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Abstract

Elastic layers bonded to reinforcing sheets are widely used in many engineering applications. While in most of the
earlier applications, these layers are reinforced using steel plates, recent studies propose to replace ‘‘rigid’’ steel reinforce-
ment with ‘‘flexible’’ fiber reinforcement to reduce both the cost and weight of the units/systems. In this study, a new
formulation is presented for the analysis of elastic layers bonded to flexible reinforcements under (i) uniform compres-
sion, (ii) pure bending and (iii) pure warping. This new formulation has some distinct advantages over the others in
literature. Since the displacement boundary conditions are included in the formulation, there is no need to start the for-
mulation with some assumptions (other than those imposed by the order of the theory) on stress and/or displacement
distributions in the layer or with some limitations on geometrical and material properties. Thus, the solutions derived
from this formulation are valid not only for ‘‘thin’’ layers of strictly or nearly incompressible materials but also for
‘‘thick’’ layers and/or compressible materials. After presenting the formulation in its most general form, with regard
to the order of the theory and shape of the layer, its applications are demonstrated by solving the governing equations
for bonded layers of infinite-strip shape using zeroth and/or first order theory. For each deformation mode, closed-form
expressions are obtained for displacement/stress distributions and effective layer modulus. The effects of three key
parameters: (i) shape factor of the layer, (ii) Poisson’s ratio of the layer material and (iii) extensibility of the reinforcing
sheets, on the layer behavior are also studied.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Bonded elastic layer; Flexible reinforcement; Compression; Bending; Warping; Shape factor; Poisson’s ratio; Galerkin method;
Rubber; Elastomeric bearing; Seismic isolation
1. Introduction

Elastic layers bonded to reinforcing sheets have long been used as suspension and support systems, com-
pression and shear mountings, and as sealing components. It is now very well known that the compres-
sion/bending stiffness of a bonded elastic layer may be several orders of magnitude greater than that of the
corresponding unbonded layer (Gent and Lindley, 1959). Despite their significant effects on the compressive
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or bending behavior, the reinforcing sheets do not influence the shear behavior of a bonded elastic layer con-
siderably. This is an important property considering that the resistance of a soft elastic layer to compression
and bending can be increased without compromising from its flexibility in shear.

Composed of several elastomer layers sandwiched between and bonded to reinforcing sheets, elastomeric
bearings have been developed using this favorable mechanical property of bonded elastic layers. In the earlier
applications, elastomeric bearings were primarily used as bridge bearings, helicopter rotor bearings, wharf
fenders and elastic foundations to machinery and motors. Recently, their applications have been extended
to seismic isolation, which is a new earthquake resistant design concept in which flexible elements are inserted
at the base of the structure to reduce the transmission of seismic force from soil to the structure. While most of
the elastomeric bearings used in seismic isolation are reinforced with steel plates, in a recent study, Kelly
(1999) proposed to replace steel reinforcement with fiber reinforcement to produce cost-effective light-weight
isolators to be used in developing countries. Since with recent technology, it is conceivable to produce fiber
materials with elastic stiffness comparable to that of steel, ‘‘it is possible to produce a fiber reinforced bearing
that matches the behavior of steel reinforced bearing (Tsai and Kelly, 2002)’’. Although the idea of replacing
the steel reinforcement with some kinds of fiber reinforcement in seismic isolation bearings is new, the viability
of the concept has already been investigated through several experimental studies (e.g., Moon et al., 2002;
Kelly, 2002; Kelly and Takhirov, 2001, 2002).

Similar to the steel-reinforced case, most of the analytical studies on fiber-reinforced bearings are conducted
on an individual elastomer layer bonded to flexible reinforcements. There is an important difference between
the analysis of these two cases: while in the analysis of a steel-reinforced elastic layer, the reinforcement is
assumed to be ‘‘rigid both in extension and flexure’’, in the analysis of a fiber-reinforced elastic layer, it is
assumed to be ‘‘flexible in extension but completely without flexure rigidity’’ (Kelly, 2002).

As reviewed in Pinarbasi et al. (2006) in detail, in the last century, many researchers (e.g., Lindley, 1979;
Gent, 1994; Horton et al., 2002) have studied the behavior of rigidly-bonded elastic layers. Most of these stud-
ies have been conducted to determine their compression stiffness. According to Kelly (1997), ‘‘the first analysis
of the compression stiffness was done using an energy approach by Rocard’’ in 1937 ‘‘and further develop-
ments were made by Gent and Lindley (1959) and Gent and Meinecke (1970)’’. These earliest studies, con-
ducted using small deformation theory, put forward three basic assumptions:

(i) horizontal plane sections remain plane after deformation,
(ii) initially vertical lateral surfaces take a parabolic shape in the deformed configuration (parabolic bulging

assumption),
(iii) state of stress at any point in the material is dominated by the hydrostatic pressure (‘‘pressure’’

assumption).

It is to be noted that these fundamental assumptions lead to the same differential equation in terms of the
‘‘pressure’’ term, which is commonly called as ‘‘pressure equation’’, even when different formulations are used.
For this reason, it is common to name all of the formulations developed based on these three fundamental
assumptions the ‘‘pressure method’’.

The effect of reinforcement extensibility on behavior of bonded elastic layers has been studied in a series of
works by disregarding the flexural rigidity of the reinforcing sheets. Kelly (1999) analyzed the compressive and
bending behavior of an infinite-strip-shaped rubber layer bonded to flexible reinforcements by using the pres-
sure method and assuming strict incompressibility. His approach was later applied to rectangular and circular
shapes by Tsai and Kelly (2001). The incompressibility assumption was released by Kelly (2002), who derived
a closed-form expression for compression modulus of infinite-strip-shaped layers for compressible materials.
The studies of Tsai (2004, 2006) are different from the study of Kelly (2002) in that Tsai further removed the
stress assumption of the pressure method in his formulation. The works by Kelly (1994) and Tsai and Kelly
(2005b) are more general than the others in the sense that they included in their formulation the ‘‘warping’’
(distortional deformations) of the reinforcing sheets (Fig. 1d), besides the compressional (Fig. 1b) and bending
(Fig. 1c) deformations of the layer (Fig. 1a). As emphasized by Tsai and Kelly (2005a), ‘‘the terminology of
warping used here is not associated with torsion; it just specifies the distortion of the cross-section created by
moment and shear’’.
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Fig. 1. Undeformed and deformed configurations for an elastic layer bonded to flexible reinforcements under uniform compression, pure
bending and pure warping (taken from Tsai and Kelly (2005b)).
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From the above review, it is clear that there are only a few studies in literature on elastic layers bonded to
extensible reinforcements, most of which have focused on the derivation of closed-form expressions for the
effective layer moduli. On the other hand, as emphasized by Gent et al. (1974), the knowledge on detailed dis-
placement/stress distributions and locations/magnitudes of critical stresses in the layer is also essential for a
rational design.

Recently, a new analytical approach was formulated by Pinarbasi et al. (2006) for linear analysis of rigidly-
bonded elastic layers under their basic deformation modes; (i) uniform compression, (ii) pure bending and (iii)
apparent shear. Developed using an approximate theory due to Mengi (1980), this new formulation has some
distinct advantages over the others in literature; it permits (i) eliminating the need for the assumptions (other
than those imposed by the order of the theory) on displacement/stress distributions in the layer, (ii) including
the material compressibility, (iii) being applicable to layers of any symmetrical shape, (iv) performing the anal-
ysis in a systematic manner and (v) being open to improvement.

In this study, the formulation proposed by Pinarbasi et al. (2006) is extended to elastic layers bonded
to extensible reinforcements. Unlike the rigid reinforcement case, the warping (distortion) of the rein-
forcements has to be considered in the flexible reinforcement case when the layer undergoes bending
or shear deformations. In this paper (for the flexible case), only the compression and bending modes
are considered; the study of the shear mode is left to a future study. It is obvious that, for the flexible
reinforcement case, the compression mode (Fig. 1b) does not involve warping while the bending mode
may be considered to be composed of two simpler modes: pure bending (Fig. 1c) and pure warping
(Fig. 1d).

In the paper, for each deformation mode, keeping the order of the theory and shape of the layer arbitrary,
the relevant equations are first presented in general forms, in view of the displacement boundary conditions at
the top and bottom faces of the layer, and the determination of displacement/stress distributions and relevant
effective modulus is discussed. The governing equations derived for this case are, then, solved for infinite-strip-
shaped layers using zeroth and/or first order theories to obtain analytical solutions for each deformation
mode. Closed form expressions derived for displacement/stress distributions and three effective moduli; com-
pression, bending and warping moduli, are later used to investigate the effects of three main parameters: (i)
aspect ratio of the layer, (ii) compressibility of the layer material and (iii) extensibility of the reinforcing sheets,
on the layer behavior.
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2. Review of the approximate theory used in the study

The new analytical approach used in this study for the analysis of elastic layers bonded to flexible reinforc-
ing sheets is developed from an approximate theory due to Mengi (1980). In this section, this approximate
theory is reviewed very briefly to introduce the notation used in the formulation; for details, Pinarbasi
et al. (2006) and Mengi (1980) may be referred to.

Formulated originally to analyze the dynamic behavior of thermoelastic plates by using a modified ver-
sion of the Galerkin Method, this approximate theory assumes that the material is isotropic and linearly
elastic and that the layer has a uniform thickness of 2h. The layer is referred to a Cartesian coordinate sys-
tem (x1 x2 x3), where the x1x3 plane coincides the mid-plane of the layer as shown in Fig. 1a. The theory
contains two types of field variables: (i) ‘‘generalized variables’’ representing the weighted averages of dis-
placements (ui, i = 1–3) and stresses (sij, i,j = 1–3) over the thickness of the layer, which are denoted respec-
tively by un

i and sn
ij where n = 0–m for the mth order theory, and (ii) ‘‘face variables’’ denoting the

components of displacements and tractions on the lateral faces of the layer, which are, respectively:
u�i ¼ uijx2¼�h and s�2i ¼ s2ijx2¼�h. The main difference of the theory due to Mengi (1980) over the others in
literature is that the inclusion of face variables as field variables in this theory eliminates any inconsistency
which may exist between displacement distributions assumed over the thickness of the layer and boundary
conditions on its flat faces.

In the development of the theory, a set of distribution functions /nð�x2Þ (n = 0,1,2,. . .; �x2 ¼ x2=hÞ is chosen.
For mth order theory, the elements /n (n =0–(m + 2)) are retained in the set. Keeping the last two elements in
the set is essential for establishing the constitutive equations for the face variables. The theory is basically com-
posed of two sets of equations. The ‘‘weighted averages of elasticity equations’’ are obtained by applying the
operator Ln ¼ 1

2h

Rþh
�h ð:Þ/ndx2, where /n (n = 0–m) are used as weighting functions, to the equilibrium and con-

stitutive equations of linear elasticity. The ‘‘constitutive equations for face variables’’ are obtained through the
expansion of displacements in terms of the distribution functions as ui ¼

Pmþ2
k¼0 ai

k/k and using it in the exact
constitutive equations of tractions on flat faces of the layer, where ai

k are some coefficients which are the func-
tions of x1 and x3. These coefficients, upon the choice of distribution functions, may be related to the field
variables of the approximate theory.

For an elastic layer bonded to reinforcing plates at its top and bottom faces, the approximate theory has the
following governing equations:

• weighted form of equilibrium equations (n = 0–m):
@1s
n
1i þ @3s

n
3i þ ðRn

i � �sn
2iÞ ¼ 0 ði ¼ 1–3Þ ð1Þ
where
Rn
i ¼

R̂n
i /nð1Þ

2h
where R̂n

i ¼
R�i ¼ sþ2i � s�2i for even n

Rþi ¼ sþ2i þ s�2i for odd n

�
ð2Þ
and
sn
ij ¼ Lnsij ðj ¼ 1–3Þ; �sn

2i ¼ �Lns2i with �Ln ¼ 1

2h

Z h

�h
ð:Þ d/n

dx2

dx2 ð3Þ
• weighted form of constitutive equations (n=0–m):
sn
11 ¼ a@1un

1 þ k@3un
3 þ kðSn

2 � �un
2Þ

sn
22 ¼ k@1un

1 þ k@3un
3 þ aðSn

2 � �un
2Þ

sn
33 ¼ a@3un

3 þ k@1un
1 þ kðSn

2 � �un
2Þ

sn
12 ¼ l@1un

2 þ lðSn
1 � �un

1Þ
sn

13 ¼ l@1un
3 þ l@3un

1

sn
23 ¼ l@3un

2 þ lðSn
3 � �un

3Þ

ð4Þ
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where
un
i ¼ Lnui; �un

i ¼ �Lnui and Sn
i ¼

Ŝn
i /nð1Þ

2h
where Ŝn

i ¼
S�i ¼ uþi � u�i for even n

Sþi ¼ uþi þ u�i for odd n

�
ði ¼ 1–3Þ ð5Þ
• constitutive equations for face variables:
Rþi ¼ lð@iS
þ
2 Þ þ

2l
h

Xp0

k¼1;3

ckuk
i þ c�S�i

 !
; R�i ¼ lð@iS

�
2 Þ þ

2l
h

Xp

k¼0;2

ckuk
i þ cþSþi

 !
ði ¼ 1; 3Þ

Rþ2 ¼ kð@1Sþ1 þ @3Sþ3 Þ þ
2a
h

Xp0

k¼1;3

ckuk
2 þ c�S�2

 !
;

R�2 ¼ kð@1S�1 þ @3S�3 Þ þ
2a
h

Xp

k¼0;2

ckuk
2 þ cþSþ2

 !
ð6Þ
In Eqs. (1)–(6), a = 2l + k, where k and l are Lamé’s constants, oi implies partial differentiation with
respect to xi, and p = m and p 0 = m � 1 for even m and p = m � 1 and p 0 = m for odd m. It is worth
mentioning that while deriving Eqs. (1)–(6), it is assumed that /n is even function of x2 for even n, and
odd function of x2 for odd n. We may also assume without loss of generality that /0n ¼

d/n
d�x2

is related to
/j through some coefficients cnj by /0n ¼

Pm
j¼0cnj/j, implying that �sn

2i and �un
i are related to sn

2i and un
i

by
ð�sn
2i; �u

n
i Þ ¼

1

h

Xm

j¼0

cnjðsj
2i; u

j
iÞ ð7Þ
The coefficients cnj and the constants cj, c± appearing in Eqs. (6) and (7) can be determined for any order of
theory whenever the distribution functions /n are chosen. The evaluation of cj and c± is based on the expan-
sion ui ¼

Pmþ2
k¼0 ai

k/k, applying to it the operator Ln and the use of constitutive equations (for the details, see
Pinarbasi et al., 2006).

3. Application of the approximate theory to elastic layers bonded to extensible reinforcements

Fig. 1a shows the undeformed configuration of an elastic layer of uniform thickness t bonded to flexible
reinforcements with equivalent thickness tf at its top and bottom faces. The deformed configurations of the
layer under three simple deformation modes: (i) uniform compression, (ii) pure bending and (iii) pure warping
are shown in Fig. 1b–d. In uniform compression mode (Fig. 1b), the layer is compressed uniformly by a uni-
axial force P such that the top and bottom reinforcements approach each other with a relative vertical dis-
placement D. In pure bending mode (Fig. 1c), the layer is purely bended by bending moments M so that
the top and bottom reinforcements remain plane and rotate with respect to each other about x3 axis with a
relative angle of rotation /. In pure warping mode (Fig. 1d), the layer is subjected to warping moments Q

so that the top and bottom reinforcements deform about x3 axis with a warping shape (±U/2)X(x1) with
no rotation from their plane.

The object in this section is to formulate and analyze each problem within the framework of the approx-
imate theory presented in the previous section. In the analyses, the layer is referred to the same rectangular
frame employed in the approximate theory. To have the most general form of the governing equations, the
reduced form of the relevant equations, in view of the displacement boundary conditions at the top and bot-
tom faces of the layer, are presented by keeping the order of the theory and shape of the cross section
arbitrary.

In the derivations and results presented in subsequent sections, the distribution functions in the approxi-
mate theory are chosen as Legendre polynomials of the first kind. For this selection, the coefficients cnj, ai

k,
cj and c± of the theory are as listed in Tables 1 and 2.



Table 1
cnj Coefficients (/n’s are Legendre polynomials)

n cnj (j = 0–m)

0 {0 0 0 0 0}
1 {1 0 0 0 0}
2 {0 3 0 0 0}
3 {1 0 5 0 0}
4 {0 3 0 7 0}

Table 2
Coefficients ai

k and constants cj, c± for the 0th, 1st and 2nd order theories (/n’s are Legendre polynomials)

m ai
k (k = 0–(m + 2)) cj (j = 0–m) c+ c�

0 fu0
i S�i =2 Sþi =2� u0

i g {–3} 3/2 1/2
1 fu0

i 3u1
i Sþi =2� u0

i S�i =2� 3u1
i g {�3 �15} 3/2 3

2 fu0
i 3u1

i 5u2
i S�i =2� 3u1

i Sþi =2� 5u2
i � u0

i g {�10 �15 �35} 5 3
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3.1. Reduced governing equations

Here, the formulations of a flexibly-bonded layer of arbitrary symmetrical section under the three basic
deformation modes shown in Fig. 1 are presented within the framework of the approximate theory discussed
in Section 2.
3.1.1. Uniform compression

From the deformed configuration shown in Fig. 1b, it is clear that the vertical displacement u2 is antisym-
metric whereas the horizontal displacements u1 and u3 are symmetric about the mid-plane of the layer. In other
words, the main characteristics of the deformation field for bonded elastic layers remain the same even when
the reinforcements are flexible (see Pinarbasi et al., 2006 for the rigid-reinforcement case). Since the distribu-
tion functions, are even functions of �x2 for even n, and odd functions of �x2 for odd n, one has
un
1 ¼ un

3 ¼ 0 and �un
2 ¼ 0 for odd n; �un

1 ¼ �un
3 ¼ 0 and un

2 ¼ 0 for even n ð8Þ
While the flexibility of the reinforcement does not affect the form of the ‘‘weighted’’ displacements, it does

affect the formulation through the ‘‘face’’ displacements, which no longer vanish as they do in the rigid-rein-
forcement case. Considering that the horizontal displacements are symmetric about the mid-plane of the layer,
the face displacements can be written in the following form:
uþ1 ¼ u�1 ; uþ3 ¼ u�3 and u�2 ¼ �
D
2

ð9Þ
Then, one has
S�1 ¼ S�3 ¼ Sþ2 ¼ 0; Sþ1 ¼ 2uþ1 ¼ 2u�1 ; Sþ3 ¼ 2uþ3 ¼ 2u�3 and S�2 ¼ �D ð10Þ
It can be inferred from Eq. (10) that when the reinforcement flexibility is included in the formulation, two
additional unknowns appear in the governing equations. Any pair from fðSþ1 ; Sþ3 Þ; ðuþ1 ; uþ3 Þ; ðu�1 ; u�3 Þg can
equally be selected as these additional unknowns. In this study, the displacements at the top face of the layer
ðuþ1 ; uþ3 Þ are used as ‘‘unknown face displacements’’.

Thus, Sn
i can be written in terms of the displacements at the top face of the layer as
Sn
i ¼

0 for even n

2uþi =t for odd n

�
for ði ¼ 1; 3Þ and Sn

2 ¼
�D=t for even n

0 for odd n

�
ð11Þ
Then, the constitutive equations for the face variables and the weighted constitutive equations have the fol-
lowing form, in terms of the unknown weighted and face displacements:
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• constitutive equations for face variables:
Rn
i ¼

4l
t2

Xp

k¼0;2

ckuk
i

 !
þ 8l

t2
cþuþi ði ¼ 1; 3Þ for even n;

Rn
2 ¼

4a
t2

Xp0

k¼1;3

ckuk
2 � c�D

 !
þ 2k

t
ð@1uþ1 þ @3uþ3 Þ for odd n

ð12Þ
• weighted constitutive equations:
sn
11 ¼ a@1un

1 þ k@3un
3 � kD

t � k�un
2

sn
22 ¼ k@1un

1 þ k@3un
3 � aD

t � a�un
2

sn
33 ¼ k@1un

1 þ a@3un
3 � kD

t � k�un
2

sn
13 ¼ l@1un

3 þ l@3un
1

9>>>=
>>>;

for even n;
sn

12 ¼ l@1un
2 � l�un

1 þ 2l
t uþ1

sn
23 ¼ l@3un

2 � l�un
3 þ

2l
t uþ3

)
for odd n ð13Þ
and other Rn
i and sn

ij being zero. Substitution of Eqs. (12) and (13) into Eq. (1) gives the following governing
equations for the unknown displacements un

i and ðuþ1 ; uþ3 Þ:
• weighted equilibrium equations:
a@11un
1 þ l@33un

1 þ ðkþ lÞ@13un
3 � k@1�un

2 þ
4l
t2

Pp
k¼0;2

ckuk
1

 !
þ 8l

t2 cþuþ1

" #
¼ �sn

21

a@33un
3 þ l@11un

3 þ ðkþ lÞ@13un
1 � k@3�un

2 þ
4l
t2

Pp
k¼0;2

ckuk
3

 !
þ 8l

t2 cþuþ3

" #
¼ �sn

23

9>>>>>=
>>>>>;

for even n

l@11un
2 þ l@33un

2 � l@1�un
1 � l@3�un

3 þ 4a
t2

Pp0
k¼1;3

ckuk
2

 !

� 4a
t2 Dc� þ 2ðkþlÞ

t ð@1uþ1 þ @3uþ3 Þ

2
664

3
775 ¼ �sn

22 for odd n

ð14Þ
where �un
i and �sn

2i are related to un
i and sn

2i by, in view of Eq. (7),
ð�un
i ;�s

n
2iÞ ¼

2

t

Xm

j¼0

cnjðuj
i ; s

j
2iÞ ð15Þ
in which sj
2i can be expressed in terms of un

i and ðuþ1 ; uþ3 Þ by Eq. (13).

Due to the appearance of ðuþ1 ; uþ3 Þ, the number of equations in Eq. (14) is not sufficient to determine all
unknowns. Two additional equations for these two additional unknown displacements come from the equilib-
rium equations written for the reinforcing sheets.

In this study only the monotonically-deformed ‘‘interior’’ bonded layers are considered (Fig. 2). The defor-
mation in a reinforcing sheet is constrained by the deformation of the elastic layers at the top and bottom of
the sheet. This constraint is accounted for approximately in the present study through the use of shear stresses
at the interfaces between the reinforcing sheet and the layers.

Internal forces on an infinitesimal area of a reinforcing sheet bonded to elastic layers at its top and bottom
surfaces are illustrated in Fig. 2, where N11 and N33 are the stretching forces per unit length in the x1 and x3

directions, N13 is the in-plane shear force per unit length and sþ21 and s�21 are bonding shear stresses. It is
assumed that the reinforcing sheet is under the influence of plane state of stress.

Equilibrium equations for the reinforcing sheet in the horizontal directions can be written as, in view of the
periodicity conditions in vertical direction for tractions and displacements (these periodicity conditions may be
viewed as the reduction of Floquet wave conditions (Brillouin, 1946) for static case),
@1N 11 þ @3N 13 ¼ sþ21 � s�21; @3N 33 þ @1N 13 ¼ sþ23 � s�23 ð16Þ



23τ + dx3

N33+dN33
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Fig. 2. Forces on an infinitesimal area of a reinforcing sheet bonded to rubber layers at its top and bottom faces (taken from Tsai and
Kelly (2001)).
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Using the linear elastic stress strain relations, internal forces N11, N33 and N13 can be expressed in terms of the
displacement components as follows:
N 11 ¼ kf ½@1uþ1 þ mf@3uþ3 �; N 33 ¼ kf ½@3uþ3 þ mf@1uþ1 �;

N 13 ¼ kf
1� mf

2

� �
½@1uþ3 þ @3uþ1 �

ð17Þ
where ‘‘in-plane stiffness of the reinforcement’’ kf is defined as
kf ¼
Ef tf

1� m2
f

ð18Þ
with Ef and mf being respectively elasticity modulus and Poisson’s ratio of the reinforcing sheet. It should be
noted that while writing Eq. (17), perfect bond is assumed between the elastic layer and flexible
reinforcements.

Substituting Eqs. (17) and (12), in view of that R�i ¼ sþ2i � s�2i ¼ tRn
i for even n, into Eq. (16), the two addi-

tional equations in terms of un
i and ðuþ1 ; uþ3 Þ can be obtained as
@11uþ1 þ
1þ mf

2
@13uþ3 þ

1� mf

2
@33uþ1 ¼

1

kf

4l
t

Xp

k¼0;2

ckuk
1

 !
þ 8l

t
cþuþ1

" #

@33uþ3 þ
1þ mf

2
@13uþ1 þ

1� mf

2
@11uþ3 ¼

1

kf

4l
t

Xp

k¼0;2

ckuk
3

 !
þ 8l

t
cþuþ3

" # ð19Þ
Eqs. (14) and (19) with Eqs. (13) and (15) comprise the reduced governing equations for the compression
problem of elastic layers bonded to flexible reinforcements.
3.1.2. Pure bending and pure warping

Bending and warping problems can be treated similarly. Since the reinforcement flexibility does not alter
the form of the weighted displacements in Eq. (8), it is sufficient to replace Eq. (9) with
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uþ1 ¼ u�1 ; uþ3 ¼ u�3 and u�2 ¼
� /

2
x1 for pure bending

� U
2
Xðx1Þ for pure warping

(
ð20Þ
for these problems. Then, one has
S�1 ¼ S�3 ¼ Sþ2 ¼ 0; Sþ1 ¼ 2uþ1 ; Sþ3 ¼ 2uþ3 ; and S�2 ¼
/x1 for pure bending

UXðx1Þ for pure warping

�
ð21Þ
Following the same procedure described for the compression problem, one can obtain the reduced form of
the governing equations for the bending and warping problems as

• weighted constitutive equations:
sn
11 ¼ a@1un

1 þ k@3un
3 � k�un

2 þ kDðx1Þ
sn

22 ¼ k@1un
1 þ k@3un

3 � a�un
2 þ aDðx1Þ

sn
33 ¼ k@1un

1 þ a@3un
3 � k�un

2 þ kDðx1Þ
sn

13 ¼ l@1un
3 þ l@3un

1

9>>>=
>>>;

for even n

sn
12 ¼ l@1un

2 � l�un
1 þ

2l
t uþ1 ; sn

23 ¼ l@3un
2 � l�un

3 þ
2l
t uþ3

�
for odd n

ð22Þ
• weighted equilibrium equations:
a@11un
1 þ l@33un

1 þ ðkþ lÞ@13un
3 � k@1�un

2 þ
4l
t2

Pp
k¼0;2

ckuk
1

 !
þ 8l

t2 cþuþ1

þðkþ lÞ@1Dðx1Þ

2
64

3
75 ¼ �sn

21

a@33un
3 þ l@11un

3 þ ðkþ lÞ@13un
1 � k@3�un

2 þ
4l
t2

Pp
k¼0;2

ckuk
3

 !
þ 8l

t2 cþuþ3

" #
¼ �sn

23

9>>>>>>>=
>>>>>>>;

for even n

l@11un
2 þ l@33un

2 � l@1�un
1 � l@3�un

3 þ 4a
t2

Pp0
k¼1;3

ckuk
2

 !

þ 2
t lþ kð Þ @1uþ1 þ @3uþ3ð Þ þ 4a

t c�Dðx1Þ

2
664

3
775 ¼ �sn

22 for odd n

ð23Þ
• additional equations coming from reinforcement equilibrium:
@11uþ1 þ
1þ mf

2
@13uþ3 þ

1� mf

2
@33uþ1 ¼

1

kf

4l
t

Xp

k¼0;2

ckuk
1

 !
þ 8l

t
cþuþ1 þ lt@1Dðx1Þ

" #

@33uþ3 þ
1þ mf

2
@13uþ1 þ

1� mf

2
@11uþ3 ¼

1

kf

4l
t

Xp

k¼0;2

ckuk
3

 !
þ 8l

t
cþuþ3

" # ð24Þ
where the ‘‘deformation function’’ D(x1) is defined as
Dðx1Þ ¼
/x1=t for pure bending

UXðx1Þ=t for pure warping

�

3.1.3. Summary: uniform compression, pure bending and pure warping

It can be recognized that the governing equations for the uniform compression case, i.e., Eqs. (13), (14) and
(19), can also be obtained from Eqs. (22)–(24) simply by using D(x1) = �D/t, and so o1D(x1) = 0. Thus, if the
‘‘deformation function’’ D(x1) is redefined to include the compression mode as in the following expression:
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Dðx1Þ ¼
�D=t for uniform compression

/x1=t for pure bending

UXðx1Þ=t for pure warping

8><
>: ð25Þ
Eqs. (22)–(25), with Eq. (15), comprise the most general form of the reduced governing equations for the anal-
ysis of elastic layers bonded to flexible reinforcements under its three basic deformation modes.

3.2. Determination of displacement/stress distributions and effective layer moduli

Eqs. (23)–(25) constitute the three sets of differential equations for the unknown weighted and face displace-
ments fun

i ; u
þ
1 ; u

þ
3 g governing the behavior of an elastic layer bonded to flexible reinforcements under the three

deformation modes shown in Fig. 1. Necessary boundary conditions for the solution of these equations are the
traction-free boundary conditions at the lateral bulge-free surfaces of the elastic layer and force-free boundary
conditions at the edges of the reinforcing sheets. Once the governing equations are solved for fun

i ; u
þ
1 ; u

þ
3 g, the

determination of displacement/stress distributions or any parameter, such as, the effective moduli of the layer,
is straightforward.

For various orders of the theory, displacement distributions ui (i = 1–3) may be computed, in terms of un
i

and S�i , or in terms of fun
i ; u

þ
1 ; u

þ
3 g in view of Eqs. (10) or (21), from,
ui ¼ u0
i þ

S�i
2

� �
2x2

t

� 	
þ Sþi

2
� u0

i

� �
6x2

2

t2 � 1
2

� �
ðm ¼ 0Þ

ui ¼ u0
i þ ð3u1

i Þ
2x2

t

� 	
þ Sþi

2
� u0

i

� �
6x2

2

t2 � 1
2

� �
þ S�i

2
� 3u1

i

� �
20x3

2

t3 �
3x2

t

� �
ðm ¼ 1Þ

ui ¼
u0

i þ ð3u1
i Þ 2x2

t

� 	
þ ð5u2

i Þ
6x2

2

t2 � 1
2

� �
þ S�i

2
� 3u1

i

� �
20x3

2

t3 � 3x2

t

� �
þ Sþi

2
� u0

i � 5u2
i

� �
70x4

2

t4 �
15x2

2

t2 þ 3
8

� �
8><
>:

9>=
>; ðm ¼ 2Þ

ð26Þ
Knowing the displacement distributions, the expressions for the stress distributions can be obtained from the
stress-displacement relations of linear elasticity.

As discussed in Pinarbasi et al. (2006), effective compression modulus Ec or effective bending modulus Eb of
a bonded elastic layer can be obtained from the following relations:
Ec ¼
rc

ec
where rc ¼

P
A

and ec ¼
D
t

ð27Þ

Eb ¼
Kb

I
and Kb ¼

M
j

with j ¼ /
t

ð28Þ
where I is the inertia moment of horizontal layer section about the bending axis. In a similar way, the effective
warping modulus Ew can be defined as
Ew ¼
Kw

J
where Kw ¼

Q
U=t

and J ¼
Z

A
X2dA ð29Þ
where Q is the resultant warping moment and J is the warping inertia (see Tsai and Kelly (2005a,b) for the
details). The resultant axial load P in Eq. (27), the resultant bending moment M in Eq. (28) or the resultant
warping moment Q in Eq. (29) can easily be obtained, using the following relations, whenever the stress dis-
tributions are determined:
ðP ;M ;QÞ ¼
ZZ
A

ð�s0
22; s

0
22x1; s

0
22XÞdA for m ¼ 0

ðP ;M ;QÞ ¼
ZZ
A

ð�s�22; s
�
22x1; s

�
22XÞdA for m ¼ 1; 2; . . .

ð30Þ
where
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s�22 ¼ k½@1uþ1 þ @3uþ3 � þ
2a
t

Xp0

k¼1;3

ckuk
2

 !
þ 2ac�Dðx1Þ ð31Þ
where D(x1) is as defined in Eq. (25). Our investigation not reported here indicated that in order to observe the
influence of the bonding behavior of elastic layer on bonding stresses s�2i, the order of the theory should be
larger than zero. For this reason, s0

22, instead of s�22, is used for m = 0 in Eq. (30), which is consistent with
the works of Tsai (2004, 2006), where an averaging process is used over the thickness of bonded elastic layer
for the evaluation of its effective moduli.
4. Application of the formulation to the infinite-strip-shaped elastic layers bonded to extensible reinforcements

Above three sets of governing equations corresponding to three simple deformation states are derived for a
bonded elastic layer of any arbitrary symmetrical shape. In this section, this formulation is applied as illustra-
tion to the analysis of ‘‘infinitely’’ long rectangular layers. For each deformation mode, governing equations
are solved for displacements, from which closed form expressions for stress distributions and relevant modulus
are derived.

In the analysis presented in the following sections, it is assumed that the length of the bonded rectangular
layer is much larger than its width 2w and thickness t. It is clear that this layer may be approximated by an
infinite-strip (IS) shaped bonded layer in a state of plane strain. Thus, for an IS-shaped layer bonded to flexible
reinforcements, the displacement along the ‘‘infinite’’ length of the layer vanishes, i.e., u3 = 0, implying that
u�3 ¼ 0. Moreover, the nonzero displacements u1, u2 and stretching of the reinforcements in the direction of
‘‘finite’’ length of the layer u�1 are independent of x3, i.e., u1 = u1(x1, x2), u2 = u2(x1, x2) and u�1 ¼ u�1 ðx1Þ.
4.1. Solutions of governing equations

4.1.1. Uniform compression

The compression problem is solved by using both the zeroth order theory (ZOT) and first order theory
(FOT). When ZOT (m = 0, p = 0 and p 0 = �1) is applied to the compression problem, one has, in view of
Eqs. (8) and (9), two unknown displacements: one weighted displacement u0

1 and one face displacement uþ1 .
The first equation for these unknowns comes from the first of Eq. (14), which in view of Eq. (15) and Tables
1 and 2, can be simplified as
@11u0
1 � b2

10½u0
1 � uþ1 � ¼ 0 where b2

10 ¼
12l
at2

ð32Þ
The equilibrium of the forces in the reinforcing sheet in x1 direction generates the second equation for the
unknown displacements. Thus, from the first of Eq. (19), in view of Table 2, one has
@11uþ1 � b2
11½uþ1 � u0

1� ¼ 0 where b2
11 ¼

12l
kf t

ð33Þ
From Eq. (32), it is clear that
½u0
1 � uþ1 � ¼ �

1

b2
10

@11u0
1 ð34Þ
Substituting Eq. (34) into Eq. (33), one obtains
@11uþ1 ¼ �
b2

11

b2
10

@11u0
1 ð35Þ
whose solution can be written, in view of that the horizontal displacement u1 is antisymmetric about x1 = 0, in
the form
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uþ1 ¼ �
b2

11

b2
10

u0
1 þ d1x1 ð36Þ
where d1 is an integration constant to be determined from the boundary conditions. Substitution of Eq. (36)
into Eq. (32) gives the following differential equation for the unknown weighted displacement u0

1:
@11u0
1 � b2

1u0
1 ¼ �b2

10d1x1 where b2
1 ¼ b2

10 þ b2
11 ð37Þ
When Eq. (37) is solved for u0
1 and then the solution is substituted into Eq. (36) to determine uþ1 , the following

expressions are obtained for the unknown displacements in terms of the two integration constants d1 and a10:
u0
1 ¼ a10 sinhðb1x1Þ þ

b2
10

b2
11

d1x1; uþ1 ¼ �
b2

11

b2
10

a10 sinhðb1x1Þ þ
b2

10

b2
11

d1x1 ð38Þ
Noting that the force displacement relations given in Eq. (17) reduce, for the simple strip case, to a single
equality: N 11 ¼ kf ð@1uþ1 Þ, the constants d1 and a10 can be related by using the force-free boundary condition at
the edges of the reinforcement, i.e., by the condition N 11jx1¼�w ¼ 0, as
d1 ¼ a10

b2
11b

3
1

b4
10

coshðb1wÞ ð39Þ
The second condition for the unknown constants comes from the stress-free boundary conditions at the lateral
faces of the layer. While the condition that s0

12jx1¼�w ¼ 0 is satisfied trivially, the condition that s0
11jx1¼�w ¼ 0

implies, in view of the first of Eq. (13) with n = 0,
½@1u0
1�x1¼�w ¼

kD
at

ð40Þ
which leads to
a10 ¼
k
a

D
t

b2
10

b2
1

1

coshðb1wÞ ð41Þ
Thus, the unknown displacements u0
1 and uþ1 can be expressed as
u0
1 ¼

k
a

D
t

b2
11

b2
1

x1 þ
b2

10

b2
11

sinhðb1x1Þ
b1 coshðb1wÞ

" #
; uþ1 ¼

k
a

D
t

b2
11

b2
1

x1 �
sinhðb1x1Þ

b1 coshðb1wÞ


 �
ð42Þ
Then, the displacements ui (i = 1,2) can be computed from the first of Eq. (26) as
u1 ¼
3
2

D
t

k
a

b2
11

b2
1

x1 þ b2
10

b2
11

sinhðb1x1Þ
b1 coshðb1wÞ

h i
1� 4x2

2

t2

� �
þ D

t
k
a

b2
11

b2
1

x1 � sinhðb1x1Þ
b1 coshðb1wÞ

h i
6x2

2

t2 � 1
2

� �
8><
>:

9>=
>;; u2 ¼ �

D
t

x2 ð43Þ
The first of Eq. (43) can be further simplified as
u1 ¼
3

2

D
t

k
a

sinhðb1x1Þ
b1 coshðb1wÞ 1� 4x2

2

t2

� �
þ D

t
k
a

b2
11

b2
1

x1 �
sinhðb1x1Þ

b1 coshðb1wÞ

� �
ð44Þ
Realizing that the second term on the right hand side of Eq. (44) equals uþ1 (see the second of Eq. (42)), one,
thus, has
u1 ¼
3

2

D
t

k
a

sinhðb1x1Þ
b1 coshðb1wÞ 1� 4x2

2

t2

� �
þ uþ1 ð45Þ
After deriving the displacement distributions, it is not difficult to derive the effective compression modulus
for the layer. Using Eq. (27), with the first of Eq. (30), one can obtain the following closed-form expression for
the compression modulus Ec:
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Ec ¼ a� k2

a
b2

10

b2
1

tanhðb1wÞ
ðb1wÞ � k2

a
b2

11

b2
1

ð46Þ
It is to be noted that for the rigid-reinforcement case, ZOT leads to the following expressions for the dis-
placements and compression modulus (Pinarbasi et al., 2006):
u1 ¼
3

2

D
t

k
a

sinhðb10x1Þ
b10 coshðb10wÞ 1� 4x2

2

t2

� �
; u2 ¼ �

D
t

x2; Ec ¼ a� k2

a
tanhðb10wÞ
ðb10wÞ ð47Þ
When Eq. (45) and the second of Eq. (43) are compared with the first and second of Eq. (47), it can be con-
cluded that the reinforcement flexibility mainly affects the horizontal displacement of the layer. An additional
displacement term appears in u1 expression. In fact, this term simply equals to the extension of the reinforce-
ment due to the tension generated by the shear stresses developed at the bonded faces of the layer. This addi-
tional term is independent of x2, i.e., it is constant through the layer thickness. It is to be noted that the
inclusion of this term in horizontal displacement in flexibly-bonded layers was used as an initial assumption
by Kelly (1999) or Tsai (2004); on the other hand, in the present formulation, this is not the assumption, but,
the natural consequence of the formulation.

As seen from Eqs. (45) and (47), compared to the rigid-reinforcement case, the inclusion of uþ1 in the expres-
sion of u1 does not constitute the only modification for the flexible-reinforcement case, but, also the parameter

b10 is to be replaced by b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

10 þ b2
11

q
for the latter case, where b11 depends on geometrical and material

properties of both the layer (l, t) and the reinforcing sheets (Ef, mf, tf).
As far as the compression modulus Ec is concerned, the expression derived using ZOT is different from that

of the pressure method (refer, e.g., to Kelly (2002)). On the other hand, it can be shown that ZOT leads to the
same expression derived by Tsai (2004), who eliminated the pressure assumption in his formulation.

Next, the compression problem is analyzed by using FOT. When the order of the theory is one (m = 1,
p = 0 and p 0 = 1), the number of the unknown displacements is three, which are u0

1, uþ1 and u1
2. It is not difficult

to show that for n = 0, the governing equations of FOT are identical with those of ZOT. Thus, the expressions
derived for u0

1 and uþ1 , i.e., Eq. (42), remain the same in FOT. Using Eq. (15) with Tables 1 and 2 for m = 1 and
recalling from ZOT that
s0
22 ¼ k@1u0

1 �
aD
t

ð48Þ
the additional variable u1
2 can be obtained from the solution of nontrivial equilibrium equation in x2 direction

for n = 1 (third of Eq. (14)), that is, from
@11u1
2 �

60a
lt2

u1
2 ¼

2

t
ðkþ lÞ

l
½@1u0

1 � @1uþ1 � þ
10aD
lt2

ð49Þ
From Eq. (42), one has, for the difference ½u0
1 � uþ1 �,
½u0
1 � uþ1 � ¼

k
a

D
t

sinhðb1x1Þ
b1 coshðb1wÞ ð50Þ
which, when inserted into Eq. (49), gives the following equation for u1
2:
@11u1
2 � b2

21u1
2 ¼

2

t
kþ l

l
k
a

D
t

coshðb1x1Þ
coshðb1wÞ þ

10aD
lt2

where b2
21 ¼

60a
lt2

ð51Þ
Necessary boundary condition for the solution of Eq. (51) comes from the condition that s1
12jx1¼�w ¼ 0, which

yields
½@1u1
2�x1¼�w ¼

2

t
½u0

1 � uþ1 �x1¼�w ð52Þ
which becomes, in view of Eq. (50),
½@1u1
2�x1¼�w ¼ �

2

t
k
a

D
t

tanhðb1wÞ
b1

ð53Þ
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Since both the differential equation derived for u1
2 and its boundary conditions in the flexible-reinforcement

case are similar to those obtained in the rigid-reinforcement case (see Pinarbasi et al. (2006) for the rigid rein-
forcement case), the solution derived for the rigid reinforcement case can be adapted to this problem. One can
show that the solution derived for u2 for the rigid-reinforcement case can be used also for the case where the
reinforcements are flexible provided that b1 is used in place of b10.

In view of the above arguments, the displacement distributions and the effective modulus of an IS-shaped
layer bonded to flexible reinforcements can be obtained as, under uniform compression,
u1 ¼
3

2

D
t

k
a

sinhðb1x1Þ
b1 coshðb1wÞ 1� 4x2

2

t2

� �
þ D

t
k
a

b2
11

b2
1

x1 �
sinhðb1x1Þ

b1 coshðb1wÞ

� �

u2 ¼ 30
t

k
a

D
t

x2

t ð1�
4x2

2

t2 Þ:
1

b1b21

tanhðb1wÞ
sinhðb21wÞ 1� lþk

l
b2

1

b2
1�b2

21

h i
coshðb21x1Þ

þ lþk
l

1
b2

1�b2
21

coshðb1x1Þ
coshðb1wÞ

8<
:

9=
;� D

t x2

2
4

3
5 ð54Þ

Ec ¼ a� k2

a
b2

10

b2
1

tanhðb1wÞ
ðb1wÞ � k2

a
b2

11

b2
1

When Eq. (54) are compared with Eqs. (43), (44) and (46), it may be seen that increasing the order of the
theory from zero to one eliminates the assumption ‘‘the plane horizontal section remains plane during defor-
mation’’, resulting in advanced solutions for the axial displacement distribution and, in turn, for the stress
distributions.
4.1.2. Pure bending

This problem is analyzed using only FOT. Recalling that D(x1) = / x1/t for the pure bending case, in the
formulation, one has, similar to the compression problem, three unknown displacements, u0

1, u1
2 and uþ1 . For

these three unknowns, two equations come from the weighted equilibrium equations: the first of Eq. (23) with
n = 0 and the third of Eq. (23) with n = 1. The third equation is obtained from the equilibrium equation writ-
ten for the reinforcing sheets: the first of Eq. (24). Two of these equations are independent of u1

2, as in the com-
pression case. Thus, u0

1 and uþ1 can be determined first.
The first of Eqs. (23) with n = 0 can be reduced, in view of Eq. (15) and Tables 1 and 2 for m = 1, to the

following equation:
@11u0
1 � b2

10 u0
1 � uþ1


 �
¼ � kþ l

a
/
t

where b2
10 ¼

12l
at2

ð55Þ
In a similar way, using the coefficients given in Table 2 for m = 1, the first of Eq. (24) can be simplified as
@11uþ1 � b2
11 uþ1 � u0

1


 �
¼ b2

11

b2
10

l
a

/
t

where b2
11 ¼

12l
kf t

ð56Þ
Eliminating the terms in the brackets in Eqs. (55) and (56) and then by integrating the resulting equation twice
in x1, the following relation can be obtained between u0

1 and uþ1 :
uþ1 ¼ �
b2

11

b2
10

u0
1 �

b2
11

b2
10

k
a

/
t

x2
1

2
þ d2 ð57Þ
where d2 is an integration constant. Unlike the compression problem, in the bending problem, u1 is symmetric
about x1 = 0. Thus, for u0

1, one has the following equation:
@11u0
1 � b2

1u0
1 ¼ b2

11

k
a

/
t

x2
1

2
� b2

10d2 �
kþ l

a
/
t

where b2
1 ¼ b2

10 þ b2
11 ð58Þ
from which one can obtain u0
1 and uþ1 , in view of Eq. (57), as
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u0
1 ¼ a11 coshðb1x1Þ �

b2
11

b2
1

k
a

/
t

x2
1

2
þ 1

b2
1

k
a

/
t

b2
10

b2
1

þ l
k

" #
þ b2

10

b2
1

d2

uþ1 ¼ �
b2

11

b2
10

a11 coshðb1x1Þ �
b2

11

b2
1

k
a

/
t

x2
1

2
� b2

11

b2
10b

2
1

k
a

/
t

b2
10

b2
1

þ l
k

" #
þ b2

10

b2
1

d2

ð59Þ
where a11 is the second integration constant to be determined from the boundary conditions. The condition
N 11jx1¼�w ¼ 0, implying ½@1uþ1 �x1¼�w ¼ 0, leads to
a11 ¼ �
b2

10

b4
1

k
a

/
t

b1w
sinhðb1wÞ ð60Þ
It should be noted that the nontrivial boundary condition at the lateral bulge-free faces of the layer for
n = 0, i.e., s0

11jx1¼�w ¼ 0, results in the same expression for a11. The remaining constant d2 can be obtained from
the condition that ½uþ1 �x1¼0 ¼ 0, which yields
d2 ¼
b2

11

b4
10

k
a

/
t

b2
10

b2
1

þ l
k

" #
� b2

11

b2
10b

2
1

k
a

/
t

b1w
sinhðb1wÞ ð61Þ
Then, u0
1 and uþ1 become
u0
1 ¼ � b2

10

b4
1

k
a

/
t

b1w
sinhðb1wÞ

b2
11

b2
10
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As already mentioned, the equation for u1
2 comes from the third of Eq. (23) with n = 1, which can be sim-

plified, in view of Eq. (15) and Tables 1 and 2 for m = 1, as
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From Eqs. (62), it follows that
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Using Eq. (64), Eq. (63) can be simplified further to
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Necessary boundary condition for the solution of Eq. (65) for u1
2 is s1

12jx1¼�w ¼ 0, which implies
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which in turn becomes, in view of Eq. (64),
½@1u1
2�x1¼�w ¼ �

2

t
k
a

/
t

w
b1 tanhðb1wÞ þ

/
6

1þ b2
10

b2
1

k
l

 !
ð67Þ
The solution of the governing equation for u1
2 in the case of flexible reinforcements is almost the same as

that derived for the rigid case (see Pinarbasi et al. (2006)) provided that b10 is replaced with b1, which yields
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where the constant a22 is to be determined from the condition in Eq. (67), which gives



S. Pinarbasi, Y. Mengi / International Journal of Solids and Structures 45 (2008) 794–820 809
a22 ¼ � 2

t
k
a

/
t

w
b1b21

cothðb1wÞ
coshðb21wÞ 1� lþ k

l
b2

1

b2
1 � b2

21

" #
þ /

6

k
l

b2
10

b2
1

1

b21 coshðb21wÞ

( )
ð69Þ
The displacement components ui and effective modulus Eb for pure bending case may be obtained from the
above expressions of u0

1, uþ1 and u1
2, in view of the second of Eqs. (26) and (28), second of Eqs. (30) and

(31). They are
u1 ¼ � 3
2

k
a

/
t

w coshðb1x1Þ
b1 sinhðb1wÞ þ 3

2
l
a

/
t

1
b2

10

1þ b2
10

b2
1

k
l

� �h i
1� 4x2

2

t2

� �
þ uþ1

u2 ¼ x2

t 1� 4x2
2

t2

� �
:
� 30

t
k
a

/
t

w
b1b21

cothðb1wÞ
coshðb21wÞ 1� lþk

l
b2

1

b2
1�b2

21

h i
sinhðb21x1Þ

þ 5/
2

k
l

b2
10

b2
1

sinhðb21x1Þ
b21 coshðb21wÞ � 30

t
k
a

/
t

lþk
l

w
b2

1�b2
21

sinhðb1x1Þ
sinhðb1wÞ

0
B@

1
CAþ /

t x1x2

8><
>:

9>=
>;

Eb ¼
a� 15ka

l

lþk
l

b2
10

b2
1�b2

21

1
ðb1wÞ2 1� b1w

tanhðb1wÞ

� �
þ 1
ðb21wÞ2

b1w
tanhðb1wÞ 1� tanhðb21wÞ

b21w

� �
2
64

3
75

þ 1
ðb21wÞ2

b2
10

b2
1

1� b1w
tanhðb1wÞ

� �
1� tanhðb21wÞ

b21w

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

� k2

a
b2

11

b2
1

1þ 3
ðb1wÞ2 1� b1w

tanhðb1wÞ

� �n o

2
6666666664

3
7777777775

ð70Þ
It is worth noting that the prediction of ZOT for Eb has the following simpler form:
Eb ¼ a� 3k2
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which reduces to the following equation when b11!1, or as b1! b10,
Eb ¼ a� 3k2

a
1

ðb10wÞ2
ðb10wÞ

tanhðb10wÞ � 1


 �
ð72Þ
which is the prediction of ZOT for Eb of an IS-shaped layer bonded to rigid surfaces.

4.1.3. Pure warping

As already mentioned, the object in this study is to investigate the behavior of bonded elastic layers under
three simple deformation modes so that the individual expressions derived for each deformation mode can
later be superposed directly to obtain closed-form expressions for the behavior of bonded elastic layers under
the combined effects of compression and bending. To simplify the analysis of layers under combined loadings,
it is desirable to make compressional, pure bending and warping deformations uncoupled from each other. As
the compressional deformation is already uncoupled from pure bending and warping deformations, to achieve
this, it is sufficient to choose the warping shape so that the resultant axial force P and bending moment M

associated with this warping deformation are zero.
Selecting the simplest cubic function, as proposed by Kelly (1994) and Tsai and Kelly (2005b), is also pos-

sible for our study since this assures that the resultant axial force on the layer is zero. In the notation of the
present formulation, this expression can be written in the following form:
XðxÞ ¼ x1

w

� �3

þ f
x1

w

� �
ð73Þ
The second condition, the condition that the resultant moment on the layer should be zero, then enables one
to compute the unknown constant f in Eq. (73). However, it can easily be realized that f cannot be determined
at the beginning of the analysis since its computation necessitates knowledge on axial stress distribution, which
can be obtained only when the analytical solutions are derived for the displacement components. For this rea-
son, in the following derivations, the constant f is kept as an unknown warping-related parameter until the
closed form expressions are obtained for the stress distributions.
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In this study, the warping problem, is analyzed using only ZOT, which involves two unknown displace-
ments u0

1 and uþ1 . Coupled differential equations for u0
1 and uþ1 can be obtained from the first of Eq. (23) with

n = 0 and the first of Eq. (24) using the relation given in Eq. (15) and the coefficients and constants given in
Tables 1 and 2 for m = 0, and recalling that D(x1) = UX(x1)/t for the warping case. In view of Eq. (73), these
equations are
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Eliminating the terms in the brackets in the above equations leads to the following equation:
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Keeping in mind that u1 is an even function of x1 and integrating Eq. (76) twice in x1, one has the following
relation between uþ1 and u0

1:
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where d2 is an integration constant to be determined from boundary and/or symmetry conditions. Substituting
Eq. (77) into Eq. (74), the governing equation for u0

1 is obtained as
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from which one can determine u0
1 and uþ1 as, in view of Eq. (77),
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where a11 is the second integration constant to be evaluated from the boundary/symmetry conditions. Similar
to the bending problem, either the force-free boundary conditions at the edges of the reinforcing sheets,
N 11jx1¼�w ¼ 0, or the stress-free boundary conditions at the lateral surfaces of the layer, s0

11jx1¼�w ¼ 0, can
be used to determine a11, both of which gives, for a11,
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The additional condition for the remaining constant d2 comes from the condition that ½uþ1 �x1¼0 ¼ 0, which
results in
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Thus, the weighted displacement u0
1 and the face displacement uþ1 become
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from which the displacement components ui (i = 1,2) are determined as, in view of the first of Eq. (26),
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Knowing the expressions for the displacement distributions, expressions for stress distributions can be
obtained from linear theory. Then, the constant f appearing in the warping function X in Eq. (73) can be deter-
mined from the condition that resultant bending moment must be zero in the layer, i.e., from the condition
M ¼
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Finally, determining Q from the first of Eq. (30) and using the relation defined in Eq. (29), one can compute
the warping modulus for an IS-shaped layer bonded to flexible reinforcements as
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4.2. Discussions

For a bonded elastic layer, there are two limiting cases with regard to the flexibility of the reinforcing sheets
to which the layer is bonded at its top and bottom faces: (i) unbonded and (ii) rigidly-bonded cases. The
behavior of a bonded elastic layer approaches to its unbonded behavior when the stiffness of the reinforcing
sheets tends to zero and approaches to its rigidly-bonded behavior when their stiffness tends to infinity.

The object in this section is to study the effect of reinforcement flexibility on compressive and bending
behavior of bonded elastic layers using the analytical solutions derived in the previous section for IS-shaped
elastic layers. To facilitate discussions, the bending behavior of the layers is studied by considering the pure
bending and pure warping cases separately. The key parameters chosen in the discussions are: kf/lt (the rigid-
ity of the reinforcing sheets relative to that of the layer), S (shape factor of the layer) and m (Poisson’s ratio of
the layer material).

4.2.1. Compressive behavior

Fig. 3a,b show the variation of compression modulus Ec with ‘‘stiffness ratio’’ k�f ¼ kf /(lt) for various Pois-
son’s ratios and two specific shape factors; S = 1, representing low shape factor (LSF) layers, and S = 30, rep-
resenting high shape factor (HSF) layers. It is to be noted that the shape factor of an IS-shaped layer with a
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thickness t and width 2w equals to S = w/t. In the plots, Ec values are normalized by the Ec values computed
for the equivalent (i.e., with the same S and m values) rigidly-reinforced layer, denoted as Ec,rigid.

As expected, Ec of an elastic layer bonded to flexible reinforcements approaches to Ec,rigid as k�f !1. While
an HSF layer attains its rigid behavior at considerably large values of k�f , especially if the layer material is
strictly or nearly incompressible, there is no need to have very large values of k�f for an LSF layer to behave
as if it were rigidly-bonded. Investigation of the behavior of the layers when k�f ffi30000 is valuable since this
value of k�f , calculated using Ef = 210 GPa, mf = 0.3, tf = 0.27 mm, t = 3 mm, l = 0.7 MPa, corresponds to a
typical value for the fiber-reinforcement commonly used in seismic isolation bearings (Kelly, 2002; Tsai and
Kelly, 2005b). From Fig. 3, it can be seen that the value of 30 000 is a sufficiently large value for the stiffness
ratio, even for the HSF layer, to use Ec,rigid instead of Ec in the analysis of layers of nearly incompressible and
compressible materials (m 6 0.499). In Fig. 3b, the curves plotted for m = 0.499 deviate from the incompressible
curves significantly if k�f is large. This clearly shows the significance of the inclusion of material compressibility
in Ec computations of HSF layers if the reinforcements are inextensible or nearly inextensible.

The graphs presented in Fig. 4 show the effect of reinforcement flexibility on lateral normal stress distribu-
tions along the centerline (x1 = 0) in an IS-shaped layer under uniform compression for S = 1 and S = 30, and
for two specific values of k�f , 30 000 and 30. The smaller k�f value, i.e., 30, is deliberately selected to be so low
since, for S = 1, reinforcement flexibility becomes effective only when k�f is considerably low (Fig. 3a). Simi-
larly, Fig. 5a,b, show shear stress distributions along the vertical section x1 = 0.9w for k�f ¼ 30. In the graphs,
stress values are normalized with respect to the uniform pressure, i.e., Ecec.

When the graphs in Fig. 4a are compared with similar graphs plotted for the rigid-reinforcement case (see
Fig. 3 in Pinarbasi et al. (2006)), it is seen that they are almost identical. This is compatible with the earlier
conclusion that the studied layers behave, under compression, as if they were rigidly-bonded when
k�f ¼ 30000. From Fig. 4, it can be observed that the lateral normal stress distributions in the LSF layer
are not affected significantly from the reinforcement flexibility even when k�f is as low as 30. On the other hand,
from the graphs plotted for S = 30, it is obvious that the effect of k�f on the HSF layer is significant: lateral
normal stress decreases considerably as k�f decreases especially if m is close to 0.5. It is to be noted that even
when k�f ¼ 30, normal stresses are constant over the layer thickness in the HSF layer.

Fig. 5a,b show that the behavior of the LSF layer is different from that of the HSF layer also with regard to
the shear stress distribution: it is linear in the HSF layer, but, can be highly nonlinear in the LSF layer espe-
cially if the layer material is compressible.

From the rigid-reinforcement case, it is known that in a bonded elastic layer subject to uniform compres-
sion, maximum stresses are experienced at some fixed locations: (s22)max at (x1 = 0, x2 = 0), (s11)max at (x1 = 0,
x2 = ±t/2) and (s12)max at (x1 = ±w, x2 = ±t/2). The effect of reinforcement flexibility on these maximum
stresses is studied by plotting their variations with k�f in Fig. 6a–c for S = 1 and 30, and for various values
of m. From Fig. 6a–c, it is observed that while the LSF layer has already reached its incompressible behavior
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when m = 0.499, the behavior of the HSF layer when m = 0.499 is considerably different than its incompressible
behavior if k�f is sufficiently large. From Fig. 6a,b, it may be observed that the main effect of the reinforcement
flexibility appears in the decrease of the magnitudes of the maximum normal stresses as k�f decreases. Com-
parison of the graphs in Fig. 6a,b also reveals that the pressure assumption, (i.e., s11=s22 = s33 = �p) is valid
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Fig. 6. Effect of reinforcement flexibility on maximum stresses in a bonded infinite-strip-shaped layer under uniform compression.
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only for the HSF layer of nearly/strictly incompressible materials bonded to nearly/strictly inextensible
reinforcements.

For the maximum shear stress (Fig. 6c), the reinforcement flexibility affects the LSF and HSF layers differ-
ently when m P 0.499: as k�f decreases, the maximum shear stress decreases in the LSF layer while it increases
in the HSF layer until a peak is reached at about k�f ¼ 4. The bonded elastic layers of compressible materials
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(m 6 0.45) start to ‘‘sense’’ the effect of the reinforcement flexibility when k�f is considerably low, approximately
k�f 6 100.
4.2.2. Bending behavior

It can be recalled from Section 4.1.2 that ZOT and FOT lead to two different expressions for bending mod-
ulus of IS-shaped layers bonded to flexible reinforcements (Eq. (71) and the third of Eqs. (70)). Fig. 7 com-
pares the predictions of ZOT (m = 0) and FOT (m = 1) for bending modulus Eb for different geometric
and material properties, showing that the predictions of both theories match in the studied range of param-
eters. Considering the complexity of the expression predicted by FOT, it seems to be practical to use the for-
mula of ZOT in the design calculations.

If the graph in Fig. 7a is compared with a similar graph plotted for the rigid-reinforcement case (see Fig. 5
in Pinarbasi et al. (2006)), it is seen that they are almost identical, showing that, as far as the bending modulus
is concerned, having a value of 30000 for the stiffness ratio is sufficient for a bonded IS-shaped layer to behave
as if it were rigidly-bonded. The comparison of Fig. 7a with Fig. 7b shows that the reduction of k�f from 30000
to 300 mainly affects HSF layers with low compressibility; Eb values for HSF layers of strictly incompressible
           a. kf/μt=30000            b. kf/μt=300
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materials (m = 0.5) decrease considerably as k�f decreases and approach the Eb values computed for nearly
incompressible materials (m = 0.499).

In design calculations, it is a common practice to represent Eb in terms of Ec. The graphs in Fig. 8 show that
the value of Ec/Eb ratio can decrease considerably due to the reinforcement flexibility especially if S and m are
also large. For this reason, taking the value of this ratio as 5, as done in practice, which is suitable only for
rigidly-bonded incompressible HSF IS-shaped layers, can significantly underestimate the true value of the
bending modulus for layers bonded to extensible reinforcements.

The graphs in Fig. 9 show the effect of the reinforcement flexibility on axial stress distributions in lateral
direction in an IS-shaped bonded elastic layer subject to pure bending for various Poisson’s ratios, two differ-
ent shape factors, 2.5 and 30 and two specific values of k�f , 30000 and 30. In the graphs, stress distributions are
plotted over their most critical sections (i.e., at x2 = 0) and stress values are normalized by SEb/.

The graphs in Fig. 9a are close to those plotted for the rigid-reinforcement case with the same S and m val-
ues. Comparison of Fig. 9a and b shows that the bending behavior of the LSF layer is close to its rigidly-rein-
forced behavior even when k�f ¼ 30, while the influence of k�f on the stress distributions in an HSF layer is
significant especially if m is close to 0.5. From the graphs in Fig. 9 with S = 30, it may be observed that the
effect of the reinforcement flexibility is very similar to the effect of the material compressibility. As k�f
decreases, s22 distributions tend to a linear distribution. From Fig. 9b (with S = 30), one can also conclude
for the bending behavior of HSF layers that the difference between the strictly incompressible and nearly
incompressible behaviors is lost as k�f decreases. In fact, this conclusion also holds for their compressive behav-
ior (see Fig. 4b with S = 30).
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The graphs in Fig. 10 show the effect of reinforcement flexibility on maximum shear stress in an IS-shaped
layer under pure bending, which are similar formwise to those of uniform compression case (see Fig. 6c).
4.2.3. Warping behavior

Since the behavior of an elastic layer bonded to extensible reinforcements under pure warping is mainly
controlled by the warping pattern of the reinforcements, it is wise to start the discussions in this section with
a study of the warping constant ‘‘f’’ (Fig. 11).

From Kelly (1994), it can be inferred that there are two limiting values for the warping constant f: fu = �3/5,
which is the value obtained for an unbonded uniform short beam, and fb = �3/7, which is the value predicted
by the pressure method for an ‘‘incompressible’’ infinite-strip-shaped layer bonded to ‘‘inextensible’’ reinforce-
ments. From Fig. 11, it is seen that f approaches fu as k�f ! 0, which holds not only for HSF but also for LSF
layers. A similar conclusion is partially valid for fb; f approaches fb when k�f !1 and m! 0.5 only if S is
sufficiently large since the pressure method is valid only for HSF layers.

To investigate the effect of reinforcement flexibility on the warping modulus Ew thoroughly, its variations
with k�f are plotted and presented in Fig. 12. In these plots, Ew values are normalized by those calculated using
a considerably high value of k�f , denoted Ew, rigid. When the graphs in Fig. 12 are compared with similar graphs
in Fig. 3, it may be observed that k�f affects Ew in the same way it affects Ec. However, the effect of the rein-
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forcement flexibility on Ew is, in general, less than its effect on Ec. For specific values of k�f , S and m, the reduc-
tion in Ec due to the reinforcement flexibility is larger than that in Ew.

5. Conclusions

This paper presents an extension of the analytical approach proposed by Pinarbasi et al. (2006) for linear
analysis of elastic layers bonded to rigid surfaces, to those bonded to flexible reinforcements. Linear behavior
of elastic layers bonded to extensible reinforcements with no flexural rigidity under three simple deformation
modes, (i) uniform compression, (ii) pure bending and (iii) pure warping, is formulated using an approximate
theory based on modified Galerkin method (Mengi, 1980). The proposed formulation improves the displace-
ment and/or stress distributions in bonded elastic layers, compared to the ones considered in literature. The
formulations existent in literature (e.g., Kelly, 1999; Tsai, 2004) involve some specific assumptions for dis-
placements and/or stresses in the layer, for example, the assumption of parabolic distribution of bulging dis-
placement over the thickness of the layer, the assumption of the pressure method for stresses, the assumption
that plane sections remain plane after the deformation, etc. On the other hand, in the present formulation, the
displacement and stress distributions in the layer are represented in terms of a linear combination of a com-
plete set of shape (base) functions, and these distributions are open to improvement by increasing the order of
the theory, that is, by increasing the number of the terms (shape functions) considered in the displacement
expansions.

In the study, the new formulation is assessed by applying it to the analysis of infinite-strip (IS) shaped elas-
tic layers bonded to extensible reinforcing sheets. Closed form expressions obtained for displacement/stress
distributions and three effective moduli, compression, bending and warping moduli, are used to investigate
the effects of three key parameters, (i) shape factor S, (ii) Poisson’s ratio m and (iii) reinforcement stiffness
kf, on behavior of bonded elastic layers. The following conclusions appear to be valid for the behavior of
IS-shaped bonded elastic layers:

• S, m and kf are the three key parameters that control the behavior of a bonded elastic layer under uniform
compression, pure bending or pure warping. They have significant effects not only on the layer stiffnesses
but also on the displacement/stress distributions and the magnitude and/or location of the maximum stres-
ses in the layer.

• The behavior of a low shape factor (LSF) layer may be considerably different from that of a high shape
factor (HSF) layer. The widely used pressure method seems to be valid only for HSF layers of incompress-
ible or nearly incompressible materials bonded to inextensible or nearly inextensible reinforcements. On the
other hand, the stress assumptions of the pressure method, which involve assuming uniform distribution for
normal stresses and linear distribution for shear stress over the thickness of the layer, are inconsistent with
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the results obtained for LSF layers. Since the normal stress distributions may be highly nonuniform over
the layer thickness in an LSF layer, the formulations that ‘‘average’’ the behavior of the layer through the
layer thickness can not give accurate solutions for LSF layers while the expressions derived using first order
theory can predict the behavior accurately.

• The behavior of a bonded elastic layer approaches asymptotically to its incompressible behavior as Pois-
son’s ratio approaches 0.5. LSF layers reach their incompressible limits at much smaller values of m. For
this reason, the behavior of an LSF layer is not influenced significantly from the existence of slight com-
pressibility (m = 0.499). On the other hand, the behavior of a slightly compressible HSF layer can be con-
siderably different from its incompressible behavior.

• The behavior of a bonded elastic layer approaches asymptotically to its rigidly-bonded behavior as the rein-
forcement stiffness tends to infinity. While an HSF layer attains its rigidly-bonded behavior at considerably
large values of kf especially if the layer material is strictly/nearly incompressible, there is no need to have
very large values of kf for an LSF layer to behave as if it were rigidly-bonded.

• In general, the reinforcement flexibility affects the behavior of a bonded elastic layer in the same way the
material compressibility does. The behavior of a bonded elastic layer approaches its unbonded behavior as
the reinforcement flexibility and/or material compressibility increases. It is important to note that the rein-
forcement flexibility also changes the effect of the material compressibility: a bonded elastic layer with a
smaller kf reaches its incompressible behavior at a smaller value of m than a layer with the same shape fac-
tor, but, with a larger kf. Similarly, a bonded elastic layer with a smaller m reaches its rigidly-bonded behav-
ior at a smaller kf value than a layer with the same shape factor, but, with a larger m.

• In design calculations, it is a common practice to represent the bending modulus of a bonded elastic layer in
terms of its compression modulus. The commonly used value of 5 for the Ec/Eb ratio is valid only for layers
of incompressible materials, high shape factors and rigid reinforcements. It is shown that the use of the
above-mentioned value for LSF layers and/or for compressible materials and/or for flexible reinforcements
may significantly underestimate the true value of the bending stiffness of the layers.
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