This is a continuation of an earlier paper by the authors on generalized inverses over integral domains. The main results consist of necessary and sufficient conditions for the existence of a group inverse, a new formula for a group inverse when it exists, and necessary and sufficient conditions for the existence of a Drazin inverse. We show that a square matrix A of rank r over an integral domain \mathcal{R} has a group inverse if and only if the sum of all $r \times r$ principal minors of A is an invertible element of \mathcal{R}. We also show that the group inverse of A when it exists is a polynomial in A with coefficients from \mathcal{R}.

1. INTRODUCTION

Let \mathcal{R} be an integral domain, i.e., a commutative ring with no zero divisors and with unity. In this paper we consider matrices over \mathcal{R}, unless indicated otherwise.
Let A be an $m \times n$ matrix, and consider the Moore-Penrose equations:

1. $AGA = A$
2. $GAG = G$
3. $(AG)^T = AG$
4. $(GA)^T = GA$

where the superscript T denotes transpose. If G is an $n \times m$ matrix satisfying (1), then G is called a generalized inverse (g-inverse, l-inverse) of A. A matrix A is said to be regular if it has a g-inverse. If G satisfies (1) and (2), it is said to be a reflexive g-inverse of A, whereas it is said to be a Moore-Penrose inverse of A if it satisfies (1)-(4).

Consider the following equations applicable to square matrices:

5. $AG = GA$

\[(1^k) \quad A^k = A^{k+1}G.\]

Borrowing the definition from real matrices (see [2, Chapter 4]), for a square matrix A over an integral domain R, a matrix G over R is said to be a group inverse of A if (1), (2), and (5) are satisfied, and a matrix G over R is said to be a Drazin inverse of A if (2), (5), and (1^k) (for some positive integer k) are satisfied. We denote a group inverse of A by A^*. A matrix G over R satisfying conditions (1) and (5) is called a commuting g-inverse of A.

It is well known that over the field of real numbers a square matrix A has a group inverse if and only if $\text{Rank } A = \text{Rank } A^2$ and that every matrix has a Drazin inverse (see [2] and [4]).

The main results of this paper consist of, for a square matrix over an integral domain,

1. necessary and sufficient conditions for the existence of a group inverse,
2. a new formula for finding a group inverse when it exists, and
3. necessary and sufficient conditions for the existence of a Drazin inverse.

For the existence of a group inverse we find necessary and sufficient conditions in terms of its $r \times r$ minors akin to the results of [1] and [3].

We also generalize some results from Rao and Mitra [4, Chapter 4] for matrices over integral domains. Incidentally we give a necessary and sufficient condition for $\text{Rank } A = \text{Rank } A^2$.

Let A be an $m \times n$ matrix, and let $\alpha = \{i_1, \ldots, i_r\}$, $\beta = \{j_1, \ldots, j_r\}$ be subsets of $\{1, \ldots, m\}$ and $\{1, \ldots, n\}$, respectively. We denote by $A_{\alpha\beta}$ the submatrix of A determined by rows indexed by α and columns indexed by β.

The determinant of a square matrix A is denoted by $|A|$, and $\frac{\partial}{\partial a_{ij}} |A|$
denotes the cofactor of a_{ij} in the expansion of A. The determinantal rank (the largest nonvanishing minor) is denoted by $\rho(A)$. $C_r(A)$ is the rth compound matrix of A with rows indexed by r-element subsets of $\{1, \ldots, m\}$ and columns indexed by r-element subsets of $\{1, \ldots, n\}$. At several places in this paper, α, β, γ are assumed to be r-element subsets of $\{1, 2, \ldots, n\}$ without its being stated explicitly.

The relevant properties of A^g and $C_r(A)$ from [1] and [3] that will be used are listed below:

(i) Let A be an $m \times n$ matrix, with $\rho(A) = r$. Then

$$\rho(C_r(A)) = 1.$$ \hspace{1cm} (1.1)

See [3, Lemma 9].

(ii) Let A be an $m \times n$ matrix over the integral domain \mathbb{R} with $\rho(A) = r$. Then A is regular if and only if there exists $c^g_\alpha \in \mathbb{R}$ such that

$$\sum_{\alpha, \beta} c^g_\alpha | A^g_\beta | = 1,$$ \hspace{1cm} (1.2)

where the summation is over all r-element subsets α, β of $\{1, 2, \ldots, m\}$ and $\{1, 2, \ldots, n\}$ respectively. Furthermore, if c^g_α satisfies (1.2), then $G = (g_{ij})$ is a g-inverse of A, where

$$g_{ij} = \sum_{\alpha, \beta} c^g_\alpha \frac{\partial}{\partial a_{ij}} | A^g_\beta |.$$ \hspace{1cm} (1.3)

See [3, Theorem 8].

