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Abstract

Multigrid methods are highly efficient solution techniques for large sparse multilevel Toeplitz systems
which are positive definite and ill-conditioned. In this paper, we develop multigrid methods which are espe-
cially designed for anisotropic two-level Toeplitz (BTTB) matrices. First, a method is described for systems
with anisotropy along coordinate axes as a suitable combination of semicoarsening and full coarsening steps.
Although the basic idea is known from the solution of partial differential equations, we present it here in a
more formal way using generating functions and their level curves. This enables us not only to prove the
optimal convergence of the two-grid method, but also to carry over the results to systems with anisotropy in
other directions. We introduce new coordinates in order to describe these more complicated systems in terms
of generating functions. This enables us to solve them with the same efficiency. For the two-level method,
we present a convergence proof in this more general case.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Over the last 50 years, iterative methods have been developed for the solution of large sparse
linear systems of equations. Already in 1960, Bauer and Householder [2] published their Projected
Aggregation Method for the solution of nonsymmetric linear systems. Today, multigrid methods
belong to the fastest iterative methods for the solution of large sparse Toeplitz and Block-Toeplitz
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systems. They can either be used as stand-alone solvers or as preconditioners for Krylov subspace
methods such as the conjugate gradient algorithm or GMRES. Positive definite systems corre-
sponding to strictly positive generating functions are easily solved with the conjugate gradient
algorithm, preconditioned by circulant matrices [6]. If the generating function has up to a finite
number of zeros, the use of multigrid methods can be highly efficient, see e.g., [7,5]. However,
many applications such as discretization of partial differential equations (PDEs) lead to anisotropic
two-level Toeplitz systems. Although for some of these systems the classical convergence theory
for (multilevel) Toeplitz matrices [5,3,1] still holds, standard multigrid methods converge so
slowly that they become totally impractical. Therefore, we seek to devise multilevel methods,
which are especially designed for application to anisotropic problems.

This paper is organized as follows. After giving basic definitions and explaining fundamental
properties of multigrid methods for two-level Toeplitz systems in Section 2, we describe the
problems arising from anisotropic systems in Section 3. In the rest of this article, multigrid
algorithms for two different types of anisotropic problems will be developed. In Section 4 we
consider systems where anisotropy occurs along coordinate axes. Some of these results are known
from the solution of partial differential equations, but here we present them in a slightly different
context, making explicit use of the strong connection between two-level Toeplitz matrices and
generating functions with their level curves. This has the advantage that the methods can be
extended to more general matrices, and that convergence can be proved in a formal way. The
problems considered in Section 5 are more difficult to solve, because anisotropy occurs in other
directions. We develop multigrid methods which are suitable for this case by carrying over the
results from Section 4. We focus on directions where anisotropy occurs in an angle of k

k+l
· 90◦

towards one of the axes (with k and l being small integers). Although the classical two-level
Toeplitz structure with blocks of equal size is lost, the methods still work in this case. We are
mostly interested in sparse examples, which arise, e.g., from the discretization of PDEs, but our
methods also work in the more general case of dense Toeplitz matrices corresponding to arbitrary
generating functions.

2. Multigrid methods for BTTB systems

In this article we solve linear systems of equations corresponding to two-level Toeplitz matrices,
i.e., block Toeplitz matrices with Toeplitz blocks (BTTB matrices). Generating functions are
closely related to BTTB matrices. They will be used throughout the paper to derive multilevel
methods with certain properties.

Definition 1. Let f be a real-valued Lebesgue integrable function which is defined on [−�, �]2

and periodically extended on the whole plane. The Fourier coefficients of f are given by

tk,l = 1

4�2

∫ �

−�

∫ �

−�
f (x, y)e−ikx−ily dx dy (k, l ∈ Z).

We can now define the sequence of matrices (Tmn[f ])m,n. Tmn[f ] is the mn-by-mn BTTB matrix
with entries (Tmn[f ])(j,k)(p,q) = tj−k,p−q(0 � j, k < m, 0 � p, q < n), where (j, k) indicates
the block in Tmn[f ] and (p, q) the position within the block. f is called the generating function
of the sequence (Tmn[f ])m,n.

In the following, let Tn[f ] denote the one-dimensional n-by-n Toeplitz matrix related to
a function f (x), and Tmn[f ] the mn-by-mn BTTB matrix related to f (x, y). One important
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correspondence between BTTB matrices and generating functions is described for example in
[11]. If fmin and fmax denote the infimum and supremum values of f (up to zero measure sets), and
fmin < fmax, then for all m, n � 1, the eigenvalues of Tmn[f ] lie in the interval (fmin, fmax). For
n, m → ∞, the extreme eigenvalues tend to fmin and fmax. The case fmin = fmax = c is trivial,
because then Tmn = cImn with the identity matrix Imn. Therefore, f (x, y) � g(x, y)(∀x, y ∈ R)

implies Tmn[f ] � Tmn[g].
BTTB systems are most efficiently solved with iterative methods. If a system is well-con-

ditioned, i.e., if f (x, y) > 0, the preconditioned conjugate gradient (pcg) method works very
well with two-level circulant preconditioners [6]. If f has zeros, the corresponding matrix is
ill-conditioned, and circulant preconditioners fail in many cases [4,9]. In recent years, multigrid
methods turned out to be the most efficient techniques for symmetric positive definite ill-con-
ditioned BTTB systems whose generating function has a single isolated zero of finite order in
[−�, � [2 (see [7,12,8]). They can be used as standalone solvers or as preconditioners for a Krylov
subspace method such as pcg. In this paper we will mostly follow the former approach in order to
solve systems of the form Tmn[f ]x = b. We will make heavy use of the correspondence between
BTTB matrices and generating functions. For the moment let us assume that f has only one zero
in [−�, � [2.

The algebraic multigrid method (AMG) was developed by Ruge and Stüben [10], which as a
purely algebraic method does not use real grids. To develop an AMG method we have to define
a smoother and a coarse grid correction operator on each level. A smoother such as the Jacobi
or Gauss–Seidel method is denoted by S : Rmn → Rmn. To compute the coarse grid correction
operator we need to define a restriction matrix P : Rmn → RmCnC with nCmC being the dimension
of the coarse grid system matrix TC . The transpose P T is chosen to be the prolongation matrix.
The matrix P T = B · E formally consists of two parts. B is defined to deal with the zero of f ,
whereas E is the two-dimensional elementary restriction matrix. It picks every second column
and every second block column of a matrix. E is obtained from the one-dimensional restriction
matrices Em and En by E = Em ⊗ En. The matrix TC is computed with the Galerkin approach,
i.e., as the product

TC = P · Tmn[f ] · P T = ET · (BT · Tmn[f ] · B) · E. (1)

The coarse grid correction operator can then be written as X = Imn − P T · T −1
C · P · Tmn[f ],

leading to a global iteration matrix of the two-level method

G = Sν2 · X · Sν1 , (2)

where ν1 denotes the number of presmoothing steps and ν2 the number of postsmoothing steps. A
multilevel method is defined by using the two-level method recursively to approximate the inverse
of TC .

