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The recently discovered Pc(4380)+ and Pc(4450)+ states at LHCb have masses close to the D̄�∗
c and 

D̄∗�c thresholds, respectively, which suggest that they may have significant meson–baryon molecular 
components. We analyze these states in the framework of a constituent quark model which has been 
applied to a wide range of hadronic observables, being the model parameters, therefore, completely 
constrained.
The Pc(4380)+ and Pc(4450)+ are studied as molecular states composed by charmed baryons and open 
charm mesons. Several bound states with the proper binding energy are found in the D̄�∗

c and D̄∗�c

channels. We discuss the possible assignments of these states from their decay widths. Moreover, two 
more states are predicted, associated with the D̄�c and D̄∗�∗

c thresholds.
© 2016 Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

One of the most important research topics of hadron physics in the last years has been the hadron structure beyond the naive quark 
model. Already in the dawn of the quark models, Gell-Mann suggested [1] that, apart from the popular qq̄ and qqq configurations, there 
could exist multiquark structures.

Since 2003 plenty of new XYZ states were reported, being most of them candidates to multiquark configurations [2]. Among the last 
XYZ states discovered, the two charm pentaquark resonances Pc(4380)+ and Pc(4450)+ were observed by the LHCb Collaboration in the 
J/ψ p invariant mass spectrum in the �0

b → J/ψ K − p process [3]. The values of the masses and widths from a fit using Breit–Wigner 
amplitudes are M Pc(4380) = (4380 ± 8 ± 29) MeV/c2, �Pc(4380) = (205 ± 18 ± 86) MeV, M Pc(4450) = (4449.8 ± 1.7 ± 2.5) MeV/c2 and 
�Pc(4450) = (39 ± 5 ± 19) MeV.

According to the LHCb analysis the most likely angular momentum and parity values for the states are J P = 3
2

±
or J P = 5

2
±

. The 
parities of the two states are opposite with the preferred spins being 3

2 for one of the two states and 5
2 for the other.

After the report of the two P+
c structures many theoretical works appeared suggesting different explanations, ranging from hadronic 

molecules [4–10] to soliton models [11], passing through the QCD sum rules [12,13], dynamically generated resonances [14–16], the 
diquark model [17–20] and anomalous triangle singularity [20–22]. It is also fair to note that some previous papers also touched the 
topic [23–25]. A complete discussion can be found in Ref. [26]

A common characteristic of the pentaquark structures and the XYZ states is that they appear in the vicinity of a two particle threshold. 
For example, the Pc(4380)+ and Pc(4450)+ are very close to the D̄�∗

c and D̄∗�c thresholds, respectively. This fact suggests that, if there 
exist a strong enough residual interaction between the two particles, a bound state or a resonance can be formed. The structure of these 
bound states depends on the dynamics of the two particle system and this dynamics is usually model dependent. It is critical to have 
under control the strength of the residual interaction, because different structures can be produced depending on which threshold are 
involved in the dynamics of a potential bound state. For that reason, the interaction should be fully validated from the comparison against 
other experiments to avoid the generation of spurious bound states.

A model which fulfills the requirements stated above is the constituent quark model of Ref. [27], updated in Ref. [28]. The model has 
been extensively used to describe the hadron phenomenology [29–31].

The aim of this letter is to use this model to study the possible existence of charm pentaquark resonances in this energy region.
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The most natural explanation for the two pentaquark resonance is to assume a D̄(∗)�
(∗)
c molecular structure, where (∗) denotes any 

combination of D̄ (�c) or D̄∗ (�∗
c ) states. Other possible configurations like χc p, which have thresholds in this energy region, are less 

likely due to the small expected residual interaction between the two particles, since color and Goldstone boson exchange interactions 
cancel. Taken into account that the J P of the different states are not clearly determined in the experiment, it would be also interesting to 
calculate the strong decays of the pentaquark resonances, which can provide guidance to the experimentalists.

