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Abstract--ln this paper, algorithms to enumerate and isolate complex polynomial roots are devel- 
oped, analyzed, and implemented. We modified an algorithm due to Wilf, in which Sturm sequences 
and the principle of argument are used, by employing algebraic methods, aiming to enumerate zeros 
inside a rectangle in an exact way. Several improvements are introduced, such as dealing with zeros 
on the boundary of the rectangle. The performance of this new algorithm is evaluated in a theoretical 
as well as from a practical point of view, by means of experimental tests. The robustness of the algo- 
rithm is verified by using tests with ill-conditioned polynomials. We also compare the performance of 
this algorithm with the results of a recent paper, using different polynomial classes. (~) 2000 Elsevier 
Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

There are several efficient numerical methods to compute complex polynomial roots, but  they 
are sensitive to computational errors due to the use of a iloating-pointing arithmetic. Alternative 
solutions have been proposed to minimize computational errors, such as, for example, inclusion 
methods, by means of intervals [1]. Most of the known methods to approximate polynomial 
roots require previous knowledge of isolated regions for zeros, that  is, a set of disjoint regions 
(rectangles, for example), each one containing a single root of the given polynomial. The  problem 
of isolating complex polynomial roots is closely related to the problem of enumerating polynomial 
roots. Often, the algorithms for isolating polynomial zeros require a procedure to count the 
number of roots inside a given region (enumeration). Next, the region will be bisected recursively, 
until the zeros are isolated. The resulting value of this process is an integer and numerical methods 
may fail to produce the right number. 

Pinkert [2] provided an exact method for locating complex polynomial zeros, based on Routh's  
Theorem, which determines the number of polynomial zeros lying in the upper half-plane. In 
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order to determine the number of zeros inside a rectangle, he used Sturm sequences, with suitable 
polynomial transformations (like rotation and root squaring). Another method was proposed by 
Wilf [3], with a different approach. First, he solves the problem of enumeration by means of 
Sturm sequences and the principle of argument. Then, in order to isolate the roots, he applies a 
bisection procedure. 

A problem that  appears with Wilf's procedure is that  the method requires the nonexistence 
of zeros on the boundary of the rectangle. If we are searching polynomial zeros in arbitrary 
rectangles, how to detect this condition? And still, how do we proceed if there is any zero on 

the boundary? The way proposed by Will may lead to errors due to the use of operations with 
floating-point numbers. If we work with a conventional floating-point system, what happens with 
the zeros near the boundaries? They may be taken as zeros on the boundary. 

Recently, Collins and Krandick [4] proposed an algorithm also based on the principle of ar- 
gument. Their approach avoids the use of Sturm sequences, requiring real zero isolation of 
transformed polynomials instead. 

We present here an algorithm that  is based on Will's method, but uses an algebraic approach. 
Furthermore, several improvements are added to the original algorithm, such as dealing with 
zeros on the rectangle boundary in an exact way. Optimization procedures are included to 
avoid unnecessary searches, and for special classes of polynomials, suitable subalgorithms are 

considered. 
The new algorithm developed [5] results in an efficient computer implementation that  shows 

competitiveness with existing algorithms. 
A computer program was developed in the Computer Algebra System Macsyma, and several 

tests were made on a Sun Sparcstation under Unix. The development of the algorithm as well 
as the basic data  structure are presented in Section 3. Section 4 discusses the improvements 
introduced to optimize the algorithm performance. Complexity analysis with theoretical and 
practical results are presented in Section 5. Conclusions are in Section 6. 

2. M A T H E M A T I C A L  B A S I S  

The principle of argument is perhaps the most known result used to count equation roots inside 

a close region. 

THEOREM 2.1. PRINCIPLE OF ARGUMENT. Let R be a dosed curve with boundary 6 R, e p(z) a 
nonzero polynomial over 6 R. Let A6R argp(z) be the change in the continuous function argp(z) 
when z traverses 6 R in the counterclockwise direction. Then, the number N of zeros of p(z) 
inside R, considering their multiplicities is given by 

1 
N = ~-~A~R argp(z).  

This value is an integer number and represents the winding number of image p(z) gives around 
the origin when z traverses 6R in the counterclockwise direction. For any argument function, 
tan argp(z) -- (9~p(z))/(~p(z)), where 9;p(z) is the imaginary part and ~p(z) is the real part of 
p(z). The changes in argp(z) can be obtained, counting the jumps at (~ p(z ) ) / (~  p(z)) when z 
traverses 6R. 