Since we wish to solve BTTB systems, we can describe prolongation and coarse grid matrices
in terms of generating functions. The product T̂ = BT · Tmn[f ] · B translated into generating
functions gives

f̂ (x, y) = f (x, y) · b(x, y)2, (3)

whereas the elementary projection TC = ET · T̂ · E becomes

f2(x, y) = 1

4
·
[
f̂

(x

2
,
y

2

)
+ f̂

(x

2
+ �,

y

2

)
+ f̂

(x

2
,
y

2
+ �

)
+ f̂

(x

2
+ �,

y

2
+ �

)]
.

(4)
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This means f2 is obtained from the Fourier series of f̂ by picking every second coefficient in x

and every second coefficient in y. It is important to note that in general the matrices T̂ and TC are
not BTTB, but a sum of a BTTB matrix and a matrix of rank O(n + m). In [3,1] different cutting
techniques are presented to make sure that the coarse grid matrix still has two-level Toeplitz
structure. However, for some important special cases it can be shown that the coarse grid matrix
obtained without additional cutting is still BTTB. So far, we have not yet chosen a function b(x, y)

for prolongation. If f is zero at (x0, y0), Fiorentino and Serra [7] suggest to use a nonnegative
function with zeros at the so called mirror points

(� − x0, y0), (x0, � − y0), and (� − x0, � − y0). (5)

For this choice they showed that TC is also positive definite, and its generating function has the
single zero (2x0, 2y0). The choice

b(x, y) = (1 + cos (x − x0)) · (1 + cos (y − y0)), (6)

satisfies these properties and corresponds to a matrix which is extremely sparse. In the rest of
this paper we can safely assume that the zero of f is located at the origin, because a zero at
(x0, y0) /= (0, 0) can be shifted to the origin by diagonal unitary transformation (a phase matrix).
For this choice of b the matrix TC obtained in (1) is guaranteed to be BTTB if m and n are both
odd [12].

Convergence proofs have been given for two-level and multilevel methods applied to Toeplitz
and multilevel Toeplitz systems, see, e.g., [5,3,1]. All of them are based on general convergence
results by Ruge and Stüben [10]. In order to state their theorem for the two-level method we must
define, for an arbitrary matrix A, the following inner products in addition to the Euclidean inner
product 〈u, v〉:

〈u, v〉0 = 〈diag(A)u, v〉, 〈u, v〉1 = 〈Au, v〉, 〈u, v〉2 = 〈diag(A)−1Au, Av〉. (7)

The respective norms, which are derived from these inner products, are denoted ‖ · ‖i , i = 0, 1, 2.
Moreover, let ν1 = 0 and ν2 = 1.

Theorem 1 (Ruge and Stüben [10]). Let A be a positive definite mn-by-mn matrix, and let S be
a smoother satisfying the smoothing condition, i.e., there exists an α > 0 such that

‖Seh‖2
1 � ‖eh‖2

1 − α‖eh‖2
2, ∀eh ∈ Rn. (8)

Furthermore, suppose that the prolongation operator has full rank and that the correcting con-
dition is satisfied, i.e., there exists a scalar β > 0 such that

min
eH ∈RmCnC

‖eh − P T eH ‖2
0 � β‖eh‖2

1, ∀eh ∈ Rmn. (9)

Then β > α, and the convergence factor ‖G‖1 of the two-level method with G from (2) satisfies

‖G‖1 �
√

1 − α

β
. (10)

Sun et al. [12] use this theorem to prove the optimal convergence rate of the TGM iteration
and the level-independency for BTTB systems where f has a zero of order at most two in the
origin, i.e., where f satisfies

min
(x,y)∈[−�,�]2

f (x, y)

2 − cos x − cos y
= C > 0 (11)
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and b(x, y) is chosen as in (6) with (x0, y0) = (0, 0). However, apart from these convergence
results there is also one important negative observation, which will be crucial for the development
of our multigrid methods.

Remark 1. Let f (x, y) be a nonnegative generating function which has a zero at (0, 0). If f

has another zero at one of the mirror points from (5), the multigrid method from above fails
completely in all numerical experiments. A theoretical reason for this behavior can be found in
[3]: The convergence theory for the multigrid method of Serra [7,3] requires that p is nonzero at
the origin and zero at all mirror points. Hence, if f is zero at the origin and at one of the mirror
point, p cannot meet both requirements. Even if f is close to zero at one of the three points
(0, �), (�, 0), (�, �), convergence of the multigrid method is extremely slow.

3. Problems arising from anisotropic systems

Anisotropic BTTB systems frequently arise from the discretization of partial differential equa-
tions. One important model problem for our experiments is obtained from the following equation,
which is closely related to the Poisson equation:

− ε · uxx − uyy = g. (12)

Finite difference discretization of this equation with a five point stencil on a uniform mesh leads
to the linear system described in Example 1. The second example shows a matrix, which is not
sparse.

Example 1. Let Tmn[f ] be the BTTB matrix corresponding to the generating function

f (x, y) = α · (1 − cos (x)) + (1 − cos (y)). (13)

If α = 1, we get one of the isotropic standard model problems, the discrete Poisson equation.
For α � 1, the problem becomes strongly anisotropic, i.e., the level curves of f (x, y) become
extremely flat. This is illustrated in Fig. 1, which depicts the curve f (x, y) = 0.01 for three
different values of α, i.e., for three different degrees of anisotropy.

Example 2. Let Tmn[f ] be the BTTB matrix with the underlying generating function

f (x, y) = αx2 + y2 (α � 1). (14)

It also has a single zero of order two in the origin, and it can be written as the Fourier sum

f (x, y) = (1 + α)
�3

3
+ 4�

∞∑
j=1

(−1)j

j2 (α cos (jx) + cos (jy)) . (15)

x

10,50-1

0,1

-0,1 1,5-0,05
0

-1,5

y 0,05

-0,5

Fig. 1. Curves f (x, y) = 0.01 for the function from Example 1 with α = 1, 0.1, 0.01.
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These two functions are examples where anisotropy occurs along one of the coordinate axes.
However, we are also interested in more general functions, where anisotropy occurs in other
directions. In most of this article, we restrict ourselves to anisotropic BTTB systems which
correspond to generating functions with a single zero in [−�, � [2 of order two, because these can
be described best in a formal way. We will also mention how to solve certain anisotropic systems
whose function has several zeros or zeros of higher order. Let us now assume that f has a single
zero in the origin of order 2. Then the Taylor expansion of f is of the form

f (x, y) = ax2 + bxy + cy2 + · · · = (
x y

)
M

(
x

y

)
+ · · · (16)

with M =
(

a b/2
b/2 c

)
. For the analysis of f (x, y) in the neighborhood of the origin we omit

all higher order terms and describe f by the symmetric matrix M . Since f is nonnegative, M

is positive semidefinite, i.e., its eigenvalues are nonnegative. The eigenvalues λ1, λ2 of M give
information about the degree of anisotropy, the corresponding orthogonal eigenvectors v1, v2
about the direction in which anisotropy occurs. If exactly one of the eigenvalues is close to zero,
anisotropy is strong. In the limit case, λ1 or λ2 is zero. This means that f is zero along a whole
line, which is passing through the origin. In Example 1 the function f can be described by the

diagonal matrix M = 1
2 ·

(
α 0
0 1

)
.

With these two examples we can illustrate why the standard multigrid methods from Section
2 should not be used for the solution of anisotropic systems. Again, generating functions turn out
to be a helpful tool for the analysis of multigrid methods. Moderately anisotropic systems can
still be solved with standard multigrid, although the number of iterations rises with the degree of
anisotropy. This happens because of the weak coupling in one direction, which means that the
value of f mainly depends on one of the variables. This implies that even for these systems the
design of special multigrid methods for anisotropic systems might lead to faster convergence.
However, if the anisotropy is strong, i.e., if α � 1, standard multigrid cannot be used anymore.

Remark 2. The following problems arise when the standard multigrid method from Section 2 is
applied for the solution of strongly anisotropic BTTB systems:

• If anisotropy occurs along one of the axes or in an angle of 45◦ to the axes, the function f

becomes close to zero at one of the mirror points, e.g., at (�, 0) in Example 1. From Remark
1 we know that convergence is extremely slow in this case.

• For anisotropy in arbitrary directions f becomes close to zero along a whole line. This means
that multigrid methods, which are designed for functions with a single isolated zero are no
more applicable.

• Most interesting sparse examples with anisotropy in other directions, i.e., not along the axes,
have several zeros in [−�, � [, which means several lines of zero in the limit case.

4. Anisotropy along coordinate axes

BTTB systems where anisotropy occurs along coordinate axes were introduced in Examples
1 and 2. For this type of anisotropic system, we will develop multigrid methods, which do not
suffer from the problems described in the previous section. This can be done in two different
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ways, either by using semicoarsening combined with a standard smoother such as Jacobi or by
applying full coarsening combined with a line smoother such as block Jacobi. In this paper, we
focus on the first approach. Although the second approach also leads to satisfactory results, we
do not analyze them here. It will be discussed in an upcoming article.

4.1. A two-level method with semicoarsening

One possible way to get rid of the problems described in the previous section is to use semi-
coarsening in the direction perpendicular to the anisotropy. The smoother is then chosen to be
a pointwise one such as the damped Jacobi method. Since we are solving BTTB systems, we
wish to describe semicoarsening in terms of generating functions. Let us assume that we have
anisotropy along the x-axis (e.g., a function such as f from Example 1 with α = 0.01), and that
coarsening is done in y-direction only. P = B · E is the product of the following two matrices.
B is the BTTB matrix corresponding to a function which is chosen to match the zero of f , for
each x ∈ [−�, �]. The simplest choice is

b(x, y) = 1 + cos (y), (17)

corresponding to a matrix of the form

B =




1 0.5
0.5 1 0.5

. . .
. . .

. . .
0.5 1 0.5

0.5 1


 ⊗ In. (18)

The product T̂ = BT · Tmn[f ] · B, i.e., f̂ (x, y) = f (x, y) · b(x, y)2 is computed as in the iso-
tropic case. The elementary restriction matrix E is chosen to be

Emn = Em ⊗ In (19)

with the one-dimensional restriction matrix Em. Translated to generating functions this becomes

f2(x, y) = 1

2

(
f̂ (x, y/2) + f̂ (x, y/2 + �)

)
, (20)

The result is a coarse grid matrix TC with half as many blocks as Tmn[f ], but with the same block
size. Again, TC is BTTB if n is odd and b from (17) is used. In general, additional cutting from
[3,1] has to be applied. If anisotropy occurs along the y-axis, semicoarsening is done in x.

Why is this approach superior to the standard coarsening method? Since anisotropy occurs
along coordinate axes, we have to focus on the first two problems described in Remark 2. The
problem that f is almost zero along a whole axis is overcome by coarsening in only one direction,
and therefore by treating the other variable as if it were a constant. With the same argument we
get rid of the problem with the zeros at mirror points, because they are all located on the x-axis.

The use of semicoarsening is a good idea for all types of anisotropic problems, not just for
the extrem case described above, because it yields a matrix TC which is less anisotropic than
Tmn[f ]. Fig. 2 suggests that generating functions can be used to illustrate this property. Whereas
full coarsening does not change the degree of anisotropy, semicoarsening leads to level curves on
the coarser level which are less flat. This fact can be described more formally with the following
definition.
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Fig. 2. Level curves f (x, y) = 0.01 and f2(x, y) = 0.01 obtained by one semicoarsening step with f from Example 1
and α = 0.01.

Definition 2. Let f (x, y) = c be a level curve of f with a sufficiently small, positive real number
c, and let f2 be the function computed in (20). We consider the points (xF (c), 0) and (0, yF (c)),
where the level curve of f intersects the coordinate axes for positive xF (c) and yF (c). xC(c) and
yC(c) are the analogues on the coarser level, i.e., for f2(x, y) = c. For the sake of abbreviation
let us omit the parameter c, i.e., let us denote for example xF = xF (c). The ratios rF = xF

yF
and

rC = xC

yC
are used as a measure to describe the degree of anisotropy along the coordinate axes x

and y for small c.

For the functions in Example 1 we observe that rF is reduced by a factor 2 after one semi-
coarsening step, independent of α and for c � 1. In the following, we prove that this property
holds in a more general context.

Theorem 2. Let f be a nonnegative generating function with a zero of order 2 at the origin which
is of the form

f (x, y) = [λ1(1 − cos (x)) + λ2(1 − cos (y))] · h(x, y) (21)

with h(x, y) > 0 and λ1, λ2 > 0. Let f2 be the function obtained by one semicoarsening step with
b from (17). Let rF = xF

yF
and rC = xC

yC
be the ratios described above for f and f2, respectively.

Then the degree of anisotropy is reduced by a factor 2, i.e., rF
rC

→ 2 for c → 0.

Proof

(1) Computation of rF : Since h(x, y) > 0, we can assume that h0 :=h(0, 0) and h� :=h(0, �)

are bounded away from 0. f is approximated in the neighborhood of (0, 0) by the following
Taylor expansion with terms of order at most 2:

f (x, y)
.=

(
λ1

x2

2
+ λ2

y2

2

)
· h0. (22)

With this approximation, xF and yF can be computed as follows:

f (xF , 0)
.= c ⇐⇒ λ1

x2
F

2
h0

.= c,

f (0, yF )
.= c ⇐⇒ λ2

y2
F

2
h0

.= c,

(23)

leading to the ratio

rF = xF

yF

.=
√

λ2

λ1
. (24)



322 R. Fischer, T. Huckle / Linear Algebra and its Applications 417 (2006) 314–334

(2) Computation of rC : First, we compute f̂ with (3) and (17):

f̂ (x, y) =
[
λ1(1 − cos (x))

(
3

2
+ 2 cos (y) + 1

2
cos (2y)

)

+ 1

2
λ2 (1 + cos (y) − cos (2y) − cos (y) cos (2y))

]
· h(x, y). (25)

With the abbreviations h̃0 :=h(x, y/2) and h̃� :=h(x, y/2 + �) we obtain f2 from (20) and (25):

f2(x, y) = λ1

2
(1 − cos (x))

(
3

2
(h̃0 + h̃�) + 2 cos

(y

2

)
(h̃0 − h̃�) + 1

2
cos (y)(h̃0 + h̃�)

)

+ λ2

4

(
(h̃0 + h̃�) + cos

(y

2

)
(h̃0 − h̃�) − cos (y)(h̃0 + h̃�)

− cos
(y

2

)
cos (y)(h̃0 − h̃�)

)
. (26)

With Taylor expansion of the cosine terms at (0, 0), and with approximation of h̃0 and h̃� by
h0 and h� this becomes

f2(x, y)
.= λ1x

2

4

(
3

2
(h0 + h�) + 2(h0 − h�) + 1

2
(h0 + h�)

)

+ λ2y
2

4

(
(h0 + h�) +

(
1 − y2

8

)
(h0 − h�) −

(
1 − y2

2

)
(h0 + h�)

−
(

1 − y2

2
− y2

8

)
(h0 − h�)

)

= λ1x
2h0 + λ2

4
y2h0, (27)

With this approximation of f2 we can compute rC in the same way as rF above:

f2(xC, 0)
.= c ⇐⇒ λ1x

2
Ch0

.= c,

f2(0, yC)
.= c ⇐⇒ λ2

4
y2
Ch0

.= c,

rC = xC

yC

.=
√

λ2

4λ1

.= 1

2
rF . �

(28)

4.2. A multilevel method

We wish to develop a multilevel method for the solution of anisotropic BTTB systems, which
combines semicoarsening and full coarsening steps. Therefore, we have to state a criterion for
the choice between the two different coarsening stategies. The basic idea is simple: Since we
know that the system becomes less anisotropic with each semicoarsening step, we want to apply
semicoarsening until the system is not anisotropic anymore, and then switch to full coarsening. So
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far, we have proved that the first semicoarsening step reduces the degree of anisotropy by a factor
of 2. This shall now be generalized to more than two levels by using the result from the previous
subsection on generating functions and their level curves. If the matrix Tmn[f ] is anisotropic,
level curves are flat. The following theorem shows that Theorem 2 can be applied recursively, and
therefore that each semicoarsening step reduces the ratio xF

yF
exactly by a factor 2.

Theorem 3. Let f be an nonnegative generating function with a zero of order 2 at the origin
which is of the form (21). Let rF = xF

yF
be the ratio of the intersection points on the finest level.

Then, the function f2 obtained after one semicoarsening step is also of the form (21). Therefore,
Theorem 2 can be applied recursively, and each semicoarsening step reduces rF by a factor 2 for
small c.

Proof. The coarse grid function f2(x, y), which has been computed in (26) in the proof of
Theorem 2, can be slightly rewritten:

f2(x, y) = λ1(1 − cos (x))

(
3

4
(h̃0 + h̃�) + cos

(y

2

)
(h̃0 − h̃�) + 1

4
cos (y)(h̃0 + h̃�)

)

+ λ2

4
(1 − cos (y))

(
(h̃0 + h̃�) + cos

(y

2

)
(h̃0 − h̃�)

)
. (29)

In the neighborhood of the origin, f2 is approximated by Taylor expansion and by replacing h̃0
and h̃� by h0 and h�:

f2(x, y)
.= λ1(1 − cos (x))2h0 + λ2

4
(1 − cos (y))2h0. (30)

Thus, f2 is of the form (21), and Theorem 2 can be applied recursively. �

Remark 3. Theorem 3 has the consequence that level curves become less flat on each level. If we
start with the ratio rF on the finest level, we need log2(rF ) semicoarsening steps until the level
curves are almost like circles, i.e., until the ratio is close to 1.

To illustrate this coarsening strategy let us again look at level curves of f from Example
1 for α = 0.01. Since the ratio rF is 10 in the beginning, and since it is divided by two in
each step, we have almost reached a circle after three steps. Our heuristic suggests that we use
three semicoarsening steps and then, if we wish to build a preconditioner with more levels,
use standard coarsening for the remaining steps. In our numerical experiments we test differ-
ent coarsening strategies on the matrices Tmn[f ] with f from Example 1. The first (denoted
y,xy,xy) consists of one semicoarsening step, followed by two full coarsening steps, the second
(y,y,y,xy) of three semicoarsening steps and one full coarsening steps, and the third (y,y,y,y,y)

of five semicoarsening steps. Each time, the matrix TC on the coarsest level is of size n2

32 -by-
n2

32 . For all the experiments in this section we use the damped Jacobi smoother. The first part of
Table 1 shows that our heuristic works indeed very well. If α = 0.001, five semicoarsening steps
should be performed to obtain satisfactory results, because rF is about 30. Again, the numerical
results, which are shown in the second part of Table 1, confirm that this is the best choice.
Similar results are obtained for the dense matrices Tmn[f ] from Example 2. Iteration numbers
are almost the same as in Table 1, since level curves are very similar to the ones of the first
example.
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Table 1
Iteration numbers for Tnn[f ] corresponding to f from Example 1 with α = 0.01 and α = 0.001

Coarsening n = 26 − 1 n = 27 − 1 n = 28 − 1

f (x, y) = 0.01 · (1 − cos (x)) + (1 − cos (y))

y,xy,xy 63 65 66
y,y,y,xy 16 17 17
y,y,y,y,y 20 20 19

f (x, y) = 0.001 · (1 − cos (x)) + (1 − cos (y))

y,xy,xy 125 181 >200
y,y,y,xy 32 45 50
y,y,y,y,y 15 15 15

4.3. Convergence results

In this section, the convergence proofs of [5,12] shall be carried over to anisotropic BTTB
systems. For the convergence proofs let us assume that anisotropy occurs along the y-axis, because
notation is slightly simpler in this case. Anisotropy along the x-axis is treated similarly. If aniso-
tropy occurs along the y-axis, i.e., if f (x, y) is small for x = 0 and all y ∈ [0, 2�], coarsening is
done only in x. Instead of (17) and (18) we use b(x, y) = 1 + cos (x) and

P T
mn = Im ⊗ P T

n with P T
n =




0.5 1 0.5
0.5 1 0.5

. . .
. . .


 . (31)

In this case, f is allowed to be zero on the whole line x = 0. Thus, (11) is replaced by

min
(x,y)∈[−�,�]2

f (x, y)

1 − cos x
= C > 0. (32)

The following theorem proves convergence of the two-level method.

Theorem 4. Let Tmn[f ] be a positive definite BTTB matrix whose generating function is real-
valued even and satisfies (32). Let t0,0 denote the entries in its main diagonal. Moreover, let the
prolongation matrix P T

mn be given by (31), and let the smoother be the damped Jacobi method.
Then, the convergence factor of the two-level method is uniformly bounded below 1 independent

of m and n. The following estimate for the convergence factor holds:

‖G‖1 �
√

1 − C

2ρ(Tmn[f ]) (33)

Proof. The proof of the smoothing condition (8) is the same as in [5,12]. Therefore, we only have
to prove the correcting condition (9). First assume that n = 2k + 1 with k being the size of the
blocks on the coarse level. Following [5] we define for any

e = (e1, e2, . . . , em)T = (e1,1, . . . , e1,n, e2,1, . . . , e2,n, . . . , em,1, . . . , em,n)
T ∈ Rmn

the vector

eC = (ẽ1, ẽ2, . . . , ẽm)T = (ẽ1,1, . . . , ẽ1,k, ẽ2,1, . . . , ẽ2,k, . . . , ẽm,1, . . . , ẽm,k)
T ∈ Rmk,
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where ẽi,j = ei,2j . If j � 0 or j > n, then we set ei,j = 0 in order to complete the notation. For
this special choice of eC we try to find an upper bound for ‖e − P T

mneC‖2
0 of the form β‖e‖1 with

β independent of e. Then the correcting condition would follow immediately. With P T
mn from

(31), the following upper bound is found:

‖e − P T
mneC‖2

0 = ‖e − (Im ⊗ P T
n )eC‖2

0 =
m∑

i=1

‖ei − P T
n ẽi‖2

0

�
m∑

i=1

t0,0〈ei, Tn[1 − cos (x)]ei〉 = t0,0〈e, (Im ⊗ Tn[1 − cos (x)])e〉. (34)

The m one-dimensional inequalities hold because of a result in [5]. It remains to show that there
exists a β independent of e such that

t0,0〈e, (Im ⊗ Tn[1 − cos x])e〉 � β〈e, Tmn[f ]e〉, ∀e ∈ Rmn. (35)

Because of the comments following Definition 1, condition (32) has the consequence

C · (Im ⊗ Tn[1 − cos x]) � Tmn[f ]. (36)

This implies that (35) is satisfied with

β = t0,0

C
,

and the correcting condition is proved for the casen = 2k + 1. Forn = 2k the vector e is embedded
into the vector ê of size mn̂ = m(2k + 1) by filling zeros into the additional positions. Then the
correction condition also holds because of

‖e − P T
mneC‖2

0 � ‖ê − P̂ T
mn̂

eC‖2
0 (37)

and

〈ê, Im ⊗ Tn̂[1 − cos x]ê〉 = 〈e, Im ⊗ Tn[1 − cos x]e〉. �

To obtain a result for the multilevel method we prove that if (32) holds on some level, it also
holds on the next coarser level after one semicoarsening step. Again, the proof is obtained by
extending the one from [12]. Let T h and T H denote the BTTB matrices on the finer and on the
coarser level, and nh and nH the respective block sizes. Since semicoarsening is used, the number
of blocks is constant on all levels. Furthermore, th0,0 and tH0,0 are the main diagonal entries of T h

and T H .

Theorem 5. Let T h be a positive definite BTTB matrix of size mnh satisfying

T h �
th0,0

βh
Tmnh

[1 − cos x] (38)

for some βh from (9) independent of mnh, and let the restriction be defined with (31). Then

T H �
tH0,0

βH
TmnH

[1 − cos x] (39)

with

βH = 2
tH0,0β

h

th0,0

. (40)
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This implies that Theorem 4 can be applied on each level, stating that the correcting condition is
also satisfied on coarser levels. If q levels are used, the following estimate for the convergence
factor holds:

‖Gq‖1 �
√

1 − αq

βq
=

√
1 − αh

4q−1βh
. (41)

Proof. Define the (nH + 1)-by-nH matrix

K = 1

2




1
1 1

1 1
1

. . .
. . .


 .

Then there exists a permutation matrix Q such that

Q · P T
mnh

= Im ⊗
(

InH

K

)
(42)

and

Q · Tmnh
[1 − cos x] · QT = Im ⊗

(
InH

−K

−KT InH +1

)
. (43)

With these prerequisites we can derive the lower bound (39) for T H . By (32) and (38) we have

T H = Pmnh
T hP T

mnh
�

th0,0

βh
Pmnh

Tmnh
[1 − cos x]P T

mnh
. (44)

With (42) and (43) the right-hand side can be simplified in the following way:

th0,0

βh

[
Im ⊗

((
InH

, KT
)(

InH
−K

−KT InH +1

)(
InH

K

))]

= th0,0

βh

[
Im ⊗ (InH

− KT K)
]

= th0,0

2βh

[
Im ⊗ TnH

[1 − cos x]]

= th0,0

2βh
TmnH

[1 − cos x], (45)

where the third line follows from the second by the definition of K . (39) and (40) are immediate
consequences of (45). �

Remark 4. If the anisotropy is moderate, our heuristic suggests the use of a multigrid method
which consists of some semicoarsening steps followed by full coarsening on the coarser levels. In
this case, we can combine the convergence results on full coarsening from [12] with our results.
This is done by computing βH in (40) as in [12] if full coarsening is used at some level. As a
consequence we obtain an estimate such as (41).
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5. Anisotropy in other directions

In the previous section, we have developed multigrid methods for anisotropic problems where
anisotropy occurs along coordinate axes. Generating functions and their level curves were used
for a theoretical analysis of the methods. Now the same techniques shall also be used in the more
general case where anisotropy occurs in other directions. The following two functions illustrate
what further problems arise from such matrices.

Example 3. Let Tmn[f ] and Tmn[g] be the BTTB matrices corresponding to the functions

f (x, y) = α · (1 − cos (x + y)) + (1 − cos (x − y)),

g(x, y) = (1 − cos (2x + y)) + α · (1 − cos (x − 2y)).
(46)

The left picture in Fig. 3 shows how the two functions behave in the neighborhood of their zero at
the origin, i.e., with what kind of anisotropy we have to deal with. f is anisotropic along the line
y = x, which means it is rotated by an angle of 45◦ from the x-axis. The anisotropy of g occurs
along y = −2x, which corresponds to an angle of 30◦ from the y-axis.

In both cases neither standard multigrid nor the methods from Section 4 work properly, and
for α → 0 they fail completely. Semicoarsening along an axis does not help to treat anisotropy
in other directions well. Moreover, we have to take into account the third problem mentioned
in Remark 2. f (x, y) has another zero at (�, �), independent of α, which is another obstacle
to a convergent multigrid method, see Remark 1. In the following, we try to modify the ideas
from Section 4 in order to get rid of all three problems from Remark 2. This shall be done in the
following way:

• Define a new coordinate system (s, t) such that anisotropy occurs along one of the new axes.
• Apply either semicoarsening with a standard smoother or full coarsening with a line smoother

in the appropriate direction.
• BTTB structure with blocks of equal size will be lost, but we can generalize the methods from

the previous section such that they work for these matrices as well.

Fig. 3. Level curves f (x, y) = 0.01 and g(x, y) = 0.01 for the functions from Example 3 with α = 0.01 (left); intro-
duction of new coordinates for f (x, y) (right).
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5.1. Semicoarsening in the 45◦ case

We start with the case where anisotropy occurs in an angle of 45◦ to the coordinate axes, i.e.,
along the line y = x or y = −x. With this case we can illustrate all ideas which are important for
the design of a multilevel method for angles of the form k

k+l
· 90◦. The new coordinate system

(s, t) must be chosen such that anisotropy is in s- or t-direction. For anisotropy along the line
y = x this is done by defining

s :=x − y and t :=x + y. (47)

Then, the function f from Example 3 becomes

f (s, t) = (1 − cos (s)) + α · (1 − cos (t)). (48)

The right picture of Fig. 3 illustrates the consequences of this transformation. For (s, t) ∈
[−�, � [2, the function f has only one zero, and anisotropy occurs along the t-axis. Thus, we
wish to apply a multilevel method which combines semicoarsening and full coarsening similar to
the one from Section 4. Some semicoarsening steps shall be performed to reduce the degree of
anisotropy. Then, full coarsening steps are applied to reduce the size of the coarse level matrix.
This shall be described with generating functions in the same way as it was done in Section 4.
Semicoarsening must be performed in s-direction, for example with the function

b(s, t) = 1 + cos (s). (49)

If full coarsening should be applied, the simplest choice for b is

b(s, t) = (1 + cos (s)) · (1 + cos (t)). (50)

In both cases b̂ is computed with

f̂ (s, t) = f (s, t) · b(s, t)2. (51)

Elementary projection within a semicoarsening step is done with

f2(s, t) = 1

2
·
[
f̂

( s

2
, t

)
+ f̂

( s

2
+ �, t

)]
, (52)

whereas within a full coarsening step with

f2(s, t) = 1

4
·
[
f̂

(
s

2
,

t

2

)
+ f̂

(
s

2
+ �,

t

2

)
+ f̂

(
s

2
,

t

2
+ �

)
+ f̂

(
s

2
+ �,

t

2
+ �

)]
.

(53)

So far, we have used generating functions to develop our multigrid method. Now these ideas must
be translated into matrices. To simplify notation, we choose m = n. We start with a two-grid
method which consists of one semicoarsening step in s-direction. This step can be divided into
three parts.

(1) Defining new coordinates corresponds to permuting rows and columns of Tnn[f ] and par-
titioning the resulting matrix into blocks. Since anisotropy occurs in an angle of 45◦, this
is done as shown in the left picture of Fig. 4. Each block of the matrix corresponds to one
diagonal in the picture. This means permutation must be done by the permutation vector

(1, 2, n + 1, 3, n + 2, 2n + 1, . . . , n, n + n − 1, 2n + n − 2, . . . ,

(n − 1)n + 1, . . . , (n − 1)n, n2 − 1, n2), (54)
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and the blocks are of size 1, 2, 3, . . . , n − 1, n, n − 1, . . . , 2, 1. The resulting matrix is
denoted T̃ .

(2) The matrix BS must be chosen corresponding to b(s, t) from (49). With the ordering obtained
after applying (54), BS is the block diagonal matrix

BS = diag(B1, B2, . . . , Bn, . . . , B2, B1), (55)

where B1 = 1 and all other blocks are Bk = tridiagk(0.5, 1, 0.5) of size k.
(3) The coarse grid matix TC is again computed by applying elementary projection to the matrix

T̂ = BS · T̃ · BS . This means we leave the number of blocks unchanged, and within each
block we pick every second row and every second column.

This semicoarsening step in s-direction reduces the degree of anisotropy in the same way
as one semicoarsening step in y-direction did in Section 4. This is because after defining
the new coordinates we carry out the same calculations in s and t as we did in x and y.
The result is summarized in the following theorem. The positive numbers sF and tF are the
points where s- and t-axis are intersected by the level curves f (s, t) = c for some small
positive c.

Theorem 6. Let f be a nonnegative generating function with a zero of order 2 at the origin which
is of the form

f (s, t) = [λ1(1 − cos (s)) + λ2(1 − cos (t))] · h(s, t) (56)

with the trigonometric polynomial h(s, t) > 0 and λ1, λ2 > 0. Let f2 be the coarse level func-
tion obtained by one semicoarsening step with b from (49). Let rF = sF

tF
and rC = sC

tC
be the

ratios described above for f and f2, respectively. Then the degree of anisotropy is reduced
by a factor 2, i.e., rF

rC
→ 2 for c → 0. Since the coarse level function is of the form (56),

if only terms of order at most 2 are considered in the Taylor expansion, the two-level result
can be applied recursively. Then, the degree of anisotropy is reduced by a factor 2 on each
level.

Fig. 4. Partitioning of the original matrix into blocks for semicoarsening (left) and full coarsening (right).
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5.2. Full coarsening and the development of a multilevel method

Since we wish to develop a multilevel method as a combination of semicoarsening steps in
s and full coarsening steps, we must first describe how a single full coarsening step in s and t

is carried out. A two-level method with full coarsening is defined by translating (50) and (53)
into matrices. Permutation of Tmn[f ] and partitioning of T̃ are done in the same way as for a
semicoarsening step. The matrix

BF = BS + BT (57)

is chosen to be the sum of BS from (55) and BT , which is defined as

BT =




0 B1,2
B2,1 0 B2,3

B3,2 0 B3,4
. . .

. . .
. . .

B2,3 0 B2,1
B1,2 0




, (58)

where Bk,k+1 is the matrix tridiag(0.25, 0.5, 0.25) of size k-by-(k + 1), and Bk+1,k the same
matrix of size (k + 1)-by-k. After T̂ = BF · T̃ · BF is computed, TC is obtained by elementary
projection. Within each block we pick every second row and every second column. On the block
level, we pick two rows, eliminate the next two, pick another two rows and so on. This procedure
is shown in the right picture of Fig. 4. The solid lines mark the blocks, which are retained on the
coarser level, whereas the other blocks are eliminated. The dashed line explains why precisely
these blocks have to be chosen. Elimination on the block level must be done such that within the
dashed line every second element is retained and the other elements are eliminated.

We now define a multilevel method similar to the one from Section 4, i.e., as a suitable combina-
tion of semicoarsening steps followed by some full coarsening steps. The prolongation/restriction
matrices and the elementary projection matrices are defined as described above, the change of
coordinates has of course only to be done before the first step. Again, we use the same heuristic
as in Section 4. Theorem 6 states that the ratio rF is reduced by a factor 2 in each semicoarsening
step. Therefore, semicoarsening steps are applied until level curves are close to circles, i.e., until
rF is almost 1. Then we continue with full coarsening. We wish to test our multilevel method
with the function f (x, y) from Example 3, where α takes the values 0.01 and 0.001. In the first
case, our heuristic suggests to use three semicoarsening steps, whereas in the second case at least
five semicoarsening steps should be used. The numerical results confirm that the method works
well. Table 2 shows that the number of iterations is similar to the simpler case where anisotropy
occurs along coordinate axes.

5.3. 30◦ and other directions

The case where anisotropy occurs in an angle of 45◦ with respect to the coordinate axes is
best suited to explain our method. Although systems with this angle arise in many applications,
this is not the only important case. Therefore, we want to describe how to solve systems where
anisotropy occurs in other directions. The function g(x, y) from Example 3 is anisotropic in an
angle of 30◦ with respect to the y-axis. Furthermore, it has the following zeros in the interval
[−�, � [2:
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Table 2
Iteration numbers for Tmn[f ] corresponding to f from Example 3 with α = 0.01 and α = 0.001

Coarsening n = 26 − 1 n = 27 − 1 n = 28 − 1

f (x, y) = 0.01 · (1 − cos (x + y)) + (1 − cos (x − y))

s,st,st 43 45 45
s,s,s,st 17 18 18
s,s,s,s,s 21 21 21

f (x, y) = 0.001 · (1 − cos (x + y)) + (1 − cos (x − y))

s,st,st 82 97 104
s,s,s,st 28 32 34
s,s,s,s,s 17 17 17

(0, 0),

(
2

5
�, −4

5
�

)
,

(
4

5
�,

2

5
�

)
,

(
−4

5
�, −2

5
�

)
,

(
−2

5
�,

4

5
�

)
. (59)

Again, we wish to define a multilevel method as a combination of semicoarsening and full
coarsening steps. As in the 45◦ case we have to define new coordinates s and t such that anisotropy
occurs along coordinate axes and then apply coarsening along s and t . For a problem with an angle
of 30◦ towards the y-axis such as g(x, y) from Example 3 the new coordinates are s :=2x + y

and t := − x + 2y. Then we choose b(s, t) either as in (49) or in (50), and proceed as in the 45◦
case. The coordinate transformation is translated into matrices by permuting rows and columns
and then partitioning the matrix into blocks. The grid points in Fig. 5 which are highlighted by
a solid circle show how two example blocks of the matrix are built. Since we have anisotropy
in an angle of 30◦, the points corresponding to one block are obtained by moving two steps in
x-direction and one step in y-direction. The matrices BS and BT are defined as in (55) and (58),
just the size of the blocks is different. Elementary projection within a semicoarsening step is done
exactly as in the 45◦ case by eliminating every second row and column within each block, leaving
the number of blocks the same. If we apply full coarsening, we eliminate every second row and
column within each block, and on the block level, eliminate five consecutive block rows, then
pick the next five block rows, eliminate five block rows and so on. The reason for this is explained
in Fig. 5, where we have to eliminate every second grid point with a dashed circle. This is the
equivalent to the dashed line in Fig. 4 (right). There are three other directions where anisotropy
occurs in an angle of 30◦ to one of the coordinate axes. Each of them is treated as the one we have
described here by an appropriate choice of s and t .

Finally, let us take a look at anisotropy which occurs yet in other directions. Functions of the
form

f (x, y) = α · (1 − cos (k · x + l · y)) + (1 − cos (l · x − k · y)) (60)

are examples representing classes of problems where anisotropy occurs in an angle of k
k+l

· 90◦
to one of the coordinate axes. In this general case, transformation to new coordinates is done with

s :=k · x + l · y and t := l · x − k · y. (61)

If |k| and |l| are small, our method works very well for these systems. However, this approach is
limited to small |k| and |l|, because the block sizes which have to be used in the multigrid method
become large if |k| and |l| increase. For |k| = |l| = 1, the size was 2, for |k| = 1, |l| = 2, it was

5, and in general it is det
(
l −k

k l

)
, i.e., k2 + l2. Table 3 illustrates what blocksize we have to use
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Fig. 5. Partitioning of the original matrix corresponding to g into blocks.

Table 3
Angles and block size for different choices of k and l in (60)

k l Block size Angle (deg)

1 2 5 30
1 3 10 22.5
1 4 17 18
1 5 26 15
2 3 13 36

and what angle we get for different choices of k and l. For each line in Table 3 four problems
with different angles can be obtained by interchanging k and l, and by moving α to the term
(1 − cos (l · x − k · y)) in (60). Most other angles lead to a block size which becomes too large
for practical computations. In theory however, if the size of Tmn[f ] is large enough, any rational
angle can be described by k and l, allowing our method to be applied. Thus, we suggest to treat
the given problem as if anisotropy occured along a direction from (60) with a similar angle.

5.4. Convergence results

Finally, we wish to give convergence results for systems with anisotropy in arbitrary directions.
Let us assume that anisotropy of a matrix Tmn[f ] occurs in a direction where the new coordinates
for our method can be defined with (61). We prove the following theorem for the case where f is
anisotropic along the t-axis. It is required that in the new coordinates, f satisfies the condition

min
(s,t)∈[−�,�]2

f (s, t)

1 − cos s
= C > 0, (62)

The coordinate transformation with (61) corresponds to a permutation of the rows and columns
of Tmn[f ] with a vector perm such as the one in (54), i.e., T̃ = Tmn[f ](perm, perm). The inverse
permutation is defined by the vector iperm. The restriction matrix for a semicoarsening step in
s-direction is defined as the product of BS from (55) and an elementary projection matrix. Then,
we can prove this more general version of the two-level result from Theorem 4.
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Theorem 7. Let Tmn[f ] be a positive definite BTTB matrix whose generating function f (x, y)

is real-valued even. Assume that introduction of new coordinates s and t by (61) leads to a
generating function f (s, t) which satisfies (62). Let T̃ be the permuted matrix defined above.
Furthermore, let the restriction matrix P̃ be constructed with B from (55), and let the smoother
be the damped Jacobi method.

Then, the correcting condition (9) is satisfied for T̃ and P̃ , and the convergence factor of the
two-level method is uniformly bounded from below 1 independently of n.

Proof. The proof is similar to the one of Theorem 4, but this time we have to consider blocks of
variable size. First, assume that all diagonal blocks are of odd size, i.e., nj = 2kj + 1 for some
integer kj . For any

e = (e1,1, . . . , e1,n1 , e2,1, . . . , e2,n2 , . . . , eb,1, . . . , eb,nb
)T

we define

eC = (ẽ1,1, . . . , ẽ1,k1 , ẽ2,1, . . . , ẽ2,k2 , . . . , ẽb,1, . . . , ẽb,kb
)T ,

where ẽi,j = ei,2j . If j � 0 or j > nk , then we set ei,j = 0 in order to complete the notation. For
this special choice of eC we try to find an upper bound for ‖e − P̃ T eC‖2

0 of the form β‖e‖1 with
β independent of e. Similar to [12] we obtain

∥∥e − P̃ T eC

∥∥2
0 = t0,0

b∑
i=1

ki∑
j=0

{
ei,2j+1 − 1

2
ei,2j+2 − 1

2
ei,2j

}2

� t0,0

b∑
i=1

ni∑
j=0

(e2
i,j − ei,j ei,j+1) = t0,0〈e, diag(Tn1 , . . . , Tnb

) · e〉 (63)

with Tnj
= Tnj

[1 − cos (s)]. Again, we have to find a parameter β independent of e such that

t0,0〈e, diag(Tn1 , . . . , Tnb
) · e〉 � β〈e, T̃ e〉, ∀e ∈ Rmn. (64)

First, we permute the left-hand side back to x- and y-coordinates with the vector iperm, i.e.,
eiperm = e(iperm) and

Tmn[1 − cos (kx + ly)] = diag(Tn1 , . . . , Tnb
)(iperm, iperm).

As in the proof of Theorem 4 the inequality in the following expression is a consequence of (62):

t0,0〈e, diag(Tn1 , . . . , Tnb
) · e〉 = t0,0〈eiperm, Tmn[1 − cos (kx + ly)] · eiperm〉

� t0,0〈eiperm, Tmn[f (x, y)] · eiperm〉 = t0,0〈e, T̃ e〉. (65)

The last equality is obtained by permutation with the vector perm, i.e., by transformation to s-
and t-coordinates. From (65) we obtain the parameter β = t0,0

C
in (64).

Finally, we must get rid of the assumption that the block sizes be odd. Let us therefore assume
that the j -th block is of even size nj . The vector (ej,1, . . . , ej,nj

) is embedded into a vector of
size nj + 1 by filling 0 into the additional position. If this is done for all parts of e corresponding
to a block of even size, we obtain a vector ê which is slightly larger than e. Then, with (37) and

〈ê, diag(Tñ1 , . . . , Tñb
)ê〉 = 〈e, diag(Tn1 , . . . , Tnb

)e〉.
the correcting condition still holds. �
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6. Conclusions

This article was devoted to the analysis of anisotropic problems in the context of BTTB
systems, generating functions, and their level curves. This point of view allows the development
of multilevel methods also for systems where anisotropy occurs in arbitrary directions and not
only along coordinate axes. These more complicated systems are solved with the same efficiency.
We have not considered functions where the zero is of higher order than 2. These can be solved
with prolongation matrices which are a power of the ones corresponding to (17), but theoretical
results are harder to obtain (some matrix theoretic tools for the anisotropic case can be found in
[3]). Moreover, V-cycle optimality for Toeplitz and BTTB systems has not yet been proved. If a
zero of f is not in the origin, the corresponding matrix can be diagonally scaled to shift the zero
to the origin. This also makes notation more complicated.

Several applications where anisotropic systems of both types need to be solved will be subject
of future research. The most interesting of them seems to be the solution of systems corresponding
to functions with a whole zero curve such as

f (x, y) = (ρ − cos (x) − cos (y))2(ρ < 2),

which arise when Helmholtz equations are solved. Multigrid preconditioners and solvers for these
problems will be presented by the authors in an upcoming paper. Anisotropic systems of the form
(60), which approximate the zero curve at several of its points, are essential building blocks for
these methods.

References

[1] A. Arico, M. Donatelli, S. Serra Capizzano, V-cycle optimal convergence for certain (multilevel) structured linear
systems, SIAM J. Matrix Anal. Appl. 26 (2004) 186–214.

[2] F.L. Bauer, A.S. Householder, On certain iterative methods for solving linear systems,Numer. Math. 2 (1960) 55–59.
[3] S. Serra Capizzano, Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs matrix-sequences,

Numer. Math. 92 (2002) 433–465.
[4] S. Serra Capizzano, E. Tyrtyshnikov, Any circulant-like preconditioner for multilevel matrices is not superlinear,

SIAM J. Matrix Anal. Appl. 21 (1999) 431–439.
[5] R. Chan, Q. Chang, H. Sun, Multigrid methods for ill-conditioned Toeplitz systems, SIAM J. Sci. Comput. 19 (1998)

516–529.
[6] R. Chan, M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38 (1996) 427–482.
[7] G. Fiorentino, S. Serra, Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative

generating functions, SIAM J. Sci. Comput. 17 (1996) 1068–1081.
[8] T. Huckle, J. Staudacher, Multigrid preconditioning and Toeplitz matrices, ETNA 13 (2002) 81–105.
[9] D. Noutsos, S. Serra Capizzano, P. Vassalos, Matrix algebra preconditioners for multilevel Toeplitz systems do not

insure optimal convergence rate, Theoret. Comput. Sci. 315 (2004) 557–579.
[10] J.W. Ruge, K. Stüben, Algebraic multigrid, in: S. McCormick (Ed.), Frontiers in Applied Mathematics: Multigrid

Methods, SIAM, Philadelphia, 1987, pp. 73–130.
[11] S. Serra, Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems, BIT 34 (1994) 579–

594.
[12] H. Sun, X. Jin, Q. Chang, Convergence of the multigrid method for ill-conditioned block Toeplitz systems, BIT 41

(2001) 179–190.


	Introduction
	Multigrid methods for BTTB systems
	Problems arising from anisotropic systems
	Anisotropy along coordinate axes
	A two-level method with semicoarsening
	A multilevel method
	Convergence results

	Anisotropy in other directions
	Semicoarsening in the 45 case
	Full coarsening and the development of a multilevel method
	30 and other directions
	Convergence results

	Conclusions
	References