(iii) Let A be an $m \times n$ matrix of rank r over the integral domain \mathbb{R}. Let G be a reflexive g-inverse of A. Then for all i, j

$$e_{ij} = \sum_{\alpha, \beta} | G^g_\alpha | \frac{\partial}{\partial a_{ij}} | A^g_\beta |,$$ \hspace{1cm} (1.4)

where α, β run over all r-element subsets of $\{1, 2, \ldots, m\}$ and $\{1, 2, \ldots, n\}$ respectively. See [1, Theorem 3].

We now introduce some notation. For an $m \times n$ matrix A, let A^- be a generalized inverse of A, $\mathcal{V}(A)$ be the module generated by columns of A, and $\mathcal{B}(A)$ be the module generated by rows of A. Borrowing the notation from Rao and Mitra [4], for a matrix A,

(1) let A^-_x be a g-inverse of A with $\mathcal{V}(A^-_x) = \mathcal{V}(A)$ [equivalently $\mathcal{V}(A^-_x) \subset \mathcal{V}(A)$],
(2) let A_ρ^- be a g-inverse of A with $\mathcal{R}(A_\rho^-) = \mathcal{R}(A)$ [equivalently $\mathcal{R}(A_\rho^-) \subseteq \mathcal{R}(A)$], and

(3) let $A_{\rho\chi}^-$ be a g-inverse of A with $\mathcal{C}(A_{\rho\chi}^-) = \mathcal{C}(A)$ and $\mathcal{R}(A_{\rho\chi}^-) = \mathcal{R}(A)$ [equivalently $\mathcal{C}(A_{\rho\chi}^-) \subseteq \mathcal{C}(A)$ and $\mathcal{R}(A_{\rho\chi}^-) \subseteq \mathcal{R}(A)$].

2. EXISTENCE OF $A_{\rho\chi}^-$

Theorem 2 below gives necessary and sufficient conditions for the existence of $A_{\rho\chi}^-$. We need a crucial result (Lemma 1, below) which generalizes Lemma 4.1.1 of [4]. Let \mathbb{R} be an integral domain. We consider matrices over \mathbb{R}.

LEMMA 1. Let A, P, and Q be matrices over the integral domain \mathbb{R}. Then A has a g-inverse of the form PCQ for some C if and only if

(i) $\rho(QAP) = \rho(A)$ and

(ii) QAP is regular,

in which case C is a g-inverse of QAP. A g-inverse with the above properties is unique whenever $\rho(A) = \rho(P) = \rho(Q)$.

Proof. "Only if" part: First note that the Cauchy-Binet formula gives us that $\rho(DE) \leq \min(\rho(D), \rho(E))$. Let PCQ for some C be a g-inverse of A. Then $A = A(PCQ)A = A(PCQ)A(PCQ)A$. So $\rho(A) \leq \rho(QAP)$. Again, since $A = A(PCQ)A$, we have that $QAP = QAPCQAP$. So $\rho(QAP) \leq \rho(A)$. Thus we have (i) and (ii).

"If" part: Let C be a g-inverse of QAP. So $(QAP)C(QAP) = QAP$. Since $\rho(QAP) = \rho(A)$, we have that $\rho(A) = \rho(QA) = \rho(AP)$. If A and QA are considered as matrices over the field of quotients \mathbb{F} of \mathbb{R}, then $\rho(A) = \rho(QA)$ gives us a matrix D over \mathbb{F} such that $A = DQA$. Similarly there exists a matrix E over \mathbb{F} such that $A = APE$. Now $(QAP)C(QAP) = QAP$ gives us $APCQA = DQPCQAPE = DQA = A$. So we are done.

A similar argument gives the uniqueness also (see the last part of the proof of Lemma 4.1.1 of [4]).

THEOREM 2. The following statements are equivalent for a square matrix A:

(i) A_χ^- exists.

(ii) A_ρ^- exists.

(iii) $A_{\rho\chi}^-$ exists.
(iv) $\rho(A) = \rho(A^2)$ and A^2 is regular.
(v) $\rho(A) = \rho(A^2)$ and A^3 is regular.
(vi) $\rho(A) = \rho(A^3)$ and A^3 is regular.

Proof. (i) \Rightarrow (iv) follows from Lemma 1 by taking $P = A$ and $Q = I$.
(iv) \Rightarrow (v): Let us verify that $(A^2)^-A(A^2)^-$ is a g-inverse of A^3. Since $\rho(A) = \rho(A^2)$, there exists a matrix E over the quotient field of F such that $A = A^2E$. So

\[
A^3(A^2)^-A(A^2)^-A^3 = AA^2(A^2)^-A^2E(A^2)^-A^3 \\
= AA^2E(A^2)^-A^3 \\
= A^2(A^2)^-A^3 \\
= A^3.
\]

So $(A^2)^-A(A^2)^-$ is a g-inverse of A^3.
(v) \Rightarrow (vi) is clear.
(vi) \Rightarrow (iii) follows from Lemma 1. In fact $A_{\rho x}^- = A(A^3)^-A$.
(iii) \Rightarrow (i) is trivial.
(ii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Rightarrow (iii) \Rightarrow (ii) hold by similar arguments.

Remark 1. The two concepts A^* and $A_{\rho x}^-$ are identical, and A^* (and so $A_{\rho x}^-$) is unique. For, firstly, that A^* is an $A_{\rho x}^-$ follows because

\[
A^* = A^*AA^* \\
= A^*AA^*AA^* \\
= AA^*A.
\]

Secondly that $A_{\rho x}^-$ is an A^* follows because, as observed in the proof of (vi) \Rightarrow (iii), it is enough to verify Equations (1), (2) and (5) for $G = A(A^3)^-A$. Equation (1) is clear by the definition of a g-inverse. For Equation (2), if E is a matrix over the field of quotients such that $A = A^3E$, then

\[
GAG = A(A^3)^-A^3(A^3)^-A^3E \\
= A(A^3)^-A^3E \\
= A(A^3)^-A \\
= G.
\]
Equation (5), i.e., \(AG = GA \), also follows similarly. The uniqueness of \(A^* \) is easily proven from its definition.

Remark 2. From Remark 1, the existence of \(A^* \) is equivalent to all the six statements of Theorem 2. Also, since trivially the existence of a commuting \(g \)-inverse of \(A \) is equivalent to the existence of \(A^* \), the six statements of Theorem 2 are equivalent to the existence of a commuting \(g \)-inverse of \(A \).

Remark 3. \(A_{\rho x} = A_{\rho x}^{-} AA_{\rho x}^{-} \) when \(\rho(A) = \rho(A^2) \) and \(A^2 \) is regular.

Remark 4. More generally, for a regular matrix \(A \), there is a \(g \)-inverse of the form \(PCQ \) for some \(C \) if and only if there are \(g \)-inverses \(G_1 \) and \(G_2 \) of the form \(PD \) and \(EQ \) respectively. In fact \(G_1 AG_2 \) serves our purpose.

3. Existence of the Group Inverse of \(A \) in Terms of Its Minors

In [1], it was shown that a matrix \(A \) of rank \(r \) over \(\mathbb{R} \) is regular if and only if a linear combination of all the \(r \times r \) minors is one. In [2] we showed that a matrix of rank \(r \) over \(\mathbb{R} \) has a Moore–Penrose inverse if and only if a particular linear combination of all the \(r \times r \) minors is one (namely \(\sum_{\alpha, \beta} u_{\alpha} | A_{\alpha, \beta}^\alpha | A_{\beta}^\alpha | = 1 \), where \((\sum_{\alpha \beta} | A_{\alpha, \beta}^\alpha |)^{-1} \) exists and equals \(u \)). The aim of this section is to give a similar condition for the existence of \(A^* \). We shall show that \(A^* \) exists if and only if \(\sum_{\alpha} u_{\alpha} | A_{\alpha}^\alpha | = 1 \), where \((\sum_{\alpha} | A_{\alpha}^\alpha |)^{-1} \) exists and equals \(u \).

First we shall prove the condition for matrices of rank \(1 \).

Lemma 3. If \(A \) is a square matrix of rank \(1 \) over an integral domain \(\mathbb{R} \), then \(A \) has a group inverse if and only if the trace of \(A \) (\(Tr \) \(A \) for short) is invertible in \(\mathbb{R} \). In this case the group inverse \(A^* = (Tr \ A)^{-2}A \).

Proof. Let \(A \) be a matrix of rank \(1 \) over \(\mathbb{R} \). Over the field of quotients we can write \(A = xy^T \), where \(x \) and \(y \) are \(n \times 1 \) matrices over the field. Note that \(y^Tx \) is the trace of \(A \).

"If" part: Suppose \(Tr \ A \) is invertible in \(\mathbb{R} \). Then we shall prove that \(G = (Tr \ A)^{-2}A \) is the group inverse of \(A \):

\[
AGA = A(Tr \ A)^{-2}AA = xy^T(y^Tx)^{-2}xy^T = xy^T = A.
\]
Similarly we can prove that $GAG = G$ and $AG = GA$. So $G = (\text{Tr } A)^{-2}A$ is the group inverse of A.

"Only if" part: Suppose that A has a group inverse. Then $\rho(A) = \rho(A^2) = 1$ and A^2 is regular (by Lemma 2). If $B = A^2$, then the (i, j)th element of B is

$$b_{ij} = \sum_k a_{ik}a_{kj}. \quad (3.1)$$

Since B is regular and $\rho(B) = 1$, by Lemma 7 of [1] there exists $g_{ji} \in \mathbb{R}$ such that

$$\sum_{i,j} g_{ji}b_{ij} = 1. \quad (3.2)$$

Substituting (3.1) in (3.2), we get

$$\sum_{i,j,k} g_{ji}a_{ik}a_{kj} = 1.$$

Since $\rho(A) = 1$, we have $a_{ik}a_{kj} = a_{kk}a_{ij}$. So

$$\left(\sum_k a_{kk} \right) \left(\sum_{i,j} g_{ji}a_{ij} \right) = 1. \quad (3.3)$$

(3.3) now implies that $\sum_k a_{kk} = \text{Tr } A$ is invertible in \mathbb{R}.

Theorem 4. Let A be an $n \times n$ matrix of rank r over an integral domain \mathbb{R}. Then $\rho(A) = \rho(A^2)$, and A^2 is regular if and only if

$$\sum_{\gamma} |A_{\gamma}^2|,$$

where γ runs over all r-element subsets of $\{1, 2, \ldots, n\}$, is invertible in \mathbb{R}.

Proof: "Only if" part: Let $\rho(A) = \rho(A^2) = r$, and A^2 be regular. So $\rho([C_r(A)]^2) = \rho(C_r(A^2)) = 1$ and $C_r(A^2)$ is regular. From the "only if" part of Lemma 3 we get that $\text{Tr } C_r(A) = \sum_{\gamma} |A_{\gamma}^2|$ is invertible in \mathbb{R}.

"If" part: Let $\sum |A_{\gamma}^2|$ be invertible in \mathbb{R}. First we shall prove that $\rho(A) = \rho(A^2) = r$. Suppose $\rho(A) \neq \rho(A^2)$. Then $\rho(A^2) < r$ (since $\rho(A) = r$), and

$$\left| \left(A^2 \right)^{\gamma}_{\beta} \right| = 0 \quad (3.4)$$
for all r-element subsets α, β of $(1, 2, \ldots, n)$. But

$$
|\binom{A^2}{\alpha}_\beta| = \sum_{\gamma} |A^\alpha_{\gamma}| \cdot |A^\beta_{\gamma}|
$$

$$
= \sum_{\gamma} |A^\alpha_{\gamma}| \cdot |A^\alpha_{\beta}| \quad \text{[since } \rho(C_r(A)) = 1] \quad (3.5)
$$

$$
= |A^\alpha_{\beta}| \sum_{\gamma} |A^\alpha_{\gamma}|.
$$

Since $\sum_{\gamma} |A^\alpha_{\gamma}|$ is invertible in \mathbb{R}, from (3.4) and (3.5) we get $|A^\alpha_{\beta}| = 0$ for all r-element subsets α and β. This contradicts the fact that $\rho(A) = r$. So we must have $\rho(A) = \rho(A^2) = r$.

Now it remains to prove that A^2 is regular. Since $\sum_{\gamma} |A^\alpha_{\gamma}| = u$ is invertible in \mathbb{R}, we have

$$
\left(\sum_{\alpha} |A^\alpha_{\alpha}| \right) \left(\sum_{\beta} |A^\alpha_{\beta}| \right) = 1;
$$

i.e.,

$$
\sum_{\alpha, \beta} u^{-2} |A^\alpha_{\alpha}| \cdot |A^\alpha_{\beta}| = 1,
$$

and

$$
\sum_{\alpha, \beta} u^{-2} |A^\beta_{\alpha}| \cdot |A^\alpha_{\beta}| = 1, \quad \text{because } \rho(C_r(A)) = 1. \quad (3.6)
$$

By the Cauchy-Binet formula we have

$$
|\binom{A^2}{\alpha}_{\alpha}| = \sum_{\beta} |A^\alpha_{\beta}| \cdot |A^\beta_{\alpha}|. \quad (3.7)
$$

By substituting (3.7) into (3.6) we get

$$
\sum_{\alpha} u^{-2} \left| \binom{A^2}{\alpha}_{\alpha} \right| = 1. \quad (3.8)
$$

So, from (1.2), by taking $c^\beta_{\alpha} = 0$ for $\alpha \neq \beta$ and u^{-2} for $\alpha = \beta$, it is clear that A^2 is regular. Hence we have proved the theorem.
Theorem 5. Let A be an $n \times n$ matrix over \mathbb{R} such that $\rho(A) = r$. Then the following are equivalent:

(i) A has a group inverse.
(ii) $C_r(A)$ has a group inverse.
(iii) $\sum_\gamma |A_\gamma^r|$ is invertible in \mathbb{R}.
(iv) $\rho(A) = \rho(A^2)$, and A^2 is regular.

Proof. (i) \Rightarrow (ii) is trivial from the properties of compound matrices, (ii) \Rightarrow (iii) follows from Lemma 3, (iii) \Rightarrow (iv) is a part of Theorem 4, and (iv) \Rightarrow (i) follows from Lemma 2.

We know that over a field the group inverse of a matrix A, whenever it exists, can be written as a polynomial in A with coefficients from the field (see [2] and [4]). We shall prove this result in the case of integral domains also.

Theorem 6. Let A be a square matrix of order n over \mathbb{R} for which A^* exists over \mathbb{R}. Then A^* is a polynomial in A with coefficients from \mathbb{R}.

Proof. Let the characteristic polynomial of A be

$$|\lambda I - A| = p_r \lambda^{n-r} + p_{r+1} \lambda^{n-r+1} + \cdots + \lambda^n,$$

where r is the rank of A and $(-1)^k p_k$ is the sum of all the principal minors of order k. Observe that $(-1)^r p_r$ is the sum of all the $r \times r$ principal minors of A, which is invertible in \mathbb{R} (by our Theorem 5 above). Now by the Cayley-Hamilton theorem,

$$p_r A^{n-r} + \cdots + A^n = 0,$$

so

$$A^{n-r} = q_{r+1} A^{n-r+1} + q_{r+2} A^{n-r+2} + \cdots + q_n A^n,$$ \hspace{1cm} (3.9)

where $q_k = -p_k/p_r$ for $k \leq n-1$ and $q_n = -1/p_r$. (Observe that q_k, \ldots, q_n are elements of \mathbb{R}.)

Multiplying both sides of (3.9) by $(A^*)^{n-r+1}$, we get

$$A^* = q_{r+1} AA^* + q_{r+2} A + \cdots + q_n A^{n-r-1},$$ \hspace{1cm} (3.10)

and multiplying both sides of (3.10) by A, we get

$$A^* A = q_{r+1} A + q_{r+2} A^2 + \cdots + q_n A^{n-r}.$$ \hspace{1cm} (3.11)
Substituting (3.11) into (3.10) gives us

\[A^* = \left(q_{r+1}^2 + q_{r+2} \right) A + \left(q_{r+1} q_{r+2} + q_{r+3} \right) A^2 + \cdots + q_n A^{n-r}, \]

and this is a polynomial in \(A \) over \(\mathbb{R} \).

Incidentally, from the proof of equivalence of (iii) and (iv) of Theorem 5 we can give a condition for \(\rho(A) \) to be equal to \(\rho(A^2) \).

THEOREM 7. Let \(A \) be a square matrix of rank \(r \) over \(\mathbb{R} \). Then \(\rho(A) = \rho(A^2) = r \) if and only if the sum of all the \(r \times r \) principal minors of \(A \) is nonzero.

Proof. We observe that for any \(\alpha \) and \(\beta \) \((r\)-element subsets of \(\{1, 2, \ldots, n\})\)

\[|A_\alpha^2 \beta| = \left(\sum_\gamma |A_\gamma^\alpha| \right) |A_\beta^\alpha|, \quad (3.12) \]

where \(\gamma \) runs over all \(r \)-element subsets of \(\{1, 2, \ldots, n\} \). Since \(\mathbb{R} \) is an integral domain, we get that

\[\rho(A) = \rho(A^2) \quad \text{if and only if} \quad \sum_\gamma |A_\gamma^\alpha| \neq 0. \]

4. **NEW FORMULAE**

We have seen in the previous section that if \(\Sigma_\gamma |A_\gamma^\alpha| \) is invertible in \(\mathbb{R} \), then \(A^* \) exists. We shall give in this section a method of finding \(A^* \) whenever it exists.

First of all observe that from Remark 2 at the end of Section 2, it follows that \(A \) has a commuting \(g \)-inverse if and only if \(\Sigma_\gamma |A_\gamma^\alpha| \) is invertible.

THEOREM 8. Let \(A \) be a matrix of rank \(r \) over \(\mathbb{R} \). Then:

(i) If \(u = \Sigma_\gamma |A_\gamma^\alpha| \) is invertible in \(\mathbb{R} \), then \(G = (g_{ij}) \) defined by

\[g_{ji} = \sum_\gamma u^{-1} \frac{\partial}{\partial a_{ij}} |A_\gamma^\alpha| \]

is a commuting \(g \)-inverse of \(A \).
(ii) If $u = \sum_\gamma |A_\gamma^\gamma|$ is invertible in \mathbb{R}, then $G = (g_{ij})$, where

$$g_{ji} = \sum_{\alpha, \beta} u^{-2} \left| A_\alpha^\beta \right| \frac{\partial}{\partial a_{ij}} \left| A_\beta^\alpha \right|,$$

is the group inverse of A.

Proof. (i): First we shall prove that $G = (g_{ij})$ obtained from the formula

$$g_{ji} = \sum_{\gamma} u^{-1} \frac{\partial}{\partial a_{ij}} \left| A_\gamma^\gamma \right|$$

(4.1)

is a commuting g-inverse of A. Note that G is a g-inverse of A over \mathbb{R} [by (1.2) and (1.3), taking $c_\alpha^\beta = 0$ for $\alpha \neq \beta$ and $c_\alpha^\alpha = u^{-1}$].

Now we shall prove that G commutes with A, i.e.,

$$(AG)_{ij} = (GA)_{ij} \quad \text{for all } i, j.$$

(4.2)

For $i = j$,

$$(AG)_{ii} = \sum_{k=1}^{n} a_{ik} g_{kl},$$

$$= \sum_{k} a_{ik} \sum_{\gamma : i \in \gamma} u^{-1} \frac{\partial}{\partial a_{ik}} \left| A_\gamma^\gamma \right|$$

$$= \left(\sum_{\gamma : i \in \gamma} \left| A_\gamma^\gamma \right| \right) u^{-1}.$$

(4.3)

Similarly we get $(GA)_{ii} = (\sum_{\gamma : i \in \gamma} \left| A_\gamma^\gamma \right|) u^{-1}$. So $(GA)_{ii} = (AG)_{ii}$. For $i \neq j$,

$$(AG)_{ij} = \sum_{k} a_{ik} g_{kj},$$

$$= \sum_{k} a_{ik} \sum_{\gamma : j \in \gamma} u^{-1} \frac{\partial}{\partial a_{kj}} \left| A_\gamma^\gamma \right|$$

$$= \sum_{\gamma : j \in \gamma} \left(\sum_{k} u^{-1} a_{ik} \frac{\partial}{\partial a_{kj}} \left| A_\gamma^\gamma \right| \right)$$

$$= \sum_{\gamma : j \in \gamma, \ i \not\in \gamma} \left| A_\gamma^\gamma \backslash (j) \cup (i) \right| u^{-1},$$

(4.4)
because for \(i \in \gamma \)
\[
\sum_k a_{ik} \frac{\partial}{\partial a_{jk}} | A_i^\beta | = 0.
\]

So
\[
(AG)_{ij} = u^{-1} \sum_{\alpha: \text{is}, j \neq \alpha \beta: j \neq \beta} | A_\alpha^\beta |.
\]

Similarly we get
\[
(GA)_{ij} = u^{-1} \sum_{\gamma: i \neq \gamma \text{ or } j \neq \gamma} | A_i^\gamma \setminus \{i\cup\{j\}| = u^{-1} \sum_{\alpha: i \neq \alpha, j \neq \beta \beta: j \neq \beta} | A_\alpha^\beta | = (AG)_{ij}.
\]

Hence \(G \) commutes with \(A \).

Now we shall prove part (ii) of the theorem. Since \(u = \sum_{\gamma} | A_i^\gamma | \) is invertible in \(R \),

\[
\left(\sum_{\gamma} u^{-1} | A_i^\gamma | \right)^2 = u^{-2} \sum_{\alpha, \beta} | A_\alpha^\alpha | | A_\beta^\beta | = 1.
\]

Since \(\rho(C_r(A)) = 1 \), we have \(| A_\alpha^\alpha | | A_\beta^\beta | = | A_\alpha^\alpha | | A_\beta^\beta | \), so

\[
\sum_{\alpha, \beta} u^{-2} | A_\beta^\alpha | | A_\alpha^\beta | = 1.
\]

We claim that the matrix \(G = (g_{ij}) \) obtained from the formula
\[
g_{ji} = \sum_{\alpha, \beta} u^{-2} | A_\alpha^\beta | \frac{\partial}{\partial a_{ij}} | A_\beta^\alpha |
\]
is the group inverse of \(A \).