The constituent quark model of Ref. [27] is based on the assumption that the light constituent mass appears due to the sponta-
neous chiral symmetry breaking of QCD at some momentum scale. Regardless of the breaking mechanism, the simplest Lagrangian which 
describe this situation must contain chiral fields to compensate the mass term and can be expressed as [32]

L = ψ(i /∂ − M(q2)Uγ5)ψ (1)

where Uγ5 = exp(iπaλaγ5/ fπ ), πa denotes nine pseudoscalar fields (η0, �π, Ki, η8) with i =1,...,4 and M(q2) is the constituent mass. This 
constituent quark mass, which vanishes at large momenta and is frozen at low momenta at a value around 300 MeV, can be explicitly 
obtained from the theory but its theoretical behavior can be simulated by parametrizing M(q2) = mq F (q2) where mq � 300 MeV, and

F (q2) =
[

�2

�2 + q2

] 1
2

. (2)

The cut-off � fixes the chiral symmetry breaking scale.
The Goldstone boson field matrix Uγ5 can be expanded in terms of boson fields,

Uγ5 = 1 + i

fπ
γ 5λaπa − 1

2 f 2
π

πaπa + ... (3)

The first term of the expansion generates the constituent quark mass while the second gives rise to a one-boson exchange interaction 
between quarks. The main contribution of the third term comes from the two-pion exchange which has been simulated by means of a 
scalar exchange potential.

In the heavy quark sector chiral symmetry is explicitly broken and we do not need to introduce additional fields. However the chiral 
fields introduced above provide a natural way to incorporate the pion exchange interaction in the molecular dynamics.

The other two main properties of QCD (besides the chiral symmetry breaking) are confinement and asymptotic freedom. At present it 
is still unfeasible to analytically derive these properties from the QCD Lagrangian, hence we model the interaction by a phenomenological 
confinement and the one-gluon exchange potentials, the last one, following De Rujula [33], coming from the lagrangian.

Lgqq = i
√

4παs ψγμGμ
c λcψ , (4)

where λc are the SU(3) color generators and Gμ
c the gluon field.

The confinement term, which prevents from having colored hadrons, can be physically interpreted in a picture where the quark and 
the antiquark are linked by a one-dimensional color flux-tube. The spontaneous creation of light-quark pairs may give rise at same scale 
to a breakup of the color flux-tube. This can be translated into a screened potential, in such a way that the potential saturates at the same 
interquark distance, such as

V C O N(�ri j) = {−ac (1 − e−μc ri j ) + 
}( �λc
i · �λc

j) (5)

where 
 is a global constant to fit the origin of energies. Explicit expressions for all these interactions are given in Ref. [27]. In the same 
reference all the parameters of the model are detailed, additionally adapted for the heavy meson spectra in Ref. [28].

Following Ref. [29], in order to model the meson–baryon system we use a Gaussian form to describe the baryon wave function,

ψ(�pi) =
3∏

i=1

[
αib2

π

] 3
4

e− b2αi p2
i

2 , (6)

where we take the values b = 0.518 fm and αi = 1 for the nucleon wave function [29], and the scaling parameters αi for different flavors 
are obtained using the prescription of Ref. [34].

In terms of Jacobi coordinates this wave function is expressed as,

ψ =
[
ηb2

3π

] 3
4

e− b2ηP 2

6 φB(�pξ1 , �pξ2) (7)

where �P is the baryon momentum in the center of mass system and �pξ1 and �pξ2 momenta correspond to internal coordinates. The internal 
spatial wave function is written as,

φB(�pξ1 , �pξ2) =
[

2η1b2

π

] 3
4

e
−b2η1 p2

ξ1

[
3η2b2

2π

] 3
4

e
− 3

4 b2η2 p2
ξ2 (8)

To find the quark–antiquark bound states we solve the Schrödinger equation using the Gaussian Expansion Method [35] with the interac-
tion described above.

The meson–baryon interaction is derived from the qq interaction by using the Resonating Group Method (RGM), introduced by 
Wheeler [36] to study light nuclei but also widely used to study multi-quark systems [37].
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In our case, the meson baryon interaction under evaluation has a quark content Q̄ n − Q nn, where Q = c, b and n are the light quarks. 
Due to the presence of these light quarks, a complete interaction for this system must include a direct potential V D , generated by π and 
σ exchanges with no quark interchange between hadrons, and an exchange one, V E , which includes the quark rearrangement diagrams. 
These potentials can be expressed as

V D(�P ′, �P ) =
∑

i∈A; j∈B

∫
�∗

l′Am′
A
(�p′

A)�∗
l′Bm′

B
(�p′

B)V D
ij (�p′

i j, �pij)�lAmA (�p A)�lBmB (�pB)dp′
ξA

dp′
ξB

dpξA dpξB (9)

