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Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early
production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This
work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA)
metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate
formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from
Opuntia Ficus Indica prevented activation of nuclear factor-κB (NF-κB) and over-expression of PGE2
synthase-1 (mPGES-1), but up-regulated cyclo-oxygenase-2 (COX-2) and PGD2 synthase (H-PGDS), with
final production of the anti-inflammatory cyclopentenone. The effects were positively related with
concentration between 50 and 100 mM. Indicaxanthin did not have any effect in the absence of LPS.

A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h,
either in the absence or in the presence of 50–100 mM indicaxanthin, revealed a differential control of
ROS production, with early (0.5–3 h) modest inhibition, followed by a progressive (3–12 h) concentra-
tion-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused
early (0.5–3 h) concentration-dependent elevation of conjugated diene lipid hydroperoxides, and
production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated
macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of
NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the
membrane level allows formation of signaling intermediates whose accumulation modulates PG
biosynthetic pathway in inflamed macrophages.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

The intracellular redox status is continuously tuned to mod-
ulate signaling pathways involved in all basic functions of cell life.
Sudden and timely variations, either in antioxidant or pro-oxidant
direction, may be essential to permit cells to respond to various
stimuli under patho-physiological conditions. In this context
macrophages are an interesting paradigm. These cells are indeed
crucial effectors long known to produce relatively high amounts of
oxidants, a burst of reactive oxygen/nitrogen (ROS/RONS) species
as a part of the molecular defense machinery against pathogens
and tumor cells [1–3]. The same cells however, have to finely
B.V. This is an open access article u
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modulate their redox milieu to control metabolic responses during
inflammation, in order that the process may switch from the acute
phase to its resolution [4], thus avoiding chronicity. The metabo-
lism of arachidonic acid (AA), with expression of inducible cyclo-
oxygenase-2 (COX-2), selective activation of COX-2 downstream
enzymes PGE2 synthase-1 (microsomal PGE2 synthase 1, mPGES-1)
and PGD2 synthase (hematopoietic PGD2 synthase, H-PGDS), and
release of mediators such as the pro-inflammatory prostaglandin
E2 (PGE2), the anti-inflammatory PGD2 and its derivative 15-deoxy
PGJ2 (15D-PGJ2) [5–7], are central in the inflammatory process.
Both the induction of COX-2 and synthesis of either pro- or anti-
inflammatory Pg have been described as redox-dependent pro-
cesses [5,8]. On this basis the anti-inflammatory activity of either
synthetic or natural redox-active compounds has been somewhat
explained. In particular, a number of polyphenol phytochemicals
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. Chemical structure of Indicaxanthin.
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has been shown to inhibit activation of transcription factors that
up-regulate COX-2, thus blocking the biosynthetic cascade leading
to the synthesis of PG mediators [9,10].

Indicaxanthin (4-[2-(2-Carboxy-pyrrolidine-1-yl)-vinyl]-2,3-di-
hydro-pyridine-2,6-dicarboxylic acid, Fig. 1) belongs to the beta-
lain class of phytochemicals, the structure of which derives from
that of betalamic acid. It is a reducing and amphipathic molecule,
can interact with and partition in membranes, penetrate cells and
counteract oxidative damage in various cell environments in vitro
[11–16]. Moreover indicaxanthin has appeared capable of mod-
ulating specific redox-driven signaling pathways involved in the
inflammatory response in cultured endothelial cells, and prevent-
ing the 7-ketocholesterol apoptotic activity in a human monocyte/
macrophage cell line [17,18]. The ability to modulate the activity
and/or the expression of the redox-dependent pro-inflammatory
enzymes such as myeloperoxidase and NADPH oxidase (NOX)
[13,17,19] may play a role in these effects.

Remarkable anti-inflammatory effects of indicaxanthin have
recently been demonstrated in an animal model of acute inflam-
mation [20]. The molecule has been shown to cause a rapid
decrease of PGE2 and other inflammatory mediators at the early
phase of the response, followed by resolution events. These
findings prompted us to explore in vitro eventual modulatory
activity of indicaxanthin on the main pathways controlling the
production of eicosanoids. To this aim murine RAW 264.7 macro-
phages, stimulated by the bacterial lipopolysaccharide (LPS) have
been used. LPS is a pro-inflammatory agent acting through a
receptor-mediated signaling pathway [21] leading to the redox-
dependent activation of the transcription factor NF-κB and its pro-
inflammatory genes downstream [22]. Our findings for the first
time show that a natural compound modulates the macrophage
activation process leading to the ROS-dependent and COX-2-
promoted synthesis of anti-inflammatory Pg and that early pro-
duction of oxidized membrane lipids appears to be associated with
the process.
Materials and methods

Reagents

Unless stated otherwise, all reagents were from Sigma (Milan,
Italy) and of the highest grade commercially available.

Indicaxanthin isolation

Indicaxanthin was separated from a methanol extract of cactus
pear (Opuntia ficus-indica) fruits (yellow cultivar), by liquid
chromatography, followed by semi-preparative HPLC, as pre-
viously reported [16].

Cell culture and stimulation

Murine macrophage RAW 264.7 cells (European Collection of
Cell Cultures; Sigma, Milan, Italy) were cultured in D-MEM with
GlutaMAX™ (Invitrogen, Milan, Italy) supplemented with 10%
endotoxin-free, heat-inactivated fetal bovine serum (Invitrogen,
Milan, Italy), 0.1% gentamicin and 1% non-essential amino acids at
37 °C in a humidified atmosphere with 5% CO2. Cell viability was
assessed through MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
2H-tetrazolium bromide] conversion assay according to manufac-
turer’s instructions (Invitrogen, Milan, Italy). LPS stimulation was
performed as previously described [23]. Briefly, cells were seeded
in 24-well plates at a density of 2.5�105 cells/mL and allowed to
adhere for 12 h. Then the medium was replaced and the cells
underwent a 16 h incubation with LPS (1 mg/mL, from Escherichia
coli 0127: E8, 1 mg/mL), either in the absence or in the presence of
suitable amounts of indicaxanthin in phosphate buffer pH 7.4.
When present, indicaxanthin was added to the cells 1 h before LPS
challenge. In some experiments, either diphenylene iodonium
(DPI, 1 mM), or ⍺-tocopherol (⍺-T, 100 mM), in a final 0.1% ethanol
concentration, were co-incubated with indicaxanthin. Control or
LPS-treated cells that did not receive other additions, contained
the relevant vehicle.

Measurement of PGE2, PGD2 and 15D-PGJ2

The levels of PGE2 and PGD2 in the cell-free supernatants was
measured using a 96-well based EIA kit from Cayman Chemicals
(Inalco, Milan, Italy), whereas 15D-PGJ2 was determined by using
an EIA kit from Assay Designs (TEMA Ricerca, Bologna, Italy)
according to the manufacturer’s instructions.

Western-blotting

Cell lysates were prepared as described [23]. The supernatants
were collected and stored at �20 °C until tested. Proteins were
determined by Bradford assay (Bio-Rad, Milan, Italy).

Immunoblotting analysis of COX-2, mPGES-1, H-PGDS and β-
actin proteins was performed as follows. Total cell lysates were
mixed with 6� sample buffer (50 mM Tris, 10% SDS, 10% glycerol,
100 mM DTT, 2 mg/mL bromophenol), boiled for 3 min and cen-
trifuged at 15,000 rpm for 5 min. Samples containing 20 mg of
protein were resolved on a 12% discontinuous polyacrylamide
mini-gel and then electrotransferred to a polyvinylidene difluoride
membrane according to the manufacturer’s instructions (Immobi-
lon Millipore, Milan, Italy). Blots were then incubated with poly-
clonal antibodies against either COX-2 or mPGES-1 or H-PGDS or
β-actin (Santa Cruz Biochemicals, Milan, Italy) in a blocking buffer
(10% w/v non-fat dry milk in 20 mM Tris–HCl pH 7.4, 125 mM
NaCl, 0.01% Tween 20 (TTBS) for 1 h at room temperature) [24].
Then membranes were washed three times with TTBS and further
incubated with anti-rabbit or anti-goat IgG conjugated to horse-
radish peroxidase (Dako, Milan, Italy) for 1 h at room temperature.
Finally, the immunoreactive bands were detected by enhanced
chemiluminescence (ECL, Amersham, Milan, Italy).

Quantitative real-time reverse-transcription polymerase chain
reaction

Total RNA was isolated as follows. Cells were washed twice with
ice-cold PBS, harvested and resuspended in 100 mL RNAlater™. Total
RNA was isolated from cell pellets using an RNeasy mini kit in
accordance with the manufacturer’s instructions (QIAGEN, Milan,
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Italy). RNA (5–10 mg) was then reverse-transcribed to cDNA using
Superscript III Reverse transcriptase following the manufacturer’s
protocol (Invitrogen, Milan, Italy) and stored at �20 °C until tested.

Real-time PCR for COX-2, mPGES-1, H-PGDS and Glucose
6-Phosphate dehydrogenase (G6PDH) was carried out with an
RT2 Real-Time™ SYBR Green PCR Master Mix and the RT2 PCR
Primer Set in accordance with the manufacture’s instructions
(SuperArray, Milan, Italy) using an ABIPRISMs 7700 Sequence
Detection System (Applied Biosystems, Warrington, UK). Thermal
cycling conditions included a pre-run of 2 min at 50 °C and 15 min
at 95 °C followed by 40 cycles at 95 °C for 30 s, 55 °C for 30 s, and
72 °C for 30 s. RT-PCR data were quantified as cycle of threshold
(Ct) values that represents the cycle number at which the
fluorescence emission of the reporter dye passed a fixed threshold
that was automatically set at 10 standard deviations (SD) above
the mean baseline emission. The same threshold and baseline
were set for all samples. The mean Ct value of COX-2, mPGES-1
and H-PGDS were normalized to the internal control reference
gene by subtracting the mean Ct value of G3PDH from (ΔCt value).
The starting gene copy number of the treated sample was
determined by comparing with the copy number of the control
sample following the equation: ΔΔCt¼[ΔCt treated sample �ΔCt
control]. The relative gene copy number was calculated by the
expression 2�ΔΔCt that represents the gene induction expressed as
fold increase with respect to control.

NF-κB luciferase assay

NF-κB activation was checked using a luciferase reporter
plasmid, pTAL-NF-κB (Stratagene, La Jolla, CA). Transfections were
carried out using Amaxa Nucleofector Technology. Briefly, RAW
264.7 cells were passaged 2 days before nucleofection, on the day
of the experiment 100 mL of a cell suspension at 0.5�106 cell/mL
was combined with 3 mg of highly purified DNA plasmid, trans-
fected according to the manufacturer protocol and incubated for
12 h in a 5% CO2 atmosphere at 37 °C. Thereafter, cells were
stimulated with LPS (1 mg/mL), either in the absence or in the
presence of indicaxanthin (50, 75, 100 mM). After 6 h cells were
washed with PBS and lysed for 5 min at 4 °C according to the
manufacturer’s instructions (Promega, Madison, WI). Luciferase
activity is expressed as relative luminescence units (RLU) x103

following reading in a TD/2020 luminometer (Turner Biosystems,
Sunnyvale, CA).

Measurement of ROS/RONS and conjugated diene (CD)
hydroperoxides

Fluorescence changes that resulted from intracellular oxidation
of dichlorodihydrofluorescein diacetate were monitored to reveal
changes of the redox status by the endocellular content of ROS/
RONS. Dichlorodihydro-fluorescein diacetate, 10 mM final concen-
tration, was added to the cell medium 30 min before the end of
treatment. The cells were collected by centrifugation for 5 min at
2000 rpm at 48 °C, washed, suspended in PBS and immediately
subjected to fluorescence-activated cell sorting analysis using an
EPICS XL cytofluorimeter (Beckman Coulter Inc., US). At least
1�104 cells were analyzed for each sample.

CD hydroperoxides were evaluated spectrophotometrically. The
cells were precipitated (20,000 rpm, 5 min, 4 °C) and CD hydro-
peroxides extracted with 3 mL of a CHCl3:CH3OH mixture (2:1).
The organic extract was evaporated under a nitrogen stream, re-
suspended in cyclohexane and quantified by the absorbance at
234 nm, using a molar absorption coefficient of 27,000 [25] and a
DU-600 spectrophotometer (Beckman Coulter Inc., US).
HNE-protein adducts determination

The levels of HNE protein adducts in cell lysates were measured
using a 96-well OxiSelect™ HNE Adduct Competitive ELISA Kit
from Cell Biolabs (San Diego, CA, USA).

Statistical analysis

Comparisons were made using one-way analysis of variance
(ANOVA) followed by Bonferroni’s test (Instat-3 statistical soft-
ware, GraphPad Software). Po0.05 was considered statistically
significant.
Results and discussion

Indicaxanthin modulates PG biosynthesis in LPS-activated
macrophages

LPS-stimulated RAW 264.7 cells have been used as a model to
investigate on the activity of indicaxanthin in modulating PG
metabolism. These cells exhibit functional characteristics of pri-
mary macrophages and this model offers the advantage of expres-
sing COX-2 and a limited set of PG synthases downstream, namely
m-PGES1 and H-PGDS [26], therefore coordinate relations among
these enzymes and their products can directly be examined. It
should be mentioned that, though physiological oxygen tension at
tissue level is quite lower, our measurements were performed at
normoxic conditions (21% O2), which makes the LPS-activated
RAW 264.7 macrophages a suitable system to validate the anti-
inflammatory potential of compounds in term of PG production.
The time-course of the LPS-induced production of main mediators,
i.e. the pro-inflammatory PGE2, anti-inflammatory PGD2 and its
spontaneous dehydration product 15D-PGJ2, was analyzed either in
the absence or in the presence of indicaxanthin. With respect to
non-stimulated (control) cells, LPS treatment caused a release of
PGE2 that accumulated during 16 h of observation (Fig. 2A), but
did not have any effect on formation and release of the anti-
inflammatory Pg (Fig. 2B). A 1 h pre-treatment of cells with
100 mM indicaxanthin caused a significant decrease of PGE2
(Fig. 2A) and production of PGD2 with a peak at 8 h, followed by
formation of 15D-PGJ2 with a peak at 12 h (Fig. 2B). The effect
positively correlated with concentration between 50 and 100 mM,
whereas 5 and 25 mM indicaxanthin did not modify significantly
the LPS-induced release of any mediator (Fig. 3A–C). MTT assay
carried out in parallel showed that the decreased level of PGE2 did
not result from loss of cell viability. Under the same conditions,
exposure of cells to indicaxanthin alone (100 mM) did not affect
cell viability nor have any effect on the release of PG mediators
(Fig. 2A and B). In the light of these results, subsequent experi-
ments were carried out with 50–100 mM indicaxanthin, unless
specified.

The inducible COX-2 is central in the eicosanoid cascade during
inflammation, since its PGH2 product may serve as a substrate for
either mPGES-1 or H-PGDS, forming PGE2 or PGD2, respectively. A
regulated balance between these enzyme activities and their
products differentiates the acute inflammatory response vs the
subsequent resolution phase. Indicaxanthin pre-treatment re-
verted the LPS-induced pro-/anti-inflammatory eicosanoid ratio,
then the mechanism through which the COX-2/PGE2-PGD2 bio-
synthetic axes had been altered was investigated by measuring the
level of the enzymes concerned. The analysis of both RNA and
protein levels showed that, in accordance with the formation of
PGE2, LPS-stimulation caused a remarkable increase of mRNA and
protein level of COX-2 (Fig. 4A and D) and its downstream
m-PGES1enzyme (Fig. 4B and E), accompanied by only a modest



Fig. 2. Kinetics of release of PGE2 (A) and PGD2 and 15D-PGJ2 (B) in control or LPS-
activated RAW264.7 macrophages, either in the absence or in the presence of
Indicaxanthin. Values are the mean7SEM of three separate experiments carried
out in triplicate. Concentration differences at each time level were assessed by
Bonferroni’s test with nP¼0.0112; nnnPo0.001.

Fig. 3. Effect of pre-treatment of LPS-activated RAW264.7 macrophages with
Indicaxanthin concentrations increasing from 5 to 100 mM on release of PGE2 (A),
PGD2 (B) and 15D-PGJ2 (C). Values are the mean7SEM of three separate experi-
ments carried out in triplicate. Labeled means without a common letter differ,
Po0.05.
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elevation of H-PGDS (Fig. 4C and F). The same analysis revealed
remarkable effects of indicaxanthin, on the COX-2/PG biosynthesis
pathway: the phytochemical up-regulated COX-2 (Fig. 4A and D),
whose level appeared up to three times higher than observed in
the presence of LPS alone; down-regulated mPGES-1 (Fig. 4B and
E) and up-regulated H-PGDS (Fig. 4C and F), consistently with the
observed PG production. All these effects were positively related
with concentration. Indicaxanthin alone did not bring about any
significant alteration of the expression of COX-2, PGES-1 and
H-PGDS (not shown).

Indicaxanthin modulates LPS-induced variations of the cell redox
environment

Activation of various isoforms of NADPH oxidase (NOX) includ-
ing the macrophage NOX-4 [3,27] and ROS production are asso-
ciated with LPS activity, and are essential to determine a well-
timed evolution of the macrophage response with early formation
of pro- and final of anti-inflammatory mediators. ROS elevation
has indeed known to be involved in the AA release from mem-
brane, COX-2 expression and PG production [28,29], and may
differentially regulate LPS-induced PGD2 and PGE2 production in
macrophages, activating the former with no effect on the latter
[24]. The cell redox tone was investigated by monitoring the ROS
level in macrophages stimulated with LPS, that were pre-treated
or not with 50–100 mM indicaxanthin, between 30 min and 12 h.
Data reported in Fig. 5A show elevation of ROS by LPS within
30 min, with no further significant modification until the end of
observation. Pre-treatment with indicaxanthin had a time-depen-
dent bimodal effect, i.e. an early (30 min) decrease of ROS level
was observed, followed by a slow increase over 3 h, evolving in a
sharp rise between 6 h and 12 h (Fig. 5A). The pro-oxidant effect
was positively related with concentration and final level of ROS in
the presence of 100 mM indicaxanthin was four-fold higher than
observed under the mere LPS stimulation (Fig. 5). Indicaxanthin
alone (100 mM) was ineffective (Fig. 5A and B). It deserves to be
mentioned that data not reported provided evidence that pre-
treatment with low indicaxanthin concentrations (5 and 25 mM)
that did not show any effect on PG synthesis (Fig. 3), prevented the
LPS-dependent ROS production at any time-point. While confirm-
ing that redox-dependent mechanisms that control AA metabolic
pathways in the macrophages require an increased oxidative tone



Fig. 4. COX-2, PGES-1, H-PGDS mRNA (A, C, and E) and COX-2, PGES-1, H-PGDS protein levels (B, D, and F) in control or LPS-activated RAW264.7 macrophages, either in the
absence or in the presence of Indicaxanthin. Immunoblots are representative images of three experiments with comparable results. Values are the mean7SEM of three
separate experiments carried out in triplicate. Labeled means without a common letter differ, Po0.05.
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[28,29], all these findings suggested that the pro-oxidant activity
of indicaxanthin had a main role in modulating the COX-2/PG
biosynthetic axes. In accordance with the literature data [24],
through over-production of ROS, indicaxanthin could bring about a
timely expression and activity of both COX-2 and H-PGDS, this
resulting in shifting PGH2 towards the terminal production of
15D-PGJ2.

LPS-induced ROS production in macrophages precedes several
signaling events leading to early activation of NF-κB [8,30], that
controls a rapid and coordinated transcription of a number of
genes including COX-2 [31], and mPGES-1 [32]. Because indicax-
anthin pre-treatment resulted in early decrease of ROS levels, we
examined whether NF-κB activation was affected. RAW 264.7 cells
were transfected with an NF-κB reporter construct prior to
stimulation with LPS. Basal luciferase activity of un-stimulated
cells increased four-fold in LPS-activated macrophages (Fig. 6).
Pre-treatment with indicaxanthin caused a clear concentration-
dependent inhibition of NF-κB activation (Fig. 6). Indicaxanthin
alone did not affect the activation status of NF-κB (not shown).

As a global picture, the effects of indicaxanthin in LPS-activated
macrophages appeared first associated with an inhibition of NF-κB
activation, which may account for mPGES-1 down-regulation;
subsequently, through activation of ROS generating systems,
indicaxanthin may allow COX-2 and H-PGDS over-expression.



Fig. 5. Kinetics of LPS-induced ROS production in RAW264.7 macrophages, either
in the absence (full symbols) or in the presence (open symbols) of Indicaxanthin.
Values are the mean7SEM of three separate experiments carried out in triplicate
(A). Statistical significance of the data at 0.5 and 12 h is reported in (B). Labeled
means without a common letter differ, Po0.05.

Fig. 6. NF-κB activation in control or LPS-activated RAW264.7 macrophages, either
in the absence or in the presence of Indicaxanthin. Values are the mean7SEM of
three separate experiments carried out in triplicate. Labeled means without a
common letter differ, Po0.05.
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Modulatory activity of indicaxanthin on PG biosynthesis in LPS-
stimulated RAW 234.7 macrophages is associated with lipid oxidation

Activity of indicaxanthin on ROS production appeared to
depend on (i) the presence of LPS, (ii) concentration and (iii) time.
These observations suggested that indicaxanthin had to be
transformed in an active compound in an LPS-dependent reaction
and possibly other mediators accumulated. Oxidized phospholi-
pids have appeared to possess a number of biological activities and
induce signaling and transcriptional pathways that may affect
various aspects of the inflammatory process [33]. Endogenously
oxidized lipids have been suggested as part of a defense strategy,
serving as negative feedback mechanisms in promoting resolution
of inflammation [34]. Similar roles have been considered for
reactive aldehydes such as hydroxyl-nonenal (HNE) and related
end-products of lipid oxidation, whose time-dependent accumu-
lation can be regarded as a hormetic and adaptative response
[35,36] starting signaling pathways [37–39].

Membrane phospholipids in particular containing polyunsatu-
rated acyl chains such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-
phosphorylcholine, are very prone to oxidation by NOX-derived
reactive species [34]. Lipid oxidation in LPS-stimulated RAW 264.7
macrophages, that had been or not pre-treated with 50–100 mM
indicaxanthin, was monitored at time-intervals by the formation
of CD hydroperoxides. Data reported in Fig. 7A show that, under
the conditions applied, LPS stimulation brought about formation of
CD hydroperoxides with a peak at 6 h, followed by a decline.
Indicaxanthin pre-treatment caused an early and concentration-
dependent increase of CD hydroperoxides (Fig. 7A and B), well
over the amount measured in the presence of LPS alone. The level
of CD hydroperoxides peaked at 30 min, followed by a decline as
faster as higher the indicaxanthin concentration (Fig. 7A). Produc-
tion of HNE, as protein adducts, was evaluated in the same
experiments, either in the absence or in the presence of indicax-
anthin. Appearance of HNE adducts was consistent with the CD
hydroperoxide production in LPS-stimulated macrophages
(Fig. 7C). Likewise, the increased production of CD hydroperoxides
by pre-treatment with indicaxanthin was paralleled by HNE-
protein levels higher than observed with LPS alone (Fig. 7C), that
increased at the increase of indicaxanthin (Fig. 7D). Indicaxanthin
alone (100 mM) did not cause formation of CD peroxides nor HNE
in the absence of LPS, during the entire observation time (Fig. 5A–
D). Then, while showing that in LPS-stimulated macrophages
indicaxanthin promoted a concentration-dependent lipid oxida-
tion, our data indicated that the activity of LPS was a necessary
requirement for its pro-oxidant activity. Indicaxanthin is amphi-
pathic and partitions in phospholipid bilayers at a level between
the polar heads and hydrocarbon chains [40–42]. Previous studies
showed that while behaving as a lipoperoxyl radical-scavenger,
indicaxanthin exhibited some pro-oxidant activity in liposomal
membranes of unsaturated lipids in the presence of a lipid-soluble
azo-initiator [15]. This was ascribed to the capacity of the oxidized
molecule of self-regenerating at the expenses of unsaturated
lipids, and was more evident at the increasing of its concentration
over 20 mM [15]. On this basis we tentatively maintain that
indicaxanthin, early oxidized as a consequence of LPS-induced
NOX activity and lipoperoxide formation, may promote further
lipid oxidation at the macrophage membrane. In the LPS-stimu-
lated macrophage system, however, oxidized lipids did not exert
cytotoxicity, rather their formation appeared coherent with cell
responses, suggesting a role as functional mediators.

In the light that both ROS generated and oxidized lipids
appeared associated with the indicaxanthin capacity of modulat-
ing progression of PG biosynthesis in LPS-stimulated macro-
phages, we researched whether and to what extent indicaxanthin
stimulated the formation of the mediator PGD2 in the presence of
either DPI, as an inhibitor of NOX, or ⍺-T, as a competing
lipoperoxyl radical-scavenger [15]. As expected, formation of CD
lipid hydroperoxides was prevented by DPI, either without or
with indicaxanthin pre-treatment (Fig. 8). On the other hand,
the indicaxanthin-promoted production of PGD2 was also pre-
vented by DPI. Co-incubation with ⍺-T inhibited the indicaxanthin-



Fig. 7. Kinetics of LPS-induced CD lipid hydroperoxide (A), and HNE-protein adducts (C) production in RAW264.7 macrophages, either in the absence (solid symbols) or in
the presence (open symbols) of Indicaxanthin. Values are the mean7SEM of three separate experiments carried out in triplicate (A). Statistical significance of the data at
0.5 and 12 h is reported in (B). Labeled means without a common letter differ, Po0.05.

Fig. 8. Effect of DPI and vit E on the production of CD hydroperoxides and PGD2 in LPS-activated RAW264.7 macrophages, either in the absence or in the presence of
Indicaxanthin. Amounts of CD hydroperoxides at 0.5 h, and of PGD2 at 8 h, are represented. Values are the mean7SEM of three separate experiments carried out in triplicate.
Labeled means without a common letter differ, Po0.05.
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stimulated formation of lipid hydroperoxides, the level of which
was comparable with that observed with LPS alone, as was the
accumulated PGD2 (Fig. 8). The data above may suggest that
promoting lipid oxidation indicaxanthin provides macrophages
with active intermediates starting signaling pathways and driving
metabolic responses. Among other effects, lipoperoxides and
reactive aldehydes may up-regulate PG biosynthesis in RAW
264.7 macrophages [43], have appeared capable of inhibiting LPS
signaling [44,45], may prevent activation of the NF-κB pathway
[46,47], block NADPH oxidase at low [48], whereas activate ROS
generating systems at elevated concentrations [48–50], induce
COX-2 expression [43,47]. The non-conventional effect of
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indicaxanthin exerted through pro-oxidant activity of relatively
high concentrations may offer new perspectives to shed light on
yet poorly known mechanisms that switch macrophage PG meta-
bolism leading to production of anti-inflammatory mediators, and
appears to mimic and accelerate a patho-physiological activity of
the macrophage [51,52] more than simply arresting its pro-
inflammatory response. On the basis of our present knowledge it
is not easy to assess whether, or to what extent, this activity has a
role in the potent anti-inflammatory effect of indicaxanthin
administered to rats at the small concentrations consistent with
dietary intake [20].
Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.redox.2014.07.004.
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