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The magnetoelastic homogenization framework and the partial decoupling approximation proposed by
Ponte Castañeda and Galipeau (2011) are used to estimate material properties for a class of magnetically
susceptible elastomers. Specifically, we consider composites consisting of aligned, ellipsoidal magnetic
particles distributed randomly with ‘‘ellipsoidal’’ symmetry under combined magnetic and mechanical
loading. The model captures the coupling between the magnetic and mechanical fields, including the
effects of magnetic saturation. The results help elucidate the effects of particle shape, distribution, and
concentration on properties such as the magnetostriction, actuation stress, magnetic modulus, and mag-
netization behavior of a magnetorheological composite.
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1. Introduction

Magnetorheological elastomers (MREs) are composite materials
exhibiting coupled magnetic and mechanical behavior. Typical
MREs consist of magnetically susceptible particles embedded in a
soft elastomer matrix. Frequently used magnetic materials include
carbonyl iron and nickel; examples of more exotic inclusions are
Terfenol-D and Ni2MnGa. MREs are of interest because magnetic
fields are capable of modifying the effective mechanical properties
of the composite and of producing magnetostrictive strain. Both ef-
fects take place quickly and reversibly, making MREs good candi-
dates for tunable vibration dampers and magnetic actuators.

Three primary mechanisms are responsible for the magneto-
mechanical coupling in MREs: magnetostriction of the inclusions,
magnetic torques on particles, and magnetic interactions between
particles. For MREs containing particles of giant magnetostrictive
materials, such as Terfenol-D and Ni2MnGa, all three mechanisms
can be important (Duenas and Carman, 2000). For other inclusion
materials, such as carbonyl iron, nickel, or cobalt, which have very
small magnetostriction, the particles are effectively rigid, and the
principal mechanisms are magnetic torques and magnetic interac-
ll rights reserved.

ical Engineering and Applied
and Computational Science,

315, USA.
alipeau), ponte@seas.upenn.
tions between particles (Jolly et al., 1996; Bednarek, 1999; Ginder
et al., 2002; Guan et al., 2008).

Experiments have been performed on MREs composed of rigid,
magnetic particles by various researchers. The particles can either
be distributed randomly in the composite or aligned in chain struc-
tures by curing the elastomer under application of a magnetic field.
Jolly et al. (1996) performed shear tests on chain-structured MREs
and showed that the magnetic field increases the effective shear
modulus of the composite. Bednarek (1999) measured the magneto-
striction of composites made with randomly distributed particles
subjected to very high magnetic fields. Ginder et al. (2002) and Guan
et al. (2008) determined experimentally the magnetostriction of
random and chain structured MREs. Lanotte et al. (2003) investi-
gated the effect of particle rotation on the average magnetization
of the composite. More recently, Diguet et al. (2010) have provided
experimental and theoretical results for the magnetostriction and
magnetic saturation of composite samples formed into a cylindrical
shape and exposed to a remotely applied magnetic field.

For MREs made from particles with small magnetostriction,
Borcea and Bruno (2001) developed a theoretical model for
composites composed of rigid, isotropic, ferromagnetic spheres
by considering particle–particle forces, and obtained estimates
that are accurate to second order in the volume fraction. To first or-
der in the volume fraction, their results agree with the dilute limit
of a rigidly reinforced composite because the inter-particle forces
vanish in this limit, and, in addition, the isotropic spheres cannot
experience magnetic torques. Yin and Sun (2006) also considered
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composites with randomly distributed isotropic spheres; however,
the particles could deform elastically, but were assumed to exhibit
linear magnetic behavior. In this work, the pairwise particle inter-
actions were also used to compute an average stress over the com-
posite, and to obtain magnetoelastic constitutive relations. Yin
et al. (2006) extended this approach to MREs where the magnetic
particles form chain structures, but still preserve their spherical
shape.

On the other hand, Duenas and Carman (2000) obtained exper-
imental results for MREs made with Terfenol-D inclusions at con-
centrations ranging from 10% to 50%, and estimated the
concentration maximizing the composite magnetostriction. Liu
et al. (2006) obtained estimates for the effective properties of MREs
composed of giant magnetostrictive particles in the limit when the
concentration of the particles is dilute, and for cases when the
magnetic field is aligned with the symmetry axis of the particles.
This work made use of a sophisticated theory to model the effect
of particle magnetostriction, and showed the importance of this ef-
fect, but did not account for inter-particle forces, which vanish in
the dilute limit, nor for particle torques, which were zero because
of the symmetry of the loading.

More recently, Ponte Castañeda and Galipeau (2011) developed
a general homogenization framework which is capable of deter-
mining the magnetoelastic properties of composite materials at
finite strain. This general framework can in principle account for
magnetostriction of the particles, particle rotations and inter-parti-
cle forces. However, when the particles can be assumed to be rigid,
the underlying analysis can be simplified via a partial decoupling
approximation (Ponte Castañeda and Galipeau, 2011) to obtain ex-
plicit estimates for the fully coupled magnetoelastic constitutive
relations of the composite elastomer under general loading condi-
tions. One advantage of this work is that it allows for more general
particle shapes and distributions, as well as non-linear magnetic
particle behavior, including the effect of magnetic saturation. In
addition, this homogenization framework provides a simple esti-
mate for the effective free-energy of the composite, from which
the homogenized constitutive relations for the composite can be
readily obtained. In contrast with the works of Borcea and Bruno
(2001) and Yin and Sun (2006), this formulation obviates the need
for the direct computation of the inter-particle forces in the com-
posite, which is difficult to accomplish in practice. In this paper,
the homogenization framework of Ponte Castañeda and Galipeau
(2011) will be used to estimate the response of MREs containing
aligned, spheroidal particles, distributed randomly in the elastic
matrix with ‘‘spheroidal’’ symmetry (Willis, 1977).

The paper is organized as follows. Section 2 introduces some
background material on finite-strain magnetoelasticity and gives
a brief description of how to relate the total magnetoelastic stress
to the actual traction measured in experiments. Section 3 begins
with a summary of the magnetoelastic homogenization and partial
decoupling approximation. In Section 3.1, the model is applied to
composites with ‘‘ellipsoidal’’ microstructures subjected to aligned
loading conditions. In Section 3.2 the results are specialized for
small strains, and in Section 3.3 expressions are given for the sur-
face traction in composite materials consisting of spheroidal parti-
cles with nonlinear magnetic behavior, distributed spheroidally in
an isotropic non-magnetic matrix, and subjected to aligned load-
ings. Then, in Section 4 the results of the previous section are spe-
cialized for uniaxial loading aligned with the symmetry axis of the
spheroidal inclusions. Finally, in Section 5, we investigate in some
detail the effects of particle shape and concentration on the mag-
netoelastic behavior of the composite in the uniaxial tension test.
The paper ends in Section 6 with some concluding remarks.

In this article, scalars will be denoted by italic Roman, a and G,
or Greek letters, a; vectors by boldface Roman letters, b; second-
order tensors by boldface italic Roman letters, P, or bold face Greek
letters, �; and fourth-order by tensors barred letters, C. When nec-
essary Cartesian components will be introduced; for example, Cijkl

are the Cartesian components of C.
2. Magneto-elastostatics

In this work, we will consider the deformation of a heteroge-
neous material occupying a region X0 in the reference configura-
tion. Let each material point be defined by its position vector X
in X0. Under the combined action of the mechanical and magnetic
effects, the material deforms to a new position described by x in
the deformed configuration of the specimen X. The local deforma-
tion is characterized by the deformation gradient tensor F = Grad x,
with Cartesian components Fij ¼ oxi

oXj
, and such that J = det F > 0. The

material satisfies the conservation of mass, which in local form be-
comes q0 = qJ, where q0 and q are the material densities in the ref-
erence and deformed configurations, respectively. We also recall,
for later use, that the polar decomposition of the deformation gra-
dient is F = RU, where R is the rotation and U is the stretch tensor.

We define T to be the total Cauchy stress, which, at static equi-
librium and in the absence of mechanical body forces, satisfies the
governing equation:

div T ¼ 0; ð1Þ

as well as the symmetry condition TT = T. In this expression, div is
the divergence operator with respect to x. Note that this equation
must be replaced by the continuity condition [[T]]n = 0 at an inter-
face, where n is the normal to the interface.

In the current configuration, there are two primary magnetic
field vectors: the magnetic intensity h and the magnetic induction
b. In the absence of surface and free currents, and for quasi-static
conditions, they satisfy the conservation equations:

div b ¼ 0; and curl h ¼ 0; ð2Þ

where the div and curl operators are with respect to x. The corre-
sponding continuity conditions at an interface are given by
[[b]] � n = 0 and [[h]] � n = 0, respectively.

The relation between these two fields is customarily defined in
terms of the magnetization m, such that:

h ¼ b
l0
�m; ð3Þ

where l0 is the magnetic permeability of vacuum. In Eq. (3), the
magnetization is a field determined by the material occupying a gi-
ven space, and it is a function of the magnetic field and the defor-
mation (Kovetz, 2000).

Assuming the existence of a free-energy function /(F,b), a ther-
modynamically consistent framework was developed by Kovetz
(2000) by means of the method of Coleman and Noll (1963). In this
framework, for quasi-static processes, the magnetic constitutive
relation reduces to:

m ¼ �q
o/
ob

; ð4Þ

while the total Cauchy stress is given by

T ¼ q
o/
oF

FT � 1
2l0
ðb � bÞI þ 1

l0
b� bþ ðm � bÞI �m� b: ð5Þ

It follows that the energy function / fully characterizes the behavior
of the magnetoelastic materials. Note that in the absence of a mate-
rial, or when the material is non-magnetic, there is still a stress
which depends on the magnetic field, called the Maxwell stress.
Also, note that the objectivity of / implies the symmetry of T, as re-
quired by rotational equilibrium.
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In order to make comparisons with actual experiments, the
relation between the applied traction and the total stress within
the material must be determined. In elasticity, the applied traction
is the normal component of the total stress at a surface, because
the vacuum immediately surrounding the material contains no
stress. In magnetoelasticity, the magnetic fields extend past the
sample being tested and into the vacuum (or non-magnetic mate-
rial) immediately outside. The magnetic field generates a Maxwell
stress outside, which affects the mechanical traction measured.
When a non-magnetic material is being tested, the magnetic stres-
ses are self-equilibrated and magnetic fields have no effect on the
traction. However, when the material is magnetic, the magnetic
stresses are not equilibrated and contribute to the measurable
traction on the boundary of the specimen. Based on the jump con-
dition for the total Cauchy stress, [[T]]n = 0, and the magnetic jump
conditions, [[b]] � n = 0 and [[h]] � n = 0, the magnetic field and
subsequently the magnetic stress outside the material can be
determined based on the magnetic fields inside the material, and
it can be shown (Kankanala and Triantafyllidis, 2004) that the trac-
tion on the boundary of the specimen is given by

t ¼ T þ l0

2
ðh � hÞI � h� b

� �h i
n� l0

2
ðm � nÞ2n; ð6Þ

where T, h, b, and m are the fields (in the material) just inside the
boundary, and n is the outward normal to the boundary. It should
also be emphasized that although this formula is easiest to write
in terms of T, h, b and m, these are not all independent variables.
For instance if we specify b and F, all other variables are determined
by the magnetic and mechanical constitutive relations of the mate-
rial. In addition, note that in the absence of a magnetic field, the
above expression reduces to its usual form in the purely mechanical
case, t = Tn.

3. Homogenization estimate for constitutive behavior of MREs

Constituent energy functions. We are interested in two-phase
composites consisting of rigid particles in an elastomeric matrix.
The approximation of rigid particles is quite accurate for MREs,
since the modulus of the particles is several orders of magnitude
higher than that of the soft elastomeric matrix. The energy for
the non-magnetic matrix is given by functions of the form:

/matðF;bÞ ¼ 1
q0

WmatðFÞ; ð7Þ

where Wmat(F) is the stored-energy function for the elastomer in
the absence of a magnetic field.

We also need an energy function to characterize the magnetic
particles. In the limit of rigid behavior, the particles can be de-
scribed by a function of the form:

/partðF;bÞ ¼ 1
q0

W rigðFÞ þ /magðbÞ: ð8Þ

The rigidity condition is enforced by Wrig(F), a mechanical energy
function that is equal to zero if F is a pure rotation and infinity
otherwise, while /mag(b) is a function characterizing the magneti-
zation of the inclusion in the current configuration. In this paper,
we take the particles to be magnetically isotropic, but nonlinear,
and we use a Langevin function as a phenomenological model to de-
scribe the magnetic behavior of the inclusion material. As discussed
in Ponte Castañeda and Galipeau (2011), magnetic anisotropy is
important for smaller particles, which can be single crystals, and
this effect can be accounted for, provided that a good model is avail-
able for the anisotropic behavior for the single particles. Here, for
simplicity, we assume isotropic behavior. Although other models
could be used, the Langevin model should be adequate to describe
approximately the behavior of particles made of materials, such
as magnetically soft iron. The isotropic Langevin model accounts
for the initial (linear) susceptibility v and saturation magnetization
ms of the particle, so that the magnetic energy is a function of b = jbj
given by

q0/
magðbÞ ¼ �l0m2

s

3v ln sinh
3vb
l0ms

� �� �
� ln

3vb
l0ms

� �� �
; ð9Þ

while the corresponding magnetization is given by

mðbÞ ¼ ms

b
coth

3vb
l0ms

� �
� l0ms

3vb

� �
b: ð10Þ

Composite energy function. Homogenization can be used to
determine an effective energy for the composite material ~/ as a
function of the average fields over the composite F and �b. Then, un-
der the separation of length scales hypothesis, the composite can be
treated as a homogenous material with a constitutive relation de-
rived from ~/ using expressions (4) to (5). Also, the governing Eqs.
(1)–(3) can be used to determine the macroscopic stress T , the
magnetization �m, and magnetic intensity �h in the specimen.

The partial decoupling approximation of Ponte Castañeda and
Galipeau (2011) uses the special properties of the composites with
particulate microstructures whose constituent energy functions
are of form (7) and (8) to provide an expression for ~/. The partial
decoupling approximation exploits the fact that the magnetic en-
ergy of the composite depends only on the position and orientation
of the particles in the deformed configuration (and not on the local
deformation of the matrix). As a result, the magnetoelastic energy
can be approximated as the sum of a ‘‘purely mechanical’’ and a
magnetoelastic contribution to the energy.

Thus, the effective free-energy function for the composite is of
the form:

~/ F; �b
� 	

¼
fW me F

� 	
�q0

þ ~/mag F; �b
� 	

; ð11Þ

where fW meðFÞ is the usual effective stored-energy function arising
from the solution to the purely mechanical homogenization prob-
lem, and ~/magðF; �bÞ is the effective free-energy function from the
solution to the magnetostatic homogenization problem in the de-
formed configuration. This second term (or more precisely its deriv-
ative) can be interpreted physically as the deformation-dependent,
magnetic susceptibility of the composite material. The coupling is
achieved because ~/magðF; �bÞ depends on F; in other words,
~/magðF; �bÞ depends on the macroscopic deformation. As we will
see in the following section, this produces contributions to the
stress depending on the evolution of the microstructure induced
by the deformation.

3.1. Aligned loading: constitutive response

In this section, we will specialize the general results of Ponte
Castañeda and Galipeau (2011) for situations when the magnetic
and mechanical loadings are aligned with the microstructure of
the MRE. It is recalled from that work that the MREs are modeled
as elastic materials containing random distributions of aligned par-
ticles. The particles are taken to have ellipsoidal shape and to be
distributed randomly with ‘‘ellipsoidal’’ symmetry (Willis, 1977).
Particulate microstructures of this type can be visualized, as shown
in Fig. 1, as having ellipsoidal particles with principal lengths wI

i

surrounded by a distributional ellipsoid with principal lengths
wD

i . The distributional ellipsoid characterizes – through the two-
point probability function of the microstructure – the average dis-
tance between the particles in different directions. The principal
axes of both ellipsoids are assumed to be aligned, so that we can
use the same set of unit vectors, êi, to define the orientation of both



Fig. 1. A general ellipsoidal inclusion surrounded by its distributional ellipsoid. The principal axes of both ellipses are aligned with the coordinate system and have lengths wI
i

and wD
i , respectively.

4 E. Galipeau, P. Ponte Castañeda / International Journal of Solids and Structures 49 (2012) 1–17
ellipsoids. We can then write the shape tensors ZI and ZD, defining
the shape and initial distribution of the inclusions, in the
forms:

ZI ¼
X3

i¼1

wI
i êi � êi; and ZD ¼

X3

i¼1

wD
i êi � êi: ð12Þ

Under the above microstructural hypotheses, the MRE exhibits
orthotropic symmetry and is such that no rotations will be induced
in the microstructure if the magnetic and mechanical fields are
aligned with the symmetry axes defined by the vectors êi. Thus,
the composite is assumed to be loaded magnetically along the
kth direction, so that:

�b ¼ �bêk; ð13Þ

where �b is the magnitude of the magnetic flux. The deformation is
also aligned (co-axial) with the symmetry axes, so the deformation
gradient is described by

F ¼ U ¼
X3

i¼1

�kiêi � êi; ð14Þ

where �ki is the (principal) stretch in the êi direction.
Under these conditions, the average magnetization in the MRE

is given by

�mð�bÞ ¼ 1
l0

eX L U; vL

� 	�b; ð15Þ

where eX LðU; �bÞ is the effective magnetic susceptibility of a linear
comparison composite (see Ponte Castañeda, 1992, 1998) with linear
magnetic susceptibility vL in the matrix phase. Using the linear
homogenization procedure of Ponte Castañeda and Willis (1995)
for the above-defined microstructure, the following expression is
obtained:
eX LðU;vLÞ ¼
cI

J

I
vL
� I þ PI þ cI

J
I � cIPDðUÞ

� ��1

; ð16Þ

where cI is the concentration of inclusions, and PI and PD are micro-
structural tensors, characterizing the effects of the inclusions and
distribