
@
PERGAMON

An IntomlUonld J~Imild

computers &
mathematics

q~k.nk~ne
Computers and Mathematics with Applications 39 (2000) 95-105

www.elsevier.nl/iocate/camwa

An Algebraic Algorithm to Isolate Complex
Polynomial Zeros Using Sturm Sequences

M. A. O. CAMARGO BRUNETTO
Departamento de Computa~m, UEL

Londrina, PR, 86051-970, Brazil

D. M. CLAUDIO
Instituto de Matem~tica, PUC-RS

Porto Alegre, RS, 90610-001, Brazil

V . TREVISAN
Instituto de Matem~tica, UFRGS

Porto Alegre, RS, 91509-900, Brazil

(Received August 1998; revised and accepted August 1999)

Abstract--ln this paper, algorithms to enumerate and isolate complex polynomial roots are devel-
oped, analyzed, and implemented. We modified an algorithm due to Wilf, in which Sturm sequences
and the principle of argument are used, by employing algebraic methods, aiming to enumerate zeros
inside a rectangle in an exact way. Several improvements are introduced, such as dealing with zeros
on the boundary of the rectangle. The performance of this new algorithm is evaluated in a theoretical
as well as from a practical point of view, by means of experimental tests. The robustness of the algo-
rithm is verified by using tests with ill-conditioned polynomials. We also compare the performance of
this algorithm with the results of a recent paper, using different polynomial classes. (~) 2000 Elsevier
Science Ltd. All rights reserved.

Keywords--Polynomial zeros, Sturm sequences, Algebraic algorithm.

1. I N T R O D U C T I O N

There are several efficient numerical methods to compute complex polynomial roots, but they
are sensitive to computational errors due to the use of a iloating-pointing arithmetic. Alternative
solutions have been proposed to minimize computational errors, such as, for example, inclusion
methods, by means of intervals [1]. Most of the known methods to approximate polynomial
roots require previous knowledge of isolated regions for zeros, that is, a set of disjoint regions
(rectangles, for example), each one containing a single root of the given polynomial. The problem
of isolating complex polynomial roots is closely related to the problem of enumerating polynomial
roots. Often, the algorithms for isolating polynomial zeros require a procedure to count the
number of roots inside a given region (enumeration). Next, the region will be bisected recursively,
until the zeros are isolated. The resulting value of this process is an integer and numerical methods
may fail to produce the right number.

Pinkert [2] provided an exact method for locating complex polynomial zeros, based on Routh's
Theorem, which determines the number of polynomial zeros lying in the upper half-plane. In

Work herein is partially supported by CAPES and CNPq.

0898-1221/00/$ - see front matter (~) 2000 Elsevier Science Ltd. All rights reserved. Typeset by .Ah~S-TEX
PII: S0898-1221 (99)00336-3

96 M.A.O. CAMARGO BRUNETTO et al.

order to determine the number of zeros inside a rectangle, he used Sturm sequences, with suitable
polynomial transformations (like rotation and root squaring). Another method was proposed by
Wilf [3], with a different approach. First, he solves the problem of enumeration by means of
Sturm sequences and the principle of argument. Then, in order to isolate the roots, he applies a
bisection procedure.

A problem that appears with Wilf's procedure is that the method requires the nonexistence
of zeros on the boundary of the rectangle. If we are searching polynomial zeros in arbitrary
rectangles, how to detect this condition? And still, how do we proceed if there is any zero on

the boundary? The way proposed by Will may lead to errors due to the use of operations with
floating-point numbers. If we work with a conventional floating-point system, what happens with
the zeros near the boundaries? They may be taken as zeros on the boundary.

Recently, Collins and Krandick [4] proposed an algorithm also based on the principle of ar-
gument. Their approach avoids the use of Sturm sequences, requiring real zero isolation of
transformed polynomials instead.

We present here an algorithm that is based on Will's method, but uses an algebraic approach.
Furthermore, several improvements are added to the original algorithm, such as dealing with
zeros on the rectangle boundary in an exact way. Optimization procedures are included to
avoid unnecessary searches, and for special classes of polynomials, suitable subalgorithms are

considered.
The new algorithm developed [5] results in an efficient computer implementation that shows

competitiveness with existing algorithms.
A computer program was developed in the Computer Algebra System Macsyma, and several

tests were made on a Sun Sparcstation under Unix. The development of the algorithm as well
as the basic data structure are presented in Section 3. Section 4 discusses the improvements
introduced to optimize the algorithm performance. Complexity analysis with theoretical and
practical results are presented in Section 5. Conclusions are in Section 6.

2. M A T H E M A T I C A L B A S I S

The principle of argument is perhaps the most known result used to count equation roots inside

a close region.

THEOREM 2.1. PRINCIPLE OF ARGUMENT. Let R be a dosed curve with boundary 6 R, e p(z) a
nonzero polynomial over 6 R. Let A6R argp(z) be the change in the continuous function argp(z)
when z traverses 6 R in the counterclockwise direction. Then, the number N of zeros of p(z)
inside R, considering their multiplicities is given by

1
N = ~-~A~R argp(z).

This value is an integer number and represents the winding number of image p(z) gives around
the origin when z traverses 6R in the counterclockwise direction. For any argument function,
tan argp(z) -- (9~p(z))/(~p(z)), where 9;p(z) is the imaginary part and ~p(z) is the real part of
p(z). The changes in argp(z) can be obtained, counting the jumps at (~ p(z)) / (~ p(z)) when z
traverses 6R.

When p(z) crosses the imaginary axis in a counterclockwise direction, tan argp(z) jumps from
+oo to - ~ and if this cross is in clockwise direction, the jump is from - o ¢ to +oo. The counting
of these jumps can be made using Cauchy index.

DEFINITION 2.1. CAUCHY INDEX. Let a/b be a rational real function and [a, 13] a real interval.
The Cauchy index, denoted by I~p/q is given by the difference between the number of points
E [a,~], when p/q goes from - ~ to +oo and the number of points when p/q goes from +c~
to -c~.

Algebraic Algorithm 97

Cauchy index and principle of argument are linked through the following theorem (see [6]).

THEOREM 2.2. Let 5R : z = z (x) , a <<_ x <_ B be a dosed curve and p is a polynomial defined

over 5 R, then

A~R argp(z) = -TrI~Z-~.

The Cauchy index can be computed by using Sturm sequences.

DEFINITION 2.2. STURM SEQUENCE. A sequence fo, f l , . . . , fm of real polynomials is a Sturm
sequence for a real interval [a, b] i f the following conditions are satisfied.

• f ,~ does not change the sign in [a, b].

• For each k, so that (1 < k < m - 1) and each x* E [a, b] o f f k (x) , fk+l(X*) , and f k - l (X *) <:

O.

The next theorem is the tool required to compute the Cauchy indeces (see [7]).

THEOREM 2.3. STURM THEOREM. Let fo, f l , . . . , fm be a S tu rm sequence for [a, b] and let V (x)

be the net sign variations through this sequence at the point x. Then

I b f l (x) = V(a) - V(b).
° f-j

3. T H E M O D I F I E D W I L F A L G O R I T H M

In this section, we modify Wilf's procedure in order to produce exact numbers for the zeros
inside a rectangle. The main idea of Wilf is to reuse Sturm sequences so that in each level, only
two new sequences need to be computed. We also develop a method to detect and count the
number of zeros on the rectangle boundary.

Let R be a rectangle, with vertices Q1, Q2, Q3, Q4. If we enumerate the sides Si, by traversing R
beginning at Q1 in counterclockwise direction, we have $1 : Q1Q2, $2 : Q2Q3, $3 : Q3Q4,

$4 : Q4Q1.
Each side of R must be mapped into the x-axis, with the lower bound at the origin. So, we

have for each side j of the rectangle, Prnj = p (t j (z)) , 1 < j <<_ 4, where

t l = Q1 + z, t2 = Q2 + iz, t3 = Q3 - z, t4 = Q4 - iz.

Figure 1 shows the rectangle bisected, with the four subrectangles (I, II, III, IV), and the four
vertices (Q1, Q2, Q3, Q4). Each side is associated with a Sturm sequence. The four basic Sturm
sequences correspond to the four sides of the rectangle, and are denoted, respectively, by ST1,
ST2, ST3, and ST4. The two additional Sturm sequences are associated with the inner line
segments that compound the four subrectangles, beginning in the center of the rectangle. These
sequences are denoted by ST5 (for the horizontal line) and ST6 (for the vertical line).

Q4

ST4

ST3 Q3

ST6
I II

ST5

Ill IV

ST2

STI
QI Q2

Figure 1. The rectangle and Sturm sequences.

98 MI A. O. CAMARGO BRUNETTO et al.

The formula for counting the number of zeros inside a rectangle R is given by

4
1

N = -i ~ (V(Sj) - V(0)),
j----1

where V(x) denotes the number of sign variation resulting from the evaluation of x in all terms
of the Sturm sequence associated.

This formula was obtained by the principle of argument and the Sturm theorem [3,6]. See
more details in [5].

It is clear that for each subrectangle, it is possible to use the Sturm sequences of its ascen-
dent rectangle, modifying the upper and lower endpoints of the associated interval, obtained by
mapping the side of a rectangle.

In this way, at each bisection, the four sequences previously generated are used and it is
necessary to generate only two new Sturm sequences. Given the six Sturm sequences, we can
combine four of them for each subrectangle. So we have, for each subrectangle, the following
combination:

I. ST5, ST6, ST3, ST4;
II. ST5, ST2, ST3, ST6;

III. ST1, ST6, ST5, ST4;
IV. ST1, ST2, ST5, ST6.

These associations do not change with the search level, while the interval associated with each
Sturm sequence depends not only on the level, but also on the point that originated the rectangle
and the previous level. Table 1 shows an example of the intervals considered in the first level of
bisection, where L is the length of the side of the current rectangle being searched.

Table 1. Intervals for the first level of bisection.

Side Subrectangles

I II III IV

1 [-L,0] [0,L] [0,L] [L, 2L]

2 [0, L] [L, 2L] I-L,0] [0, L]
3 [L, 2L] [0,L] [0,-L] [L,0]

4 [0, L] [L, 0] [L, 2L] [0, -L]

A brief comment should be made about Sturm sequences. It is known that these sequences may
generate expressions with very large coefficients. In fact, it is known that the coefficient growth is
exponential on the degree of f . There are two alternative ways to overcome this problem. Taking
the primitive part of the terms in the sequence, the resulting polynomials are called primitive
Sturm sequences, which assures that the coefficients generated are always integers and not large.
Despite the additional cost to obtain the primitive part (that requires gcd computation), the
total cost to generate the sequence decreases, since the arithmetic with integer is faster than with
rational numbers.

The algorithm for isolating the roots of a square-free polynomial p with integer coefficients
is described by the procedure Iso la te (Figure 2), which calls the procedure Search (Figure 3).
The procedure Search does a recursive call and also uses the procedure Coun t (Figure 4).

Another method that divides each element of the sequence by a previously known factor,
avoiding gcd computation, is a process called subresultant algorithm [8]. This alternative keeps
the coefficient growth only slightly bigger than linear.

3.1. T h e P r e s e n c e o f Zeros o n t he B o u n d a r y

A typical problem that appears in using this process is the existence of zeros on the lines that
divide a subrectangle.

Algebraic Algorithm 99

P r o c e d u r e I so l a t e
I n p u t : p;
O u t p u t : L, a list of the rectangles or intervals isolating the roots.

1. b := 2maxl<i<n la,-i/a~l 1/~ a root bound ofp. (See [8].)

2. R= initial rectangle with center at (0, 0) and side 2b

3. for j := 1 4 do {For each side of R)

4. (a) Obtain Pj

(b) a j : - real part of Pj

(c)/~j := imaginary part of Pj

(d) STj :-- Sturm sequence with f0 = c~j and f l = ~j
{using Euclidean algorithm)

(e) Compute the number of zeros inside R {using formula (1))

5. Return L = S e a r c h (R , S T L , F)

Figure 2. The procedure Isolate.

Procedure Search
I n p u t : A rectangle (R); a list with the four Sturm sequences (STL) and the

level of the previous rectangle (R) {for the first time, this value is 0).
O u t p u t : A list with the identification of the isolated rectangles. Each

rectangle is identified by its upper-left corner and its side length.

1. zc := the center of R

2. P5 := p(z + zc) P6 := p(iz + zc)

3. Generate Sturm sequences for this 2 transformed polynomials

4. for k := 1 4 do {for each subrectangle Rk}

(a) N := count(Rk,STLk)

(b) if N = 1 then Lk = Rk
else Lk = search(Rk,ST Lk,Fk)

5. Return concat(L1, L2, L3, L4)

Figure 3. The procedure Search.

Formula (1) can be used to count zeros inside a rectangle if there are no zeros of p(z) on
the boundary of R. But, if it occurs, what do we do? In this case, we must have a special
treatment. First, it must be verified whether there are zeros on the boundary. How to do this?
The suggestion proposed by [3] was the following. As the right side of expression (1) is an integer,
so the resultant term of that sum must be an even number. If that does not occur, it possibly due
to a loss of significant digits in the computation. In each search level, the four subrectangles must

100 M . A . O . CAMARGO BRUNETTO et al.

Procedure Count(Q,ST)
I n p u t : Rectangle Q and the four Sturm sequences associated with each side of Q.
O u t p u t : Number of zeros inside Q, and the number of zeros on Q.

1. Identify the Sturm sequences that will be used (according to the
association described before)

2. For j : 1 . . . 4 do {for each side of Q}

(a) identify the extremes of each interval (based on the suitable shifted
endpoints, according to the specific Sturm sequence used)

(b) Compute V(Sj) - V(0))

3. Return 1/2 y ~ . 4 = I (V (S j) -- V(0))

Figure 4. The procedure Count.

be checked for parity. If at least one subrectangle has that sum as an odd integer, it is assumed
that there was loss of precision, likely by the presence of a zero of p(z) on the boundary of the
subrectangle or near it. The center of the father subrectangle is shifted and the four new sums
are tested, repeating this process three times, and if still fails, return that rectangle with the
number of zeros obtained. It is important to note that this approach, despite being interesting,
may cause confusion about the zeros actually on the boundary with zeros close to the boundary.

In this work, we adopt a different strategy, that will be described in the following. For each
side j , when the Sturm sequence is generated, the last term is (not considering the sign) the
greatest common divisor (g.c.d.) of the polynomials (O~j,/~j), that we call hi. If hj is a constant,
then there are no zeros on the side j . If, on the other hand, hj has degree 1 or higher, there may
be zeros on the side, but not necessarily. If any zero lies on the side j , it means that Pmj(z) has
real zeros in the interval [o, e]. As hj =gcd(aj , /~j) and hj is not constant, if z0 is a zero of hi,
it will be a zero of aj and/3j simultaneously. In order to verify whether hj has zeros, we use
the Sturm sequence for the real case, starting with f0 --- hj and f l = h~ (first derivative of hi).
If hj does not contain zeros, the procedure continues as in the case where hj is constant. In the
opposite case, the associated side is assigned with its number of zeros (we call it bj).

As we need a boundary free of zeros, we must divide Pmj (z) by hi, in order to eliminate these
zeros. So, the Sturm sequence for this side that contains zeros must begin with f0 = (aj/hj) and

f l = (& / h ,) .
In this way, it is possible to identify how many zeros are in each boundary of the searched

rectangle. Formula (1) is then modified as follows: 4)
N = (v (S j) - V (0)) - bj

j = l

(2)

This modification introduced in the original algorithm provides an exact way to count the
number of polynomial zeros in a rectangle, which will simplify the next step of isolating the
polynomial zeros.

DATA STRUCTURE. The basic data structure used are lists. The input of the search procedure
is given by the following items:

• the northwest corner of the rectangle R;
• the length of the side of R;
• a list with the six basic Sturm sequences is kept, from which the four suitable ones will be

selected according to the current rectangle. For each Sturm sequence, we have in addition,
its level, its origin point, a sublist that is empty if there are no zeros on the associated

Algebraic Algorithm 101

boundary, and filled with a Sturm sequence for counting the zeros on that boundary. The
output of the search procedure is given by a list of isolated rectangles and a list of isolated

intervals (for the zeros found on the boundaries of some subrectangles during the search

procedure).

The search procedure is made in depth, providing in this way, a natural recursive algorithm.
Each rectangle with N > 1 must be bisected and the enumeration must be made in each sub-
rectangle. The subrectangles with no zeros are rejected and those with only one zero are stored
in a special list of isolated rectangles.

4. I M P R O V I N G THE P E R F O R M A N C E OF T H E S E A R C H

In order to save time, we introduce some improvements: for each rectangle bisected, when its
total number of zeros is obtained, the search is stopped (at that level). Let us see an example.

Considering the numeration of subrectangles adopted according to Figure 1, if a rectangle has
four zeros distributed so that two zeros are lying in Rectangle I and two others are lying in
Subrectangle II, the procedure searches only the first two subrectangles instead of all of them.

For each level, the last subrectangle has an advantage, because we can conclude previously
that the number of zeros inside it is the difference between the total of zeros of the previous level
rectangle and the total of zeros already found. This rectangle must be investigated, only if its
total number of zeros is greater than one.

When the polynomial coefficients are real, the algorithm can be simplified, taking into account
several well-known properties about this special class of polynomials. Here, real coefficients means
that there are no imaginary numbers in them (actually, the coefficients are assumed to be rational
numbers).

First, it is possible to verify if all zeros of the polynomial are reals. For this, a Sturm sequence
starting with p(z) and p~(z) is generated. If all leading coefficients are positive, then all zeros
of p(z) are real according to [9, p. 176]. In this case, the Sturm algorithm can be applied for the
real case.

Another interesting property that can be verified is the stability of a polynomial. A polynomial
is stable (or Hurwitz) when all zeros have negative real part. An efficient algorithm to verify this
condition can be found in [10]. For stable polynomials, it is necessary to search only the left side
of the y-axis, that reduces the region to be searched.

Still, if the polynomial with real coefficients has complex zeros, these occur in conjugate pairs.
Then the search is performed only in the upper half-plane.

To check the existence of zeros on the x-axis, we need only to compute V (- o c) - V(oc) for
the Sturm sequence starting with p(z) and pr(z). Similarly, the existence of roots on the y-axis
can be verified, only changing p(z) by p(iz). In this way, unnecessary polynomial evaluation is
avoided.

5. C O M P U T A T I O N A L ANALYSIS A N D N U M E R I C A L E X A M P L E S

Here we analyze the proposed algorithm and also the Collins-Krandick algorithm [4]. Theoret-
ical bounds as well as empirical results are presented. Let us consider the following notation.

b is an upper bound for the polynomial root, that is b is larger than any zero of p. We may
consider, without loss of generality, that b is a power of 2.

d is the height of p, that is the maximum coefficient (in absolute value) of the polynomial p.
L(d) is the length of d, which means the number of digits.

5.1. Complexity of the Modified Wilf Algorithm

In order to establish the worst case complexity for the proposed algorithm, the complexity
analysis of the subalgorithms will be considered.

102 M.A.O. CAMARGO BRUNETTO et al.

To obtain the cost for enumerating zeros inside a rectangle, we must take into account the
cost of Sturm sequence generation and the cost of evaluating elements of the sequence at the
endpoints of intervals.

Let n be the degree of the polynomial p and d the maximum norm of p.
The Sturm sequence generation costs at most

0 (n4L(d)2).

(here we use the primitive Sturm sequence), see [11].
The cost to evaluate a polynomial at a rational point is given by (see [ll])

o (4L(na)2).

As a Sturm sequence has at most n + 1 terms, the cost to evaluate a Sturm sequence is given
by

(n + 1) (O (n4L(nd)2)),

here we take d as the maximum norm of the last term of the Sturm sequence.
So, the total cost of the enumeration is given by

0 (nbL(nd) 2) + 0 (n4L(d)2),

which is equivalent to
0 (nbL(nd)~),

since L(nd) > L(d).
The number of bisections is bounded by O(nL(nd)), since the minimum root separation is

given by sep(p) > (1/2)(el/2n3/2d)-n and sep(p) -1 is bounded by O(nL(nd)) [11].

So isolating roots by the modified Wilf algorithm costs at most

O(nL(nd)).O (nbL(nd) 2) or 0 (n6L(nd)3) . (3)

5.2. Computational Complexity of the C o l l i n s - K r a n d i c k A l g o r i t h m

The main tool of the Collins-Krandick algorithm is the real root isolation by means of the
Modified Uspensky algorithm, which costs at most (see [12])

0 (nbL(nd)2).

After the isolation, the isolating intervals which belong to zeros of different polynomials must
be refined by bisection until they are disjoint. The worst case occurs when two equal intervals
are as large as the initial interval, and continues overlapping after several bisections, or when all
intervals are equal and need to be refined.

Let b be the upper root bound defined in [11], that is 2 l, where l = m a x l < i < n]log s an-i/an[
and d be taken as the maximum norm of the specialized polynomial.

Let e be the minimum distance between two points of an interval, in such a way that they may
be considered a single point.

The distance between the endpoints of the interval after k bisections is b- 2 -k.
The initial distance between the endpoints of a rectangle segment is given by 2b, so we have

2b < 8d.
The maximum number of bisections can be established by the relation

8d 2b

e ~.2-k'

Algebraic Algorithm 103

from which we obtain

In the bisection procedure, only half interval is considered, so the number of bisections is bounded

by

The constant e can be roughly estimated by sep(p) (see [11]). So the number of bisections is

bounded by O(nL(nd)).
Each refinement requires a bisection followed by polynomial evaluation at the middle point of

the bisected interval. Each evaluation costs at most O(n4L(nd)2), and there are k bisections. So,

the cost for refining is O(n(L(nd)).n4L(nd)2).
So, enumerating roots by Collins-Krandick costs at most

0 (nSL(nd) 2) + 0 (nSL(nd) 3) or 0 (nSL(nd)3).

As the number of bisections needed to isolate the roots is given by O(nL(nd)) (see [11]), then

the cost of the isolation is bounded by

0 (nL(nd)) 0 (nSL(nd) 3) or 0 (n6L(nd)4). (4)

5.3. Empirical Tests and Examples

The proposed algorithm was implemented in the computer algebra system Macsyma, and

several tests were executed on a Sun Sparcstation under Unix. We present here a sample of

these tests. In order to evaluate the performance of the algorithm, the enumeration phase of the

Collins-Krandick algorithm was also implemented. The estimate for the isolation process was

made by verifying the time consumed by the operations needed for one level of bisection for both

algorithms. In the following tables, t . M o d . W i l f denotes the time (in seconds) obtained in the

execution of the Modified Wilf algorithm, t .Col l ins denotes the time (in seconds) obtained in

the execution of the Collins-Krandick algorithm, rel .diff denotes the relative difference between

the two measures.

As an illustration of the performance of the algorithm devised, we present some examples of

polynomials specially constructed for testing the algorithm.

p l : 1 0 0 0 z l° - 2500z 9 - 460800z s - 9133400z 7 - 50761800z 6 - 88653100z 5 - 53510400z 4

- 37313000z a - 1971700002 - 364800000z - 198000000;

p3 : z 4 - (5 + 3i)z 3 + (6 + 7i)2 - (5 4 - 22i)z + (120 + 90i);

p4 :470832z 3 - 665857(i + 1)z 2 - 1883328iz - 2663428(1 - i);

p 5 : z 6 - 1.2z 5 + 0.04z 4 - 0.132z 3 = 0.7955z 2 - 1.43576z ÷ 0.89496;

p 6 : z 9 - 1.1zS+1.12z7-1.232z6+2.084z 5 - 2,2924z4+1.075648z 3 - 1.1832128z 2

+ 1.07910544z - 1.187015984;

p7 : 13652098z 4 - (38613965 + 38613965i)z 3 + (2i)z 2 + (-154455860 + 154455860i)z

+ 218433576.

The time consumed for enumerating zeros in the initial region for these polynomials is given
in Table 2.

104 M. A. O. CAMARGO BRUNETTO et al.

Table 2. Time consumed to enumerate zeros of the polynomials.

Polynomial t.Mod.Wilf t.Collins

pl 19.93 39.95

p2 2.47 6.67

p3 1.72 6.6
p4 1.94 4.12

p5 4.2 11.84

p6 22.5 32.85

p7 2.9 5.88

Several o ther expe r imen t s were made wi th squarefree polynomia ls , whose coefficients were ran-

d o m l y genera ted . W i t h respect to the enumera t ion process, the following resul ts were ob ta ined .

For po lynomia l s wi th real coefficients, wi th 10 b ina ry digi ts , cons ider ing degree 3 t h r o u g h 30,

the p roposed a lgo r i t hm was faster for po lynomia l s of degree 25 or less. The Co l l in s -Krand ick

a lgo r i thm was fas ter for po lynomia l s of degree grea te r t han 25. For po lynomia l s wi th complex

coefficients, it was observed t h a t the Col l ins -Krandick a lgor i thm was faster for po lynomia l s of

degree 20 or more. Table 3 shows the observed results.

Table 3. Time consumed to enumerate zeros in rectangles for the modified Will
algorithm and the Collins-Krandick algorithm.

Degree

3

4

5

6

7

10

12

15

18

19

20

21

22

25

30

Real Coef. Complex Coef.

t.Mod.Wilf t.Collins Rel.Diff. t.Mod.Wilf t.Collins Rel.Diff

1.17 3.45 1.95 1.98 5.13 1.59

1.67 5.62 2.36 2.27 6.58 1.89

2.28 7.18 2.15 3.92 11.85 2.02

4.12 11.42 1.77 5.88 16.30 1.77

5.43 15.70 1.89 9.08 23.32 1.56

15.23 39.37 1.58 28.25 60.78 1.15

28.17 65.48 1.32 59.42 98.08 0.65

76.12 127.58 0.67 148.12 189.22 0.28

174.30 238.10 0.36 330.80 356.52 0.07

224.57 283.22 0.26 423.10 428.88 0.01

275.40 357.08 0.29 536.68 504.43 -0.06

352.75 404.88 0.15 658.97 607.33 -0.07

434.38 478.75 0.10 846.58 695.35 -0.18

773.50 780.75 -0.03 1257.65 939.20 -0.29

1804.15 1520.60 -0.16

A n o t h e r in te res t ing resul t was also ob ta ined . I t regards the t ime consumed as funct ion of t he

length of the po lynomia l coefficients. Taking po lynomia l s wi th fixed degree (10) and vary ing the

length of the coefficients (3, 6, 9, 12, and 15 decimal digi ts) , it was possible to verify t h a t for

po lynomia l s wi th coefficients smal ler t han 10 dec imal digi ts , the p roposed a lgo r i thm is faster . On

the o the r hand, the Col l ins -Krand ick a lgor i thm is be t t e r for po lynomia l s wi th bigger coefficients.

(See Table 4.)

Table 4. Time consumed (in sec) according to the coefficient length.

Coefficient Length t.Mod.Wilf t.Collins
3 12.95 39.33
6 28.03 40.25

9 38.82 43.72
12 58.78 49.22
15 106.75 58.60

Algebraic Algorithm 105

The average t ime observed for the implemented algorithms shows tha t the algorithm devised
is more sensitive to the length of the coefficients. Here we note a discordance with the theoretical

results found. Perhaps it can be justified because the complexity was established for the worst
case, and as Collins and Krandick observed in [4], the t ime seemed to depend linearly on the
coefficient size. In the case of the algorithm proposed, when the polynomial degree increases,
the Sturm sequence has more terms, and the coefficients becomes larger. This justifies the low

performance for polynomials of high degree. In order to reduce this limitation, we should carry
on the research, exploring other alternatives to reduce the coefficient growth in the generation of

Sturm sequences.

6. C O N C L U S I O N S

The algorithm presented provides an improved way to isolate complex polynomial zeros. The
algebraic approach given to the algorithm, and the t reatment given to the zeros on the boundary of
a rectangle searched, made it possible to obtain results free of roundoff errors. Some optimization

procedures were added in order to deal with special polynomials in a more suitable way. The

known properties about its roots were taken into account. According to the case, subalgorithms
may be used, speeding up the enumeration process. The program implementation responds

quite effective even with ill-conditioned polynomials. The empirical tests applied provided a
performance evaluation, showing that the algorithm here developed is competit ive to the recent

work of Collins-Krandick [4]. According to the experiments, it was verified tha t for polynomials

of degree less than 20, the proposed algorithm is faster. Also, its performance is bet ter for

polynomials with small coefficients. Future research should be made in order to improve the

performance of the algorithm proposed, mainly with respect to the coefficient growth of the

Sturm sequences.

R E F E R E N C E S

1. D.M. Claudio and S.M. Rump, Inclusion methods for real and complex functions in one variable, In Berichte
des Forschungsschwerpunktes Informations und Kommunikationstechnik, Bericht 92.5, TUHH, Hamburg,
(1992).

2. J.R. Pinkert, An exact method for finding the roots of a complex polynomial, ACM Transactions on
Mathematical Software 2 (4) (December 1976).

3. H.S. Wilf, A global bisection algorithm for computing the zeros of polynomials in the complex plane, Journal
of the ACM 25 (3) (1978).

4. G.E. Collins and W, Krandick, An efficient algorithm for infallible polynomial complex root isolation, In
Proceedings of ISSAC '92, pp. 189-194, ACM, (1992).

5. M.A.O. Camargo-Brunetto, Algoritmos alg(!bricos para enumerar e isolar zeros polinomiais complexos.
Thesis submitted as requested to the doctor degree in Computer Science. U.F.R.G.S. (1994).

6. M. Marden, The geometry of the zeros of a polynomial in a complex variable, AMS Mathematical Surveys
III(1949).

7. P. Henrici, Applied and Computational Complex Analysis, Volume 1A, Wiley and Sons, (1974).
8. D. Knuth, The Art of Computer Programming, Volume $--Seminumerical Algorithms, Addison-Wesley,

(1981).
9. E.J. Barbeau, Polynomials, Springer-Verlag, (1989).

I0. V. Trevisan, Recognition of Hurwitz polynomials., SIGSAM Bulletin 24 (4) (October 1990).
Ii. G.E. Collins and C.K. Loos, Real zeros of polynomials, In Computing, Suppl., Volume 4, pp. 83-94,

Springer-Verlag, (1982).
12. W. Krandick, Isolierung reeler Nullstellen yon Polynomen, In Wissenschaftliches Rechnen, Akademie-Verlag,

Berlin, (1995).

