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Abstract 

Model simulations are becoming very important in dynamic power system analyses. However, no mathematical system can 
exactly model a physical process. Based on mathematical models of the processes and design calculations, PC programs allow 
simulation and the determination of the control system performances. This paper presents the mathematical modelling of the 
steam turbine unit, developed based on the continuity equation. This model is used to determine the simulation diagram for the 
steam turbine with high, medium and low pressure sections. Using Matlab/Simulink software facilities, have been simulated the
behaviour of the shaft torque, depending of the control valves opening, with uncertain parameters of the process, than the step 
response of the steam turbine, with load and proportional control algorithm. 
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1. Introduction 

The steam turbine convert stored energy of high pressure and high temperature steam into rotary energy, which is 
turn converted into electrical energy by the generator. Each turbine section consists of a set of a moving blades 
attached to rotor and a set of stationary vanes in which steam is accelerated to high velocity (Fig. 1).  
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Fig. 1. Steam turbine unit. 

The kinetic energy of the high velocity steam is converted into shaft torque [2,4,5,9]. A large variety of steam 
turbines have been built, with respect to the capacity, application and desired performance. To increase the thermal 
efficiency in applications, steam turbines consist of multistage steam expansion. 

2. Mathematical modelling of steam turbine unit 

In many cases, the steam turbine models are simplified, many intermediate variables are omitted and only map 
input variables to outputs as outlined in [2,3,9,10,12,13].  

In these conditions, the input-output mathematical model (the transfer function) of a steam turbine from Fig. 1 
and the expression for mechanical power developed by a turbine are based on the continuity equation: 
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where:  W is the weight of steam in turbine [kg]; V – volume of turbine [m3];  – density of steam [kg/m3];         
F – steam mass flow rate [kg/s]; t – time [sec.]. 

Assuming the flow out of the turbine to be proportional to pressure in the turbine [9]: 
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where: P – pressure of steam in the turbine [kPa]; P0 – rated pressure; F0 – rated flow out of turbine. 
With constant temperature in the turbine: 
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From equations (1)…(3), result the mathematical model: 
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and, after Laplace transform, the transfer function of a steam turbine unit: 
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where: 
PF

PVTT
0

0  is the time constant [sec.]. 

The turbine torque is proportional to the steam flow rate: 

tFktTm    (7) 

where: k is a proportional constant. 
The change in density of steam with respect to pressure P  at a given temperature may be determined from 

tables [14]. 

3. Block diagram of steam turbine configuration 

Depending on the turbine configuration, gas units consist of high pressure (HP), medium pressure (MP) and low 
pressure (LP) turbine sections (Fig. 2). A steam turbine is equipped with sets of valves: high pressure valves (HPV), 
re-heater valves (RHV) [15,17]. 
 

Fig. 2. Steam turbine configuration. 

Steam enters to the HP section through the HPV and the inlet piping. The HP exhaust steam is passed through the 
re-heater (RH). Re-heater section is a large heat exchanger, which has significant thermal capacity and steam mass 
storage. In the reheat type turbine, the steam upon leaving the HP section returns to the boiler, where is passed 
through a RH before returning to the MP section. The reheat steam flows into the MP turbine section through the 
RHV and the inlet piping. The crossover piping (CP) provides a path for the steam from MP section exhaust to the 
LP inlet.  

Based on Fig. 2 and equation (6), result the block diagram of the turbine configuration, used for simulation    
(Fig. 3), where [2,8,9,17]: 
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Fig. 3. Block diagram of steam turbine configuration. 
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The response of steam flow to a change in HPV opening exhibits a time constant THP due to the changing time to 
the HP section. Usually, )3.0...2.0(HPT  sec. The steam flow in the MP and LP sections can change only with the 
build-up of pressure in the re-heater volume. The re-heater holds a substantial amount of steam and the time 
constant is 10...5RHT  sec. The steam flows into the LP sections, associated with the crossover piping, and 
express an additional time constant 5.0LPT  sec. 