V E(�P ′, �P ) =
∑

i∈A, j∈B

∫
�∗

l′Am′
A
(�p′

A)�∗
l′Bm′

B
(�p′

B)V E
ij (�p′

i j, �pij)�lAmA (�p A)�lBmB (�pB)dp′
ξA

dp′
ξB

dpξA dpξB (10)

which gives the residual interaction between clusters and, at the same time, describes the strong decays of the potential bound states into 
the different channels like D̄(∗)�c , with direct potentials, or J/ψN , done by simple quark rearrangement driven by the quark interaction.

Exploiting the symmetries of the system there are six possible diagrams which contribute to this coupling. The V E
ij matrix elements of 

Eq. (10) corresponding to each diagram is the product of three factors

V E
ij (

�P ′, �P ) = S 〈φD̄(∗)φ
�

(∗)
c

|H O
ij |φD̄(∗)φ

�
(∗)
c

〉〈ξ S F C
D̄(∗)�

(∗)
c

|OS F C
i j |ξ S F C

D̄(∗)�
(∗)
c

〉 (11)

where S is a phase characteristic of each diagram, resulting from the permutation between fermion operators. This potential V E involves 
the same interquark interactions as the direct potentials V D , that is, π and σ interactions, plus contributions of both, the OGE and 
confinement potentials.

The coupled channel equations are solved through the Lippmann–Schwinger equation for the t matrix

tββ ′
(p, p′, E) = V ββ ′

T (p, p′, E) −
∑
β ′′

∫
dqq2 V ββ ′′

T (p,q, E)tβ ′′β ′
(q, p′, E)

q2/(2μ) − E − i0
(12)

where β specifies the quantum numbers necessary to define a partial wave in the baryon meson state and V T is the total potential, 
resulting from the sum of the direct and exchange diagrams (V D + V E ). Finding the poles of the t(�p, �p′, E) matrix we will determine the 
mass and the quantum numbers of the molecules.

The decay of the particle is calculated through the standard formula

� = 2π
E A E Bk0

M Pc

∑
J ,L

|M J ,L |2 (13)

where E A and E B are the relativistic energies of the final state hadrons D̄(∗)�c or J/ψN , M Pc is the mass of the pentaquark and k0 is the 
on-shell momentum of the system, given by,

k0 =
√

[M2
Pc

− (M A − MB)2][M2
Pc

− (M A + MB)2]
2M Pc

. (14)

To calculate the final amplitude of the process M the wave function of the molecular state is used,

M =
∞∫

0

V D̄(∗)�c→AB(k0, P )χD̄(∗)�c
(P ) P 2dP (15)

where V D̄(∗)�c→AB(k0, P ) is the potential to the final state and χD̄(∗)�c
is the pentaquark wave function.

Before presenting the results, it is relevant to remark that we use the parameters determined in Ref. [28], without further modification 
or introduction of any new one for the calculation. Besides, the calculation of uncertainties in constituent quark models is still an open 
issue. In our particular model, the parameters are fixed by fitting simultaneously a sizable number of observables and it is difficult to 
determine a χ2 for this kind of fit. Nevertheless, and taken into account the range we admit to considerer a particular observable as 
“fitted”, we estimate an uncertainty of 10% in the pentaquark binding energies.

Exploring the most interesting channels for the D̄(∗)�
(∗)
c we obtain the pentaquark candidates shown in Table 1.

We consider the D̄(∗)�(∗) thresholds, which are the only ones where a sizable residual interaction can be expected, mainly due to the 
pion exchanges. As stated above, other structures like χc1 p do not have residual interaction in our model because we do not include for 
example two gluon exchanges. The relevance of these kind of interactions is still an open question. In the mass region of the Pc (4380)+
we obtain one D̄�∗

c state with J P = 3
2

−
. Its mass is very close to the experimental one and should, in principle, be identified with 

Pc(4380)+ .
Referring to the channel D̄∗�c we found three almost-degenerated states around M = 4460 MeV/c2 with J P = 1

2
−

, 3
2

−
and 3

2
+

. The 
existence of these three degenerated states may be the origin of the uncertainty in the experimental value of J P . The energy of those 
states makes them natural candidates for the Pc(4450)+ .

Finally, if we look to the D̄�c and D̄∗�∗
c channels, we found one state in the first channel with J P = 1

2
−

and four almost-degenerated 
states around 4523 MeV/c2 with J P = 1

2
−

, 3
2

−
, 5

2
−

and 5
2

+
. The first state is around 60 MeV/c2 lower than the one found in the D̄�∗

c
channel but with different quantum numbers. The second four states are higher in energy than the Pc (4450)+ . Both may correspond to 
new pentaquark states.
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Table 1
Masses of the different molecular states.

Molecule J P I Mass (MeV/c2) B E (MeV/c2)

D̄�c
1
2

− 1
2 4320.8 0.8

D̄�∗
c

3
2

− 1
2 4385.0 1.0

D̄∗�c
1
2

− 1
2 4458.9 3.8

D̄∗�c
3
2

− 1
2 4461.3 1.4

D̄∗�c
3
2

+ 1
2 4462.7 0.01

D̄∗�∗
c

1
2

− 1
2 4519.8 7.3

D̄∗�∗
c

3
2

− 1
2 4523.3 3.9

D̄∗�∗
c

5
2

− 1
2 4524.5 2.6

D̄∗�∗
c

5
2

+ 1
2 4526.2 1.0

Table 2
Widths, in MeV, of the different molecular states.

Molecule J P I Width J/ψ p Width D̄∗�c

D̄�c
1
2

− 1
2 2.4 1.1

D̄�∗
c

3
2

− 1
2 10.0 14.7

D̄∗�c
1
2

− 1
2 5.3 63.6

D̄∗�c
3
2

− 1
2 0.8 21.2

D̄∗�c
3
2

+ 1
2 0.2 6.3

D̄∗�∗
c

1
2

− 1
2 0.9 9.9

D̄∗�∗
c

3
2

− 1
2 22.9 4.0

D̄∗�∗
c

5
2

− 1
2 0.05 3.0

D̄∗�∗
c

5
2

+ 1
2 0.05 0.8

In order to obtain a deeper insight into the structure of the pentaquarks we have studied the decay channels J/ψ p, the channel in 
which the resonances were discovered, and D̄∗�c . The corresponding widths for both channels are shown in Table 2.

The first observation that can be made from these results is that the decay width through the D̄∗�c channel is generally equal to 
or greater than the width via the J/ψ p channel. This suggests that the D̄∗�c channel is a suitable channel for studying the properties 
of these resonances. In particular, the width of the predicted D̄∗�c resonance with J P = 1

2
−

is twelve times greater through the D̄∗�c

channel than through the J/ψ p channel, being this decay a good check for the existence of the resonance.
The second observation is that the width of the D̄�∗

c J P = 3
2

−
state is too small to explain the experimental one, whereas the values 

of the widths in the D̄∗�c are more compatibles with the experiment.
Concerning the parity of the states, a molecular scenario is not the most convenient to obtain positive parity states because, being the 

D̄(∗) mesons and the �(∗)
c baryons of opposite parity, the relative angular momentum should be at least L = 1 (P-wave) which will be 

above S-waves. This is reflected in the fact that the states with positive parity in Table 1 are those with smaller binding energies. In case 
the experimental parities are confirmed, other models like the one of reference [12] could better explain the experimental data.

The authors of Ref. [16] argued that, using the spin suggested by the experimental analysis, the most likely assignment for spin parity of 
both pentaquarks are J P = ( 3

2
−
, 32

−
) or ( 3

2
−
, 52

+
) and much less likely ( 5

2
+
, 32

−
). The first combination is present in our results, although 

for the D̄∗�c J P = 3
2

−
, the experimental difficulty to measure a decay width as low as 0.8 MeV for the J/ψ p channel suggests that the 

combination ( 3
2

−
, 12

−
) could be favored by our model.

Although the two pentaquark states decaying to J/�p should have I = 1
2 , one could consider the possibility of I = 3

2 pentaquarks 
decaying to J/�Nπ through a 
. We have investigated this possibility and we did not find any such state.

Let us now compare our results with those of some other molecular models available on the literature. Roca et al. [15], using a 
coupled-channel unitary approach within the local hidden gauge formalism, found that the Pc(4450)+ is a D̄∗�c-D̄∗�∗

c molecular state 
with I = 1

2 and J P = 3
2

−
. Although it seems similar to our result, a careful analysis shows that the binding energies predicted by this 

model are on the order of 45 MeV/c2, whereas in our case the binding energies are always less than 10 MeV/c2. This is the reason why 
a second D̄∗�∗

c component appears in Ref. [15]. In any case these differences are relevant to discriminate between the two models.
Using a model of meson exchanges combined with a Bethe–Salpeter equation, He [7] investigated different molecular channels. As in 

our case, He obtained a bound state with J P = 3
2

−
spin from the D̄�∗

c interaction, consistent with the Pc(4380)+ . From the D̄∗�c channel 
a bound state with J P = 5

2
+

is produced, which can be related to the Pc(4450)+ . However, in order to obtain this last state, one has to 
move the cut-off from 1 GeV to almost 3 GeV.

Moreover, Chen et al. [5] obtained similar results to those of Ref. [15] in the framework of an OPE model, finding a D̄∗�c molecular 
state with (I = 1 , J P = 3 −

) quantum numbers and a D̄∗�∗
c molecular state with (I = 1 , J P = 5 −

) in the same mass range that the 
2 2 2 2
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observed Pc(4380)+ and Pc(4450)+ respectively. Again, the model should predict a strong residual interaction in order to lower the 
respective thresholds to the physical masses.

As a summary, our results confirm the fact that there are several states with a D̄(∗)�
(∗)
c structure in the vicinity of the masses of 

the Pc(4380)+ and Pc(4450)+ pentaquark states reported by the LHCb. However, more theoretical and experimental work is needed to 
completely clarify the nature of these states.

Acknowledgements

This work has been partially funded by MINECO under Contract No. FPA2013-47433.C2-2-P, by the Junta de Castilla y León under 
Contract No. SA041U16, by the Spanish Excellence Network on Hadronic Physics FIS2014-57026-REDT and by FPA2015-69037-REDC.

References

[1] M. Gell-Mann, Phys. Lett. 8 (1964) 214.
[2] N. Brambilla, et al., Eur. Phys. J. C - Particles and Fields 71 (2011) 1.
[3] R. Aaij, et al., LHCb, Phys. Rev. Lett. 115 (2015) 072001, arXiv:1507.03414.
[4] R. Chen, X. Liu, X.-Q. Li, S.-L. Zhu, Phys. Rev. Lett. 115 (2015) 132002, arXiv:1507.03704.
[5] R. Chen, X. Liu, S.-L. Zhu, arXiv:1601.03233, 2016.
[6] Y. Shimizu, D. Suenaga, M. Harada, Phys. Rev. D 93 (2016) 114003, arXiv:1603.02376.
[7] J. He, Phys. Lett. B 753 (2016) 547, arXiv:1507.05200.
[8] U.-G. Meißner, J.A. Oller, Phys. Lett. B 751 (2015) 59, arXiv:1507.07478.
[9] Y. Yamaguchi, E. Santopinto, arXiv:1606.08330, 2016.

[10] M.I. Eides, V.Yu. Petrov, M.V. Polyakov, Phys. Rev. D 93 (2016) 054039, arXiv:1512.00426.
[11] N.N. Scoccola, D.O. Riska, M. Rho, Phys. Rev. D 92 (2015) 051501, arXiv:1508.01172.
[12] H.-X. Chen, W. Chen, X. Liu, T.G. Steele, S.-L. Zhu, Phys. Rev. Lett. 115 (2015) 172001, arXiv:1507.03717.
[13] Z.-G. Wang, Eur. Phys. J. C 76 (2016) 70, arXiv:1508.01468.
[14] T. Uchino, W.-H. Liang, E. Oset, Eur. Phys. J. A 52 (2016) 43, arXiv:1504.05726.
[15] L. Roca, J. Nieves, E. Oset, Phys. Rev. D 92 (2015) 094003, arXiv:1507.04249.
[16] L. Roca, E. Oset, arXiv:1602.06791, 2016.
[17] L. Maiani, A.D. Polosa, V. Riquer, Phys. Lett. B 749 (2015) 289, arXiv:1507.04980.
[18] R.F. Lebed, Phys. Lett. B 749 (2015) 454, arXiv:1507.05867.
[19] V.V. Anisovich, M.A. Matveev, J. Nyiri, A.V. Sarantsev, A.N. Semenova, arXiv:1507.07652, 2015.
[20] F.-K. Guo, U.-G. Meißner, W. Wang, Z. Yang, Phys. Rev. D 92 (2015) 071502, arXiv:1507.04950.
[21] X.-H. Liu, Q. Wang, Q. Zhao, Phys. Lett. B 757 (2016) 231, arXiv:1507.05359.
[22] F.-K. Guo, U.-G. Meißner, J. Nieves, Z. Yang, arXiv:1605.05113, 2016.
[23] J.-J. Wu, R. Molina, E. Oset, B.S. Zou, Phys. Rev. Lett. 105 (2010) 232001, arXiv:1007.0573.
[24] J.-J. Wu, R. Molina, E. Oset, B.S. Zou, Phys. Rev. C 84 (2011) 015202, arXiv:1011.2399.
[25] J.-J. Wu, T.S.H. Lee, B.S. Zou, Phys. Rev. C 85 (2012) 044002, arXiv:1202.1036.
[26] H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Phys. Rep. 639 (2016) 1.
[27] J. Vijande, F. Fernandez, A. Valcarce, J. Phys. G 31 (2005) 481.
[28] J. Segovia, A. Yasser, D. Entem, F. Fernandez, Phys. Rev. D 78 (2008) 114033.
[29] A. Valcarce, H. Garcilazo, F. Fernandez, P. Gonzalez, Rep. Prog. Phys. 68 (2005) 965, arXiv:hep-ph/0502173.
[30] H. Garcilazo, A. Valcarce, F. Fernandez, Phys. Rev. C 64 (2001) 058201, arXiv:nucl-th/0109004.
[31] J. Segovia, C. Albertus, D.R. Entem, F. Fernandez, E. Hernandez, M.A. Perez-Garcia, Phys. Rev. D 84 (2011) 094029, arXiv:1107.4248.
[32] D. Diakonov, Prog. Part. Nucl. Phys. 51 (2003) 173, arXiv:hep-ph/0212026.
[33] A. De Rujula, H. Georgi, S.L. Glashow, Phys. Rev. D 12 (1975) 147, arXiv:1001.3948.
[34] U. Straub, Z.-Y. Zhang, K. Brauer, A. Faessler, S.B. Khadkikar, G. Lubeck, Nucl. Phys. A 483 (1988) 686.
[35] E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51 (2003) 223.
[36] J.A. Wheeler, Phys. Rev. 52 (1937) 1107.
[37] K. Shimizu, Rep. Prog. Phys. 52 (1989) 1.

http://refhub.elsevier.com/S0370-2693(16)30669-4/bib47656C6C4D616E6E3A313936346E6As1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib6272616D62696C6C61323030346865617679s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib4161696A3A32303135746761s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib4368656E3A323031356C6F61s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib4368656E3A32303136686568s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib5368696D697A753A32303136727264s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib48653A32303135636561s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib4D656973736E65723A323031356D7A61s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib59616D6167756368693A323031366F7465s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib45696465733A32303135647472s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib53636F63636F6C613A323031356E6961s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib4368656E3A323031356D6F61s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib57616E673A32303135657061s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib556368696E6F3A32303135756861s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib526F63613A32303135647661s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib526F63613A32303136746468s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib4D6169616E693A32303135767761s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib4C656265643A32303135746E61s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib416E69736F766963683A32303135636961s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib47756F3A32303135756D6Es1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib4C69753A32303135666561s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib47756F3A32303136626B6Cs1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib57753A323031306A79s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib57753A32303130766Bs1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib57753A323031326D64s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib4368656E32303136s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib56696A616E64653A323030346865s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib5365676F7669613A323030387A7As1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib56616C63617263653A32303035656Ds1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib47617263696C617A6F3A32303031636Bs1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib5365676F7669613A323031316467s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib4469616B6F6E6F763A323030326671s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib446552756A756C613A31393735716C6Ds1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib5374726175623A31393838676As1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib486979616D613A323030336375s1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib576865656C65723A313933377A7As1
http://refhub.elsevier.com/S0370-2693(16)30669-4/bib5368696D697A753A313938397965s1

	LHCb pentaquarks in constituent quark models
	Acknowledgements
	References