Note that \(C_r(A^*) \) is the group inverse of \(C_r(A) \). But, by Lemma 3, we get
\[
C_r(A)^* = \left[\text{Tr } C_r(A) \right]^{-2} C_r(A)
= u^{-2} C_r(A).
\]
Therefore \(|A^*| = u^{-2} |A_\alpha^\beta| \). Since \(A^* \) is a reflexive \(g \)-inverse of \(A \), by (1.4) we get

\[
(A^*)_{ij} = \sum_{\alpha, \beta} u^{-2} |A_\alpha^\beta| \frac{\partial}{\partial a_{ij}} |A_\beta^\alpha|
\]

So we get \(G = A^* \). Hence the proof.

Remark. Theorem 7 provides a direct proof of (iii) \(\Rightarrow \) (iv) of Theorem 5.

5. DRAZIN INVERSE

In this section we shall give necessary and sufficient conditions for a square matrix over \(\mathbb{R} \) to have a Drazin inverse over \(\mathbb{R} \).

Theorem 9. Let \(A \) be a matrix over \(\mathbb{R} \). Then \(A \) has a Drazin inverse over \(\mathbb{R} \) (satisfying (2), (5), and (1k)) if and only if for that \(k \), \(\rho(A^k) = \rho(A^{k+1}) \) and \(A^{2k+1} \) is regular. Also, the Drazin inverse, when it exists, is unique.

Proof. “Only if” part: Let \(A \) have a Drazin inverse, say \(G \), over \(\mathbb{R} \). Condition (1k) gives us that \(\rho(A^k) = \rho(A^{k+1}) \) and also

\[
A^{2k+1} = A^{2k+2} G
\]

\[
= A^{2k+1} GA \quad \text{[from condition (5)]}
\]

\[
= A^{2k+1} G^{2k+1} A^{2k+1} \quad \text{[from condition (2)].}
\]

So \(A^{2k+1} \) is regular.

“If” part: Let \(k \) be a positive integer for which \(\rho(A^k) = \rho(A^{k+1}) \) and \(A^{2k+1} \) is regular. We shall prove that \(G = A^k (A^{2k+1})^{-1} A^k \) is a Drazin inverse of \(A \).
Since \(p(A^k) = p(A^{k+j}) \) for all positive integers \(j \), there exists matrices \(D, E, \) and \(F \) over the field of quotients of \(R \) such that

\[
\begin{align*}
A^{k+1} &= DA^{2k+1}, \\
A^k &= EA^{2k+1}, \\
A^k &= A^{2k+1}F.
\end{align*}
\]

So

\[
AG = AA^k(A^{2k+1})^{-1}A^k
= D(A^{2k+1})F = A^{k+1}F.
\]

Similarly

\[
GA = A^k(A^{2k+1})^{-1}A^kA
= A^kA^{2k+1}AA^k
= A^{k+1}F.
\]

Hence \(AG = GA \), i.e. (5) holds. Also,

\[
\begin{align*}
A^{k+1}G &= A^{k+1}A^k(A^{2k+1})^{-1}A^k \\
&= A^{2k+1}(A^{2k+1})^{-1}A^{2k+1}F \\
&= A^{2k+1}F \\
&= A^k.
\end{align*}
\]

Hence \((1^k) \). Finally,

\[
G^2A = G(GA) = [A^k(A^{2k+1})^{-1}A^k]A^{k+1}F \quad \text{(since \(GA = A^{k+1}F \))}
= A^k(A^{2k+1})A^k = G.
\]

Hence (2). Thus \(G \) is a Drazin inverse of \(A \).

Now we shall prove that the Drazin inverse is unique when it exists. First observe that if \(G \) satisfies \((1^k) \) then \(G \) satisfies \((1^m) \) for all \(m \geq k \). If \(F \) and \(G \)
are two Drazin inverses of A, we can choose a k such that F and G both satisfy conditions (2), (5), and (1'). By repeated applications of (5) and (1k) we get
\[G_{k+1}A_{k+1}F_{k+1} = G_{k+1}A_{k} = G \]
and
\[G_{k+1}A_{2k+1}F_{k+1} = A_{k+1}F_{k+1} = F. \]
So $F = G$.

Remark 1. Let us observe that if A has a Drazin inverse over \mathbb{R} and if the index of A is p, then $\rho(A^p) = \rho(A^{p+1})$ and A^{2p+1} is regular. If A has a Drazin inverse H over \mathbb{R}, then considering A as a matrix over the field of quotients of \mathbb{R}, A^{2p+1} has a g-inverse over this field. So A has a Drazin inverse G over this field, and G satisfies (2), (5), and (1'). By the uniqueness of the Drazin inverse over the field, we have then $G = H$. So H satisfies (2), (5), and (1'). Theorem 9 gives our statement. Also we have the following result: A has a Drazin inverse over the integral domain \mathbb{R} if and only if A^{2p+1} is regular, where p is the index of A.

Remark 2. Given an integral domain \mathbb{R}, for a given matrix A over \mathbb{R} there need not exist an integer k such that $\rho(A^k) = \rho(A^{k+1})$ and A^{2k+1} is regular over \mathbb{R}. For example, take

\[\mathbb{R} = \mathbb{Z} \text{ and } A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}. \]

$\rho(A) = \rho(A^k) = 1$ for all positive integers k. But A^k is not regular for $k \geq 2$.

Remark 3. Note that A has a Drazin inverse with index p if and only if A^p has a group inverse (it is easy to verify that G^p is a group inverse of A^p, and in fact p is the smallest positive integer for which A^p has a group inverse). Conversely, if A^p has a group inverse, then A^{3p} is regular with $\rho(A) = \rho(A^{3p})$, which implies that A^{2p+1} is regular.

Now we shall prove the following theorem

Theorem 10. Let A be a matrix over \mathbb{R} with index p, and $\rho(A^p) = s$. Then the following are equivalent:

(i) A has a Drazin inverse.

(ii) $C_u(A)$ has a Drazin inverse.
(iii) \(C_s(A^p) \) has a group inverse.

(iv) \(\text{Tr } C_s(A^p) \) is invertible over \(\mathbb{R} \), and \(A^p \) is regular.

(v) \(A^p \) has a group inverse.

(vi) \(A^{p+n} \) is regular for all positive integers \(n \).

(vii) \(A^{2n} \) is regular.

Proof. (i) \(\Rightarrow \) (ii) follows from the properties of \(C_s(A) \).

(ii) \(\Rightarrow \) (iii): Since \(C_s(A) \) has a Drazin inverse with index \(\leq k \), \(C_s(A^k) \) has a group inverse (from Remark 3 following Theorem 9).

(iii) \(\Rightarrow \) (iv) is trivial by Lemma 3.

(iv) \(\Rightarrow \) (v) holds from Theorem 4.

(v) \(\Rightarrow \) (vi): If \(n \) is a positive integer, then choosing \(m \) such that \(n \leq (m - 1)p \), we have \(\rho(A^p) = \rho(A^{mp}) = \rho(A^{p+n}) \), and since \(A^{mp} \) is regular, \(A^{k+n} \) is regular.

(vi) \(\Rightarrow \) (vii) is obvious.

(vii) \(\Rightarrow \) (i) holds from Remark 1 following Theorem 9.

It is known that over a field every matrix has a decomposition (see [2, Chapter 4] and [4, Chapter 4]) of the form

\[
A = A_1 + A_2
\]

with the properties

(i) \(\rho(A_1) = \rho(A_2^2) \),

(ii) \(A_2 \) is nilpotent, and

(iii) \(A_1 A_2 = A_2 A_1 = 0 \).

We shall now investigate whether over an integral domain a similar decomposition also exists for every matrix.

Observe that over a field, condition (i) is equivalent to

(i') \(A_1 \) has a group inverse.

In the following theorem we shall give a necessary and sufficient condition for a square matrix over an integral domain to have a decomposition satisfying properties (i'), (ii), and (iii).

Theorem 11. A square matrix \(A \) over \(\mathbb{R} \) has a decomposition \(A = A_1 + A_2 \) satisfying (i'), (ii), and (iii) if and only if \(A \) has a Drazin inverse. Such a decomposition is unique.

Proof. "If" part: If \(A \) has a Drazin inverse \(K \) over \(\mathbb{R} \), then, by defining \(A_1 = AKA = K^* \) and \(A_2 = A - A_1 \), one can check, as in the proof of Theorem 10 in Chapter 4 of [2], that \(A_1 \) and \(A_2 \) satisfy (i'), (ii), and (iii).
"Only if" part: Suppose that A has a decomposition of the form $A = A_1 + A_2$ with (i'), (ii), and (iii). Then there is a positive integer m such that $A_2^n = 0$. For this m, $A^m = A_1^m$. Since $A_1^m = A^m$, the index of A is $d \leq m$. Since A_1 has a group inverse, $A_1^m = A^m$ has a group inverse. Since some power of A has a group inverse, A has a Drazin inverse.

Uniqueness of the decomposition follows as in the real case.

Thanks are due to Dr. P. Bhimashankaram for his suggestions.

REFERENCES

Received 28 August 1989; final manuscript accepted 29 May 1990