When p(z) crosses the imaginary axis in a counterclockwise direction, tan argp(z) jumps from 
+oo to - ~  and if this cross is in clockwise direction, the jump is from - o ¢  to +oo. The counting 
of these jumps can be made using Cauchy index. 

DEFINITION 2.1. CAUCHY INDEX. Let a/b be a rational real function and [a, 13] a real interval. 
The Cauchy index, denoted by I~p/q is given by the difference between the number of points 
E [a,~], when p/q goes from - ~  to +oo and the number of points when p/q goes from +c~ 
to -c~. 



Algebraic Algorithm 97 

Cauchy index and principle of argument are linked through the following theorem (see [6]). 

THEOREM 2.2. Let  5R : z = z (x ) ,  a <<_ x <_ B be a dosed  curve and p is a polynomial  defined 

over 5 R,  then 

A~R argp(z) = -TrI~Z-~. 

The Cauchy index can be computed by using Sturm sequences. 

DEFINITION 2.2. STURM SEQUENCE. A sequence fo, f l , . . . ,  fm  of real polynomials  is a Sturm 
sequence for a real interval [a, b] i f  the following conditions are satisfied. 

• f ,~ does not  change the sign in [a, b]. 

• For each k, so that (1 < k < m -  1) and each x* E [a, b] o f f k ( x ) ,  fk+l(X*) ,  and f k - l ( X * )  <: 

O. 

The next theorem is the tool required to compute the Cauchy indeces (see [7]). 

THEOREM 2.3. STURM THEOREM. Let  fo, f l , .  . . , fm be a S tu rm  sequence for [a, b] and let V ( x )  

be the net  sign variations through this sequence at the point  x.  Then  

I b f l ( x )  = V(a)  - V(b).  
° f-j  

3. T H E  M O D I F I E D  W I L F  A L G O R I T H M  

In this section, we modify Wilf's procedure in order to produce exact numbers for the zeros 
inside a rectangle. The main idea of Wilf is to reuse Sturm sequences so that  in each level, only 
two new sequences need to be computed. We also develop a method to detect and count the 
number of zeros on the rectangle boundary. 

Let R be a rectangle, with vertices Q1, Q2, Q3, Q4. If we enumerate the sides Si, by traversing R 
beginning at Q1 in counterclockwise direction, we have $1 : Q1Q2, $2 : Q2Q3, $3 : Q3Q4, 

$4 : Q4Q1. 
Each side of R must be mapped into the x-axis, with the lower bound at the origin. So, we 

have for each side j of the rectangle, Prnj  = p ( t j ( z ) ) ,  1 < j <<_ 4, where 

t l  = Q1 + z, t2 = Q2 + iz, t3 = Q3 - z, t4 = Q4 - iz.  

Figure 1 shows the rectangle bisected, with the four subrectangles (I, II, III, IV), and the four 
vertices (Q1, Q2, Q3, Q4). Each side is associated with a Sturm sequence. The four basic Sturm 
sequences correspond to the four sides of the rectangle, and are denoted, respectively, by ST1, 
ST2, ST3, and ST4. The two additional Sturm sequences are associated with the inner line 
segments that  compound the four subrectangles, beginning in the center of the rectangle. These 
sequences are denoted by ST5 (for the horizontal line) and ST6 (for the vertical line). 

Q4 

ST4 

ST3 Q3 

ST6 
I II 

ST5 

Ill IV 

ST2 

STI 
QI Q2 

Figure 1. The rectangle and Sturm sequences. 
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The formula for counting the number of zeros inside a rectangle R is given by 

4 
1 

N = -i ~ (V(Sj)  - V(0)), 
j----1 

where V(x) denotes the number of sign variation resulting from the evaluation of x in all terms 
of the Sturm sequence associated. 

This formula was obtained by the principle of argument and the Sturm theorem [3,6]. See 
more details in [5]. 

It is clear that for each subrectangle, it is possible to use the Sturm sequences of its ascen- 
dent rectangle, modifying the upper and lower endpoints of the associated interval, obtained by 
mapping the side of a rectangle. 

In this way, at each bisection, the four sequences previously generated are used and it is 
necessary to generate only two new Sturm sequences. Given the six Sturm sequences, we can 
combine four of them for each subrectangle. So we have, for each subrectangle, the following 
combination: 

I. ST5, ST6, ST3, ST4; 
II. ST5, ST2, ST3, ST6; 

III. ST1, ST6, ST5, ST4; 
IV. ST1, ST2, ST5, ST6. 

These associations do not change with the search level, while the interval associated with each 
Sturm sequence depends not only on the level, but also on the point that originated the rectangle 
and the previous level. Table 1 shows an example of the intervals considered in the first level of 
bisection, where L is the length of the side of the current rectangle being searched. 

Table 1. Intervals for the first level of bisection. 

Side Subrectangles 

I II III IV 

1 [-L,0] [0,L] [0,L] [L, 2L] 

2 [0, L] [L, 2L] I-L,0] [0, L] 
3 [L, 2L] [0,L] [0,-L] [L,0] 

4 [0, L] [L, 0] [L, 2L] [0, -L] 

A brief comment should be made about Sturm sequences. It is known that these sequences may 
generate expressions with very large coefficients. In fact, it is known that the coefficient growth is 
exponential on the degree of f .  There are two alternative ways to overcome this problem. Taking 
the primitive part of the terms in the sequence, the resulting polynomials are called primitive 
Sturm sequences, which assures that the coefficients generated are always integers and not large. 
Despite the additional cost to obtain the primitive part (that requires gcd computation), the 
total cost to generate the sequence decreases, since the arithmetic with integer is faster than with 
rational numbers. 

The algorithm for isolating the roots of a square-free polynomial p with integer coefficients 
is described by the procedure Iso la te  (Figure 2), which calls the procedure Search (Figure 3). 
The procedure Search does a recursive call and also uses the procedure Coun t  (Figure 4). 

Another method that divides each element of the sequence by a previously known factor, 
avoiding gcd computation, is a process called subresultant algorithm [8]. This alternative keeps 
the coefficient growth only slightly bigger than linear. 

3.1.  T h e  P r e s e n c e  o f  Zeros  o n  t he  B o u n d a r y  

A typical problem that appears in using this process is the existence of zeros on the lines that 
divide a subrectangle. 
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P r o c e d u r e  I so l a t e  
I n p u t :  p; 
O u t p u t :  L, a list of the rectangles or intervals isolating the roots. 

1. b := 2maxl<i<n la,-i/a~l 1/~ a root bound ofp.  (See [8].) 

2. R= initial rectangle with center at (0, 0) and side 2b 

3. for j := 1 . . . .  4 do {For each side of R)  

4. (a) Obtain Pj 

(b) a j  : -  real part of Pj 

(c)/~j := imaginary part of Pj 

(d) STj :-- Sturm sequence with f0 = c~j and f l  = ~j 
{using Euclidean algorithm ) 

(e) Compute the number of zeros inside R {using formula (1)) 

5. Return L = S e a r c h ( R , S T L , F )  

Figure 2. The procedure Isolate. 

Procedure  Search 
I n p u t :  A rectangle (R); a list with the four Sturm sequences (STL) and the 

level of the previous rectangle (R) {for the first time, this value is 0 ). 
O u t p u t :  A list with the identification of the isolated rectangles. Each 

rectangle is identified by its upper-left corner and its side length. 

1. zc := the center of R 

2. P5 := p(z + zc) P6 := p(iz + zc) 

3. Generate Sturm sequences for this 2 transformed polynomials 

4. for k := 1 . . . .  4 do {for each subrectangle Rk} 

(a) N := count(Rk,STLk) 

(b) if N = 1 then Lk = Rk 
else Lk = search( Rk,ST Lk,Fk ) 

5. Return concat(L1, L2, L3, L4) 

Figure 3. The procedure Search. 

Formula (1) can be used to count zeros inside a rectangle if there are no zeros of p(z) on 
the boundary of R. But, if it occurs, what do we do? In this case, we must have a special 
treatment.  First, it must be verified whether there are zeros on the boundary. How to do this? 
The suggestion proposed by [3] was the following. As the right side of expression (1) is an integer, 
so the resultant term of that  sum must be an even number. If that  does not occur, it possibly due 
to a loss of significant digits in the computation. In each search level, the four subrectangles must 



100 M . A . O .  CAMARGO BRUNETTO et  al. 

Procedure Count(Q,ST) 
I n p u t :  Rectangle Q and the four Sturm sequences associated with each side of Q. 
O u t p u t :  Number of zeros inside Q, and the number of zeros on Q. 

1. Identify the Sturm sequences that will be used (according to the 
association described before) 

2. For j : 1 . . .  4 do {for each side of Q} 

(a) identify the extremes of each interval (based on the suitable shifted 
endpoints, according to the specific Sturm sequence used) 

(b) Compute V(Sj) - V(0)) 

3. Return 1/2 y ~ . 4 = I ( V ( S j )  --  V(0)) 

Figure 4. The procedure Count.  

be checked for parity. If at least one subrectangle has that  sum as an odd integer, it is assumed 
that  there was loss of precision, likely by the presence of a zero of p(z) on the boundary of the 
subrectangle or near it. The center of the father subrectangle is shifted and the four new sums 
are tested, repeating this process three times, and if still fails, return that  rectangle with the 
number of zeros obtained. It is important to note that this approach, despite being interesting, 
may cause confusion about the zeros actually on the boundary with zeros close to the boundary. 

In this work, we adopt a different strategy, that  will be described in the following. For each 
side j ,  when the Sturm sequence is generated, the last term is (not considering the sign) the 
greatest common divisor (g.c.d.) of the polynomials (O~j,/~j), that we call hi. If hj is a constant, 
then there are no zeros on the side j .  If, on the other hand, hj has degree 1 or higher, there may 
be zeros on the side, but not necessarily. If any zero lies on the side j ,  it means that  Pmj(z) has 
real zeros in the interval [o, e]. As hj =gcd(aj , /~j)  and hj is not constant, if z0 is a zero of hi, 
it will be a zero of aj and/3j simultaneously. In order to verify whether hj has zeros, we use 
the Sturm sequence for the real case, starting with f0 --- hj and f l  = h~ (first derivative of hi). 
If hj does not contain zeros, the procedure continues as in the case where hj is constant. In the 
opposite case, the associated side is assigned with its number of zeros (we call it bj). 

As we need a boundary free of zeros, we must divide Pmj (z) by hi, in order to eliminate these 
zeros. So, the Sturm sequence for this side that  contains zeros must begin with f0 = (aj/hj) and 

f l  = ( & / h , ) .  
In this way, it is possible to identify how many zeros are in each boundary of the searched 

rectangle. Formula (1) is then modified as follows: 4) 
N = ( v  ( S j )  - V ( 0 ) )  - bj 

j = l  

(2) 

This modification introduced in the original algorithm provides an exact way to count the 
number of polynomial zeros in a rectangle, which will simplify the next step of isolating the 
polynomial zeros. 

DATA STRUCTURE. The basic data structure used are lists. The input of the search procedure 
is given by the following items: 

• the northwest corner of the rectangle R; 
• the length of the side of R; 
• a list with the six basic Sturm sequences is kept, from which the four suitable ones will be 

selected according to the current rectangle. For each Sturm sequence, we have in addition, 
its level, its origin point, a sublist that is empty if there are no zeros on the associated 
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boundary, and filled with a Sturm sequence for counting the zeros on that  boundary. The 
output  of the search procedure is given by a list of isolated rectangles and a list of isolated 

intervals (for the zeros found on the boundaries of some subrectangles during the search 

procedure). 

The search procedure is made in depth, providing in this way, a natural recursive algorithm. 
Each rectangle with N > 1 must be bisected and the enumeration must be made in each sub- 
rectangle. The subrectangles with no zeros are rejected and those with only one zero are stored 
in a special list of isolated rectangles. 

4. I M P R O V I N G  THE P E R F O R M A N C E  OF T H E  S E A R C H  

In order to save time, we introduce some improvements: for each rectangle bisected, when its 
total number of zeros is obtained, the search is stopped (at that  level). Let us see an example. 

Considering the numeration of subrectangles adopted according to Figure 1, if a rectangle has 
four zeros distributed so that  two zeros are lying in Rectangle I and two others are lying in 
Subrectangle II, the procedure searches only the first two subrectangles instead of all of them. 

For each level, the last subrectangle has an advantage, because we can conclude previously 
that  the number of zeros inside it is the difference between the total of zeros of the previous level 
rectangle and the total of zeros already found. This rectangle must be investigated, only if its 
total number of zeros is greater than one. 

When the polynomial coefficients are real, the algorithm can be simplified, taking into account 
several well-known properties about this special class of polynomials. Here, real coefficients means 
that  there are no imaginary numbers in them (actually, the coefficients are assumed to be rational 
numbers). 

First, it is possible to verify if all zeros of the polynomial are reals. For this, a Sturm sequence 
starting with p(z) and p~(z) is generated. If all leading coefficients are positive, then all zeros 
of p(z) are real according to [9, p. 176]. In this case, the Sturm algorithm can be applied for the 
real case. 

Another interesting property that  can be verified is the stability of a polynomial. A polynomial 
is stable (or Hurwitz) when all zeros have negative real part. An efficient algorithm to verify this 
condition can be found in [10]. For stable polynomials, it is necessary to search only the left side 
of the y-axis, that  reduces the region to be searched. 

Still, if the polynomial with real coefficients has complex zeros, these occur in conjugate pairs. 
Then the search is performed only in the upper half-plane. 

To check the existence of zeros on the x-axis, we need only to compute V ( - o c )  - V(oc) for 
the Sturm sequence starting with p(z) and pr(z). Similarly, the existence of roots on the y-axis 
can be verified, only changing p(z) by p(iz). In this way, unnecessary polynomial evaluation is 
avoided. 

5. C O M P U T A T I O N A L  ANALYSIS  A N D  N U M E R I C A L  E X A M P L E S  

Here we analyze the proposed algorithm and also the Collins-Krandick algorithm [4]. Theoret- 
ical bounds as well as empirical results are presented. Let us consider the following notation. 

b is an upper bound for the polynomial root, that  is b is larger than any zero of p. We may 
consider, without loss of generality, that  b is a power of 2. 

d is the height of p, that  is the maximum coefficient (in absolute value) of the polynomial p. 
L(d) is the length of d, which means the number of digits. 

5.1. Complexity  of  the Modified Wilf  Algorithm 

In order to establish the worst case complexity for the proposed algorithm, the complexity 
analysis of the subalgorithms will be considered. 
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To obtain the cost for enumerating zeros inside a rectangle, we must take into account the 
cost of Sturm sequence generation and the cost of evaluating elements of the sequence at the 
endpoints of intervals. 

Let n be the degree of the polynomial p and d the maximum norm of p. 
The Sturm sequence generation costs at most 

0 (n4L(d)2). 

(here we use the primitive Sturm sequence), see [11]. 
The cost to evaluate a polynomial at a rational point is given by (see [ll]) 

o ( 4L(na)2). 

As a Sturm sequence has at most n + 1 terms, the cost to evaluate a Sturm sequence is given 
by 

(n + 1) (O (n4L(nd)2)), 

here we take d as the maximum norm of the last term of the Sturm sequence. 
So, the total cost of the enumeration is given by 

0 (nbL(nd) 2) + 0 (n4L(d)2), 

which is equivalent to 
0 (nbL(nd)~), 

since L(nd) > L(d). 
The number of bisections is bounded by O(nL(nd)), since the minimum root separation is 

given by sep(p) > (1/2)(el/2n3/2d)-n and sep(p) -1 is bounded by O(nL(nd)) [11]. 

So isolating roots by the modified Wilf algorithm costs at most 

O(nL(nd)).O (nbL(nd) 2) or 0 (n6L(nd)3) . (3) 

5.2. Computational Complexity of the C o l l i n s - K r a n d i c k  A l g o r i t h m  

The main tool of the Collins-Krandick algorithm is the real root isolation by means of the 
Modified Uspensky algorithm, which costs at most (see [12]) 

0 (nbL(nd)2). 

After the isolation, the isolating intervals which belong to zeros of different polynomials must 
be refined by bisection until they are disjoint. The worst case occurs when two equal intervals 
are as large as the initial interval, and continues overlapping after several bisections, or when all 
intervals are equal and need to be refined. 

Let b be the upper root bound defined in [11], that  is 2 l, where l = m a x l < i <  n ]log s an-i/an[ 
and d be taken as the maximum norm of the specialized polynomial. 

Let e be the minimum distance between two points of an interval, in such a way that  they may 
be considered a single point. 

The distance between the endpoints of the interval after k bisections is b- 2 -k. 
The initial distance between the endpoints of a rectangle segment is given by 2b, so we have 

2b < 8d. 
The maximum number of bisections can be established by the relation 

8d 2b 

e ~.2-k'  
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from which we obtain 

In the bisection procedure, only half interval is considered, so the number of bisections is bounded 

by 

The constant e can be roughly estimated by sep(p) (see [11]). So the number of bisections is 

bounded by O(nL(nd)). 
Each refinement requires a bisection followed by polynomial evaluation at the middle point of 

the bisected interval. Each evaluation costs at most O(n4L(nd)2), and there are k bisections. So, 

the cost for refining is O(n(L(nd)).n4L(nd)2). 
So, enumerating roots by Collins-Krandick costs at most 

0 (nSL(nd) 2) + 0 (nSL(nd) 3) or 0 (nSL(nd)3). 

As the number of bisections needed to isolate the roots is given by O(nL(nd)) (see [11]), then 

the cost of the isolation is bounded by 

0 (nL(nd)) 0 (nSL(nd) 3) or 0 (n6L(nd)4). (4) 

5.3. Empirical Tests and Examples 

The proposed algorithm was implemented in the computer algebra system Macsyma, and 

several tests were executed on a Sun Sparcstation under Unix. We present here a sample of 

these tests. In order to evaluate the performance of the algorithm, the enumeration phase of the 

Collins-Krandick algorithm was also implemented. The estimate for the isolation process was 

made by verifying the time consumed by the operations needed for one level of bisection for both 

algorithms. In the following tables, t . M o d . W i l f  denotes the time (in seconds) obtained in the 

execution of the Modified Wilf algorithm, t .Col l ins  denotes the time (in seconds) obtained in 

the execution of the Collins-Krandick algorithm, rel .diff  denotes the relative difference between 

the two measures. 

As an illustration of the performance of the algorithm devised, we present some examples of 

polynomials specially constructed for testing the algorithm. 

p l : 1 0 0 0 z  l° - 2500z 9 - 460800z s - 9133400z 7 - 50761800z 6 - 88653100z 5 - 53510400z 4 

- 37313000z a - 1971700002 - 364800000z - 198000000; 

p3 :  z 4 - (5 + 3i)z 3 + (6 + 7i)2 - ( 5 4 -  22i)z + (120 + 90i); 

p4 :470832z  3 - 665857(i + 1)z 2 - 1883328iz - 2663428(1 - i); 

p 5 : z  6 - 1.2z 5 + 0.04z 4 - 0.132z 3 = 0.7955z 2 - 1.43576z ÷ 0.89496; 

p 6 : z  9 - 1.1zS+1.12z7-1.232z6+2.084z 5 - 2,2924z4+1.075648z 3 - 1.1832128z 2 

+ 1.07910544z - 1.187015984; 

p7 :  13652098z 4 - (38613965 + 38613965i)z 3 + (2i)z 2 + (-154455860 + 154455860i)z 

+ 218433576. 

The time consumed for enumerating zeros in the initial region for these polynomials is given 
in Table 2. 
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Table 2. Time consumed to enumerate zeros of the polynomials. 

Polynomial t.Mod.Wilf t.Collins 

pl  19.93 39.95 

p2 2.47 6.67 

p3 1.72 6.6 
p4 1.94 4.12 

p5 4.2 11.84 

p6 22.5 32.85 

p7 2.9 5.88 

Several  o ther  expe r imen t s  were made  wi th  squarefree polynomia ls ,  whose coefficients were ran-  

d o m l y  genera ted .  W i t h  respect  to the  enumera t ion  process,  the  following resul ts  were ob ta ined .  

For  po lynomia l s  wi th  real  coefficients, wi th  10 b ina ry  digi ts ,  cons ider ing degree  3 t h r o u g h  30, 

the  p roposed  a lgo r i t hm was faster  for po lynomia l s  of  degree 25 or less. The  Co l l in s -Krand ick  

a lgo r i thm was fas ter  for po lynomia l s  of degree grea te r  t han  25. For  po lynomia l s  wi th  complex  

coefficients, it  was observed t h a t  the  Col l ins -Krandick  a lgor i thm was faster  for po lynomia l s  of 

degree  20 or  more.  Table  3 shows the  observed results.  

Table 3. Time consumed to enumerate zeros in rectangles for the modified Will 
algorithm and the Collins-Krandick algorithm. 

Degree 

3 

4 

5 

6 

7 

10 

12 

15 

18 

19 

20 

21 

22 

25 

30 

Real Coef. Complex Coef. 

t.Mod.Wilf t.Collins Rel.Diff. t.Mod.Wilf t.Collins Rel.Diff 

1.17 3.45 1.95 1.98 5.13 1.59 

1.67 5.62 2.36 2.27 6.58 1.89 

2.28 7.18 2.15 3.92 11.85 2.02 

4.12 11.42 1.77 5.88 16.30 1.77 

5.43 15.70 1.89 9.08 23.32 1.56 

15.23 39.37 1.58 28.25 60.78 1.15 

28.17 65.48 1.32 59.42 98.08 0.65 

76.12 127.58 0.67 148.12 189.22 0.28 

174.30 238.10 0.36 330.80 356.52 0.07 

224.57 283.22 0.26 423.10 428.88 0.01 

275.40 357.08 0.29 536.68 504.43 -0.06 

352.75 404.88 0.15 658.97 607.33 -0.07 

434.38 478.75 0.10 846.58 695.35 -0.18 

773.50 780.75 -0.03 1257.65 939.20 -0.29 

1804.15 1520.60 -0.16 

A n o t h e r  in te res t ing  resul t  was also ob ta ined .  I t  regards  the  t ime  consumed as funct ion of t he  

length  of  the  po lynomia l  coefficients. Taking  po lynomia l s  wi th  fixed degree (10) and vary ing  the  

length  of the  coefficients (3, 6, 9, 12, and  15 decimal  digi ts) ,  it  was possible  to verify t h a t  for 

po lynomia l s  wi th  coefficients smal ler  t han  10 dec imal  digi ts ,  the  p roposed  a lgo r i thm is faster .  On  

the  o the r  hand,  the  Col l ins -Krand ick  a lgor i thm is be t t e r  for po lynomia l s  wi th  bigger  coefficients. 

(See Table  4.) 

Table 4. Time consumed (in sec) according to the coefficient length. 

Coefficient Length t.Mod.Wilf t.Collins 
3 12.95 39.33 
6 28.03 40.25 

9 38.82 43.72 
12 58.78 49.22 
15 106.75 58.60 
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The average t ime observed for the implemented algorithms shows tha t  the algorithm devised 
is more sensitive to the length of the coefficients. Here we note a discordance with the theoretical 

results found. Perhaps it can be justified because the complexity was established for the worst 
case, and as Collins and Krandick observed in [4], the t ime seemed to depend linearly on the 
coefficient size. In the case of the algorithm proposed, when the polynomial degree increases, 
the Sturm sequence has more terms, and the coefficients becomes larger. This justifies the low 

performance for polynomials of high degree. In order to reduce this limitation, we should carry 
on the research, exploring other alternatives to reduce the coefficient growth in the generation of 

Sturm sequences. 

6. C O N C L U S I O N S  

The algorithm presented provides an improved way to isolate complex polynomial zeros. The 
algebraic approach given to the algorithm, and the t reatment  given to the zeros on the boundary of 
a rectangle searched, made it possible to obtain results free of roundoff errors. Some optimization 

procedures were added in order to deal with special polynomials in a more suitable way. The 

known properties about  its roots were taken into account. According to the case, subalgorithms 
may be used, speeding up the enumeration process. The program implementation responds 

quite effective even with ill-conditioned polynomials. The empirical tests applied provided a 
performance evaluation, showing that  the algorithm here developed is competit ive to the recent 

work of Collins-Krandick [4]. According to the experiments, it was verified tha t  for polynomials 

of degree less than 20, the proposed algorithm is faster. Also, its performance is bet ter  for 

polynomials with small coefficients. Future research should be made in order to improve the 

performance of the algorithm proposed, mainly with respect to the coefficient growth of the 

Sturm sequences. 
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