is effectively Σd+1–lowersemimeasurable,

uniformly in f given by an ηωω–name of a realization.

Claims b) and c) together immediately establish the non-uniform Theorem 1.1b)
which in turn yields Theorem 1.1a).

An alternative proof of Theorem 1.1a), however only for d ≥ 3, could proceed
by induction [3, Corollary 9.6] and exploit that the pointwise limit f of a sequence
fn of (ρ→ρ(d−2))–computable functions is (ρ→ρ(d−1))–computable.

Proof (Theorem 4.2)

a) By induction on d, starting with d = 1: Given a ρ–name of x ∈ X and
a θ<–name of an open U ⊆ U , membership “x ∈ U” is semi-decidable; so
output 0s while uncertain and start writing 1s as soon as membership has been
established: this yields a ρ<–name of 1U (x).

Now let S =
⋃

n(X \ Sn) ∈ Σd+1(X) be given by the joint δΣ(d)(X)–names of

Sn ∈ Σd(X), n ∈ N. By induction hypothesis, ρ
(d−1)
< –compute the respective

values yn := 1Sn(x). Since x ∈ S ⇔ ∃n : x �∈ Sn, we have 1S(x) = supn(1 −
yn).

b) Given (a ρ–name of) x ∈ X, compute for all y ∈ Q a δΣd+1(X)–name of Sy :=

f−1
[
(y,∞)

]
. Claim a) yields from that a ρ

(d)
< –name of zy := 1Sy(x), that is

zy = 1 in case x ∈ Sy and zy = 0 in case x �∈ Sy. Easy scaling converts that to
z′y = a in case f(x) > y and to z′y = −∞ in case f(x) ≤ y. We finally obtain

a ρ
(d)
< –name of supy z′y = f(x) because R̄N 	 (xn)n �→ supn xn ∈ R̄ is obviously(

(ρ(d)
< )N→ρ

(d)
<

)
–computable.

c) To start with, recall the proof of [22, Theorem 3.7] the classical case

d = 0: Evaluate f simultaneously on all x ∈ X to obtain rational sequences px,n

with f(x) = supn px,n. More precisely, using feasible countable (as opposed
to infeasible uncountable) dove-tailing, simulate the machine evaluating f on
all initial parts of ρ–names of x ∈ X, that is on all finite rational sequences
q̄ = (q1, q2, . . . , qN ) with N ∈ N and |qn − qk| ≤ 2−n∀n ≤ k ≤ N . For each
q̄, we obtain as output a finite rational sequence (pq̄,m)

m≤M
. Observe that q̄

is initial segment of a ρ–name to any x ∈ Bq̄ :=
⋃N(q̄)

n=1 B(qn, 2−n), Bq̄ having
non-empty interior. Hence

∃m : pq̄,m > a ⇔ ∀x ∈ Bq̄ : f(x) > a ⇔ ∃x ∈
◦
Bq̄ : f(x) > a
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which implies

f−1
[
(a,∞)

]
=

⋃
q̄,m

⎧⎨
⎩

Bq̄ : : pq̄,m > a

∅ : pq̄,m ≤ a

⎫⎬
⎭ =

⋃
q̄,m

⎧⎨
⎩

◦
Bq̄ : : pq̄,m > a

∅ : pq̄,m ≤ a

⎫⎬
⎭

︸ ︷︷ ︸
∈Σ1

and immediately yields δΣ1(X)–computability of f−1[(a,∞)] for given a ∈ Q.

d = 1: Similarly evaluate f on all x ∈ X to obtain sequences px,n,m with f(x) =
sup

n
inf
m

px,n,m. More precisely countable dove-tailing yields, to each finite ρ–

initial segment q̄, a finite sequence (pq̄,m,n)m,n in Q with

∃m∀n : pq̄,m,n > a ⇔ ∀x ∈ Bq̄ : f(x) > a ⇔ ∃x ∈
◦
Bq̄ : f(x) > a

and hence

f−1
[
(a,∞)

]
=

⋃
q̄,m

=:Aq̄,m∈Π1︷ ︸︸ ︷
⋂
n

⎧⎨
⎩

Bq̄ : : pq̄,m,n > a

∅ : pq̄,m,n ≤ a

⎫⎬
⎭

︸ ︷︷ ︸
∈Σ2

=
⋃
q̄,m

⋂
n

⎧⎨
⎩

◦
Bq̄ : : pq̄,m,n > a

∅ : pq̄,m,n ≤ a

⎫⎬
⎭

a δΣ2(X)–name of f−1[(a,∞)] as the δΣ1(X)–names of all open X \ Aq̄,m.

d = 2: Compute finite rational sequences (pq̄,m,n,k)m,n,k
with

∃m∀n∃k : pq̄,m,n,k > a ⇔ ∀x ∈ Bq̄ : f(x) > a ⇔ ∃x ∈
◦
Bq̄ : f(x) > a ,

f−1
[
(a,∞)

]
=

⋃
q̄,m

⋂
n

⋃
k

⎧⎨
⎩

Bq̄ : pq̄,m,n,k > a

∅ : pq̄,m,n,k ≤ a

⎫⎬
⎭

=
⋃
q̄,m

⋂
n

∈Σ1︷ ︸︸ ︷
⋃
k

⎧⎨
⎩

◦
Bq̄ : pq̄,m,n,k > a

∅ : pq̄,m,n,k ≤ a

⎫⎬
⎭

︸ ︷︷ ︸
∈Π2

d ≥ 3: analogously. �

5 Power of Type-2 Nondeterminism

We now expand on Approach vi) from the introduction of the present work: Moti-
vated by Büchi’s discovery of nondeterministic automata as the appropriate notion

M. Ziegler / Electronic Notes in Theoretical Computer Science 167 (2007) 255–274 269



of regular languages over infinite strings [20] as well as by the famous Immerman–
Szelepscényi concept of nondeterministic function computation [15, Theorem 7.6]
and by fair nondeterminism [19], we introduced in [25,26, Section 5] the nondeter-
ministic Type-2 Model:

Definition 5.1 Let A and B be sets with respective representations α :⊆ {0, 1}ω →
A and β :⊆ {0, 1}ω → B. A function f :⊆ A → B is called nondeterministically
(α → β)–computable if some nondeterministic one-way Turing Machine M,

• upon input of any α–name σ̄ ∈ {0, 1}ω for some a ∈ dom(f),
• has a computation which outputs a β–name for b = f(a) and
• every infinite computation of M on σ̄ outputs a β–name for b = f(a).

A subset L of A is nondeterministically decidable if the characteristic function 1L :
A → {0, 1} × { }ω is nondeterministically (α → ı)–computable.

While admittedly even less realistic than a classical NP–machine, its capabili-
ties have turned out to exhibit (in addition to closure under composition) particular
structural elegance: All presentations ρ(d), d ∈ N, can nondeterministically be con-
verted to and from each other. Hence we may simply speak of nondeterministic com-
putability and observe that this notion includes all functions (ρ→ρ(d))–computable
for any d, that is by Theorem 1.1a) the entirety of Brattka’s hierarchy of effective
measurability.

Remark 5.2 In [25, Definition 14], we had defined nondeterministic computability
in a way with the third condition in Definition 5.1 requiring that any infinite output
of M on σ̄ constitutes a β–name for b = f(a). Since any infinite output requires
infinite computation but not vice versa, this may seem to lead to a different notion.
However both do coincide: M may additionally guess and verify a function F :
N → N such that the n–th symbol is output after F (n) steps. If F has been guessed
incorrectly (and in particular if, for the given input σ̄, no such F exists at all), then
this can be detected within finite time and abort the computation, thus complying
with the (only seemingly stronger) Definition 5.1.

The question of exactly characterizing the power of these machines, left open in
[26, Section 5], is now answered in terms of the Analytical Hierarchy:

Theorem 5.3 For L ⊆ N, the characteristic function 1L : N → {0, 1} × { }ω is
nondeterministically computable if and only if L ∈ Δ1

1.

In particular, the power of Type-2 nondeterminism goes strictly beyond effective
measurability; see Corollary 5.6 below.

The following notion turns out as both natural and useful in the proof of Theo-
rem 5.3:

Definition 5.4 A set L ⊆ N is nondeterministically semi-decidable if there exists
a nondeterministic Turing machine M which, upon input of x ∈ N,

• has a computational path which outputs an infinite string in case x ∈ L;
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• in case x �∈ L, aborts after finite time on all computational paths.

L is nondeterministically enumerable if a nondeterministic Turing machine M with-
out input

• has a computational path which outputs a list (xn)n of integers with L = {xn :
n ∈ N};

• every infinite computation of M prints a list (xn)n of integers with L = {xn : n ∈
N}.

Nondeterministic enumerability thus amounts to nondeterministic computability
of an En–name, cf. [21, Definition 3.1.2.5]. Surprisingly, it turns out as equivalent
not to nondeterministic semi-decidability but to nondeterministic decidability:

Proposition 5.5 With respect to Type-2 nondeterminism, it holds:

a) En ≡ Cf, where the latter refers to the representation of the powerset of N

enumerating a set’s members in order [21, Definition 3.1.2.6].

b) L ⊆ N is decidable if and only if it has a computable Cf–name;
equivalently: both L and its complement are semi-decidable.

c) L ⊆ N is semi-decidable if and only if L ∈ Σ1
1.

Proof.

a) “Cf � En” holds already deterministically. For the converse we are given
a list (xn)n of integers enumerating L. Guess a function F : N → N with
xn ≥ m∀n ≥ F (m): Such obviously F exists; and an incorrect guess can
be detected within finite time. Knowing F , we can determine and sort all
restrictions L ∩ [1,m], m ∈ N.

b) Immediate.

c) Let L ∈ Σ1
1. By the Normal Form Theorem—see e.g. [13, Proposition IV.2.5]—

L =
{
x ∈ N

∣∣ ∃b̄ = (bn)n ∈ {0, 1}ω ∀n ∈ N : P (x, n, 〈b1, . . . , bn〉)
}

(4)

for some decidable predicate P . A nondeterministic Type-2 machine M, given
x, may therefore guess b̄, check P (x, n, b̄|≤n) to hold (and output a dummy
symbol) for each n ∈ N and, when it fails, abort within finite time: This yields
nondeterministic semi-decision of L.

Conversely let L be semi-decided by M. Then x ∈ N belongs to L if and
only if there exists a sequence (bn)n of guesses bn ∈ {0, 1}ω such that M
makes at last n steps on x and b̄. The latter predicate P (x, n, 〈b1, . . . , bn〉)
being decidable, L is of the form (4). �

Claims b) and c) together yield Theorem 5.3. Moreover we have

Corollary 5.6 There is nondeterministically computable real c which does not be-
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long to (any finite 5 level of) Weihrauch and Zheng’s Arithmetical Hierarchy of real
numbers.

The constant function f(x) ≡ c establishes Theorem 1.1c).

Proof (Corollary 5.6) Take some hyperarithmetical but not arithmetical L ⊆ N,
that is, L ∈ Δ1

1 \ Σ1
0; see e.g. [14, Theorem §16.1.XI] or [13, Corollary IV.2.23].

Since L is nondeterministically decidable, it leads to a nondeterministically ρb,2–
computable real c :=

∑
n∈L 2−n ∈ R; compare [21, Theorem 4.1.13]. Were c ρ(d)–

computable for some d ∈ N, its (unique!) binary expansion would be decidable
relative to ∅(d) [27, Theorem 7.8], that is in Σd+1 ⊆ Σ1

0, contradiction. �

6 Markov Oracle–Computation

Returning to Approach ii) in Section 1, oracle access to the, say, Halting problem
does not permit computational evaluation x �→ f(x) of any discontinuous real func-
tion f in the sense of Recursive Analysis, that is with respect to input x and output
f(x) by means of fast convergent rational sequences. Other notions of effectivity
due to A.A. Markov, Jr. [21, Section 9.6] and S. Mazur [21, Section 9.1] restrict
real functions to computable arguments x ∈ Rc.

Definition 6.1 A function f :⊆ Rc → R is Markov–computable if is admits a
(classically, i.e. discretely) computable Markov realization, that is a function F :⊆
N → N such that, whenever e is Gödel index of a Turing machine Me ρ–computing
x ∈ dom(f), then F (e) is defined and index of a machine ρ–computing f(x). Call f

BM–computable if
(
f(xn)

)
n

is a computable real sequence whenever (xn)n ∈ dom(f)
is.

A (ρ→ρ)–computable function is obviously Markov–computable which in turn
implies BM–computability. Moreover Mazur’s theorem asserts every total BM–
computable function to be continuous; and Markov–computability of a total real
function requires (ρ → ρ)–computability according to Tseitin [21, Theorem 9.6.6].
See [7,8] for a thorough comparison of all these notions.

Now, as opposed to (ρ→ρ)–computability, Markov–computability does benefit even
topologically from oracle access:

Example 6.2 The discontinuous sign function sgn : Rc → {−1, 0,+1} is, relative
to the Halting problem ∅′, both Markov–computable and BM–computable.

Observe that in accordance with Definition 6.1, sgn is considered on the com-
putable reals only.

Proof. Given a Gödel index e of some machine Me computing x, modify Me

slightly to abort in case x �= 0. Feed this new machine’s index ẽ into Halting oracle.
A negative answer implies x = 0; the remaining cases x < 0 and x > 0 are trivial.
Similarly for BM–computability. �

5 It may however belong to a transfinite one [1].
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We are currently working the following generalizations of Mazur’s and Tseitin’s
Theorems:

Problem 6.3 Fix a total function f : Rc → R.

a) If f is Markov–computable relative to ∅′, then it is Σ2–measurable?

b) If f maps every ρ′–computable sequence to a ρ′–computable one, then it is
continuous?

c) Characterize the class of total functions Markov–computable relative to ∅′!
d) How about higher degrees?

7 Conclusion

We have characterized (ρ→ρ(d))–computable functions f : X → R to coincide with
Brattka’s condition of effective Σd+1–measurability; and shown his representation
δΣd+1(X→R) to be natural for the class of (ρ → ρ(d))–continuous functions. We

furthermore have characterized (ρ → ρ
(d)
< )–computable functions and, extending

work of Weihrauch and Zheng, found a natural representation for the class of (ρ→
ρ

(d)
< )–continuous ones.

Problem 7.1 Find a simple characterization of the respective classes of (ρ(k) →
ρ(d))–continuous, (ρ(k) → ρ

(d)
< )–continuous, and (ρ(k)

< → ρ
(d)
< )–continuous functions

with 1 ≤ k ≤ d arbitrary but fixed; and devise natural representations for them.

If α is an admissible representation, then α(d) is usually not for d ≥ 1, at least not in
the strict sense. This seems to call for Schröder’s theory of generalized admissibility
[18]. On the other hand, Corollary 2.11 succeeded well without this notion.
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