sarclemma or nuclear membranes), cytosolic (minimal distance to membranes >5μm) or nuclear. Nuclear events were considered membrane associated when occurring at a distance <1μm from the nuclear envelope or membranes of the nucleoplasmic reticulum. With tetracaine the Ca spark frequency decreased to 0.7 ± 0.3 (from 8.8 ± 1.2 in control), whereas the frequency of events detected after subsequent addition of IP3 increased to 2.9 ± 1.3 (events/100μm²/s). Subsequent exposure to 2-APB reduced the frequency to 1.8 ± 0.8. Compared to Ca sparks, local Ca release events in the presence of IP3 were lower in amplitude, prolonged in duration and had a slower rise time. The increase in frequency of local Ca release events was particularly pronounced in the perinuclear regions compared to the cytosol or the subsarcomemal space. Furthermore, IP3-mediated Ca release events could also be detected within the nucleus. These nuclear events occurred at a higher incidence at locations that were closely associated with membrane structures of the nuclear envelope or the nucleoplasmic reticulum. In conclusion, in atrial myocytes IP3R-mediated Ca release is spatially inhomogeneous and preferentially occurs in the nuclear and perinuclear regions.

2251-Pos Board B270
An Integrated Gating Function of Cardiac Ca⁺⁺ Release Flux from a Cluster of SR-Ca⁺⁺ Channels
Kazi T. Haq1, Henk E.D.J. ter Keurs2, Bruno D. Stuyvers1, Sharene D. Bungay1
1Memorial University of Newfoundland, St. John’s, NL, Canada, 2University of Calgary, Calgary, AB, Canada.

Background: In cardiac cells, sarcoplasmic reticulum (SR) Ca⁺⁺-channels (RyRs) are regrouped into clusters, so-called Ca⁺⁺-release units (CRUs). Dynamically, the RyR2 calcium release channel adapts characteristics of the SR-Ca⁺⁺-efflux during cell activation. The Ca⁺⁺-sensitivity of the channel plays a central role in this regulation. However, technical limitations make it difficult to directly assess the mechanism underlying the Ca⁺⁺-sensitivity of SR-Ca⁺⁺-release in the micro-domain of a CRU. Thus, mathematical models simulating intracellular Ca⁺⁺ activities, such as Ca⁺⁺-sparks and waves, incorporate a Ca⁺⁺-release function which approximates or, frequently, omits the regulation in the cluster micro-domain. Moreover, using nano-scale components (such as realistic spacing between RyRs in a CRU) in a micro-scale computational domain intending to reproduce the cell geometry requires massive computational resources. Method: To overcome both experimental and computational limitations, we developed a time-dependent Ca⁺⁺-release function that addresses activation and termination of Ca⁺⁺-release, mediated by dynamic regulatory mechanisms. This function has been used in systems of ODEs and PDEs applied to cardiac Purkinje cells (Pcells), which included other intracellular modulators of Ca⁺⁺ transients, such as Ca⁺⁺-buffers and Ca⁺⁺-pumps. Results: Compared to experimental data from Pcells, the Ca⁺⁺-release function could predict the instantaneous variation of Ca⁺⁺-efflux from the CRU. Predicted values for the activation threshold of [Ca²⁺] (Cyto) at the cytosolic side for RyR2 and RyR3 in Pcells were found to be 160 nM-190 nM and 105 nM-110 nM, respectively. These results matched the experimental findings. Conclusion: This function has been used successfully in 1D and 2D numerical models respectively. These results matched the experimental findings. Conclusion: RYR3 in Pcells were found to be 160 nM-190 nM and 105 nM-110 nM, which included other intracellular modulators of Ca²⁺-pumps. Results: Compared to experimental data from Pcells, the Ca²⁺-release function could predict the instantaneous variation of Ca²⁺-efflux from the CRU. Predicted values for the activation threshold of [Ca²⁺] at the cytosolic side for RyR2 and RyR3 in Pcells were found to be 160 nM-190 nM and 105 nM-110 nM, respectively. These results matched the experimental findings. Conclusion: RYR3 in Pcells were found to be 160 nM-190 nM and 105 nM-110 nM.

2252-Pos Board B271
Computational Evidence of Centripetal Propagating “Ca⁺⁺-Induced-Ca⁺⁺-Release” in Stimulated Cardiocyte Purkinje Cells
Kazi T. Haq1, Rebecca Daniels1, Henk E.D.J. ter Keurs2, Sharene D. Bungay1, Bruno D. Stuyvers1
1Memorial University - Medicine, St. John’s, NL, Canada, 2L’Hôpital Cardiovascular Institute of Alberta, Calgary, AB, Canada.

Rationale: Ca⁺⁺-variations in Purkinje cells (Pcells) can affect cardiac conduction by generating action potentials in Purkinje fibers thereby promoting arrhythmias. The system underlying Ca⁺⁺-variations in Pcells is still unknown. Upon depolarization, the individual RyRs in the cell determine the changes in the cytosolic concentration of Ca²⁺-propagation (CCP). Alternatively, study of Pcells suggests a cooperative “Ca⁺⁺-induced-Ca⁺⁺-release” (CICR) from 3 adjacent ER regions expressing distinct Ca⁺⁺-channels. To determine whether CCP is mediated by diffusion only or “CICR-diffusion-CICR”, a system of nonlinear parabolic partial differential equations is used to simulate CCP in a 2D rectangular array comprising 3 adjacent Ca⁺⁺-release regions R1, R2, R3 (Fig.1B). Simulated CCP was compared against CCP measured in stimulated porcine Pcells. Results: The model accurately reproduced CCP (Fig.1) when CICR was activated in R2 and R3. When CICR was off in R2 and/or R3 and only Ca⁺⁺-diffusion was considered, CCP collapsed shortly after Ca⁺⁺-release in R1. Conclusion: Our results are consistent with a mechanism of consecutive ER-Ca⁺⁺-releases propagating centripetally by CICR-diffusion-CICR. The intermediate region R2 appears to be a critical functional link in the process.

2253-Pos Board B272
Synchronization of Ca²⁺ Release in Multicellular Cardiac Preparations
The Ohio State University, Columbus, OH, USA.

Delayed afterdepolarizations (DADs) are frequently observed under conditions that increase cellular and SR Ca²⁺. The high Ca²⁺ can cause spontaneous SR Ca²⁺ release and oscillations in the membrane potential and evoke spontaneous action potentials in the myocytes, leading to arrhythmias. Since myocytes are electrically coupled, any depolarization that arises in one myocyte would be dampened due to dissipation of the current in the neighboring myocytes. It is believed that some synchronization mechanism exists that synchronizes DADs and action potentials in neighboring cells. In our current study, we are interested in examining whether there is a synchronization mechanism for the generation of triggered activity in multicellular cardiac preparations. Trabeculae isolated from rat hearts were mounted on a modified confocal microscope that was equipped with a force transducer. Trabeculae were loaded with Rhod-2 AM and Ca²⁺ imaging was performed. Combination of caffeine and isoproterenol were added to the perfusion to induce extra-systolic contractions (ESCs). Line scans were acquired and fluorescence emitted was expressed as ΔF/Δt. The addition of caffeine and isoproterenol showed an increased incidence of ESCs in our force experiments. The amplitude of these ESCs ranged anywhere from 10% to 100% of the previous, stimulated contraction’s amplitude. We hypothesize that many of these ESCs would likely result in an afterdepolarization. In the Ca⁺⁺ experiments, we noticed that with the addition of both caffeine and isoproterenol, we could visualize Ca⁺⁺ waves in the multicellular preparation. While these Ca⁺⁺ waves were not always present in each myocyte within the trabeculae initially, we were able to see that Ca⁺⁺ waves can, indeed, synchronize in multiple cells within the muscles over time. Therefore, these results suggest that intracellular, diastolic SR Ca²⁺ release can become synchronized in a multicellular cardiac preparation.

Lipid Signaling

2254-Pos Board B273
Improved Models of Short-Chain Phosphoinositide Efficacy on Ion Channels
Marcus D. Collins, Carmen A. Ufret-Vincenty, Sharona E. Gordon.
University of Washington, Seattle, WA, USA.

In determining the efficacy of phosphoinositides on ion channels in inside-out patches, we and others typically measure channel activity as a function of the solution concentration of short-chain phosphoinositides such as di-C8-Pln(4,5)P₂. However, channels are believed to bind phosphoinositides not from solution, but from the phosphoinositide lipids incorporated into the plasma membrane. The extent to which different phosphoinositide lipids partition into membranes is expected to vary widely depending on charge, chain length, and head-group structure, such that the same solution concentration of different phosphoinositides will produce very different concentrations in the plasma membrane. We have previously shown that the polyomodal ion channel TRPV1 has a higher apparent affinity for di-C8-Pln(4,5)P₂ than for diC8-Pln(4)P₂. We re-examined this apparent Pln(4,5)P₂ selectivity using a model that incorporates an extended description of phosphoinositides’ partition between solution and the lipid membrane. We found that the data could not distinguish between two very different interpretations: that the channel itself is activated more easily by di-C8-Pln(4,5)P₂ than by di-C8-Pln(4)P₂; or that di-C8-Pln(4,5)P₂ and di-C8-Pln(4)P₂ are equally effective in activating TRPV1, but for a given phosphoinositide lipid solution concentration, there is more di-C8-Pln(4,5)P₂ in the membrane than would be di-C8-Pln(4)P₂. We further tested our model on a channel mutant that appears to invert the selectivity for di-C8-Pln(4,5)P₂ and di-C8-Pln(4)P₂. Our examples have wide ranging implications for the interpretation of the membrane effects of any ligand that binds to lipids membranes, especially when comparing the efficacy of different membrane binding ligands.