The MP and LP sections generate about (60…80) % of the total turbine power. The sum of the power fractions of 
the various turbines sections is [9,15,17]:  

1MPLPHP KKK    (11) 

If TLP << TRH, than TLP is negligible in comparison with TRH, and a simplified transfer function of the turbine 
relating perturbed values of the torque and HPV position ( HPVm ZT ) may be written as follows: 
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If the steam turbine is of a single reheat type, the transfer function may be approximated by: 
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No mathematical system can exactly model a physical process. Typically, the flow F, the pressure P, the density 
 etc. are experimentally measured and/or calculated, leading to the confidence intervals for time values and not 

just a single value: 
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The values RHnomHPnom TT ,  are called nominal values and the RHHP TT ,  are called the maximum deviations 
from the nominal values [1,6,7,11,16]. As follow, in practice, results many admissible transfer functions for this 
process, one for each possible combination of RHHP TT ,  in the given intervals.  

4. Simulation of the steam turbine configuration 

Based on block diagram of the steam turbine (Fig. 3) and used Matlab/Simulink facilities [1,6,16], result the shaft 
torque, as an output variable, depending on the control valves position, HPV and RHV, as input variables, where 
100% means fully open (Fig. 4, Fig. 5). 

 

Fig. 4. Simulink block diagram of steam turbine configuration. 

 

Fig. 5. Shaft torque to different opening positions of: (a) RHV; (b) HPV. 

The HPV position (HPV pos) modulates the steam flow through the turbine for load control during normal 
operation. The RHV with valve position (RHV pos) is normally used only for rapid control of turbine mechanical 
power in the event of an overspeed.  

Fig. 6 shows the step response of the steam turbine, described by the simplified transfer functions (12) and (13).  
Some of parameters from these relationships have exact value (for example 3.0RHK ) and some of these varies 

within a specific range of values, defining the uncertain model of the process, as follow [9,15,17]:  
 the nominal value of 5.7RHT  sec. and a range between (5…10) sec.; 
 the nominal value of 25.0HPT  sec. and a range between (0.2…0.3) sec. 

To find how variations of the parameters from the nominal model affect the process, with Matlab techniques are 
generated a number of random samples of the uncertain parameters and plot the corresponding step responses [1,16]. 

The graphics from Fig. 6 show the same type of damped step response, with similar transient performances, so, in 
order to simulate the behaviour of the steam turbine is adequate to use the transfer function from relation (13). 
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Fig. 6. Shaft torque: (a) nominal values; (b) random samples. 

It is consider that the steam turbine works with an isolated load, described by the transfer function: 
)(1 sTsH LL , and a proportional algorithm (controller), in feedback connection (Fig. 7).  

With simulation values: 12LT  sec., 5.7RHT  sec. and 3.0HPK  it is determined the values of tuning 
parameter KC, for which the speed is stable and the step response is damped or critically damped.  

Based on characteristic equation of the close-loop system and values for critical damping, any positive value, 
0CK , will lead to the stable response, and 67.00 CK , will lead to the (critically) damped stable response 

(Fig. 8).  
 

 

Fig. 7. Steam turbine closed-loop block diagram. 
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Fig. 8. Steam turbine closed-loop step response. 

5. Conclusions 

Usually, the steam turbine transfer function is characterized by two time constants. In order to analyze the 
behaviour, simulation results show that it can use a first order transfer function, despite the variation of the steam 
turbine parameters.  

Largely, the dynamic response of a steam turbine is influenced by two factors: entrained steam into high pressure 
turbine section and the storage action in the re-heater. The dynamic response of a steam turbine can be related in 
terms of changes in steam valves opening (HPV position and RHV position). 

In order to meet the active power demand, inputs to the generator (steam parameters) must be controlled, 
otherwise, the generator speed will vary. 

One of the control key refers to establish the conditions of the stable response, with steam turbine, generator and 
different type of controllers, in close-loop connection. 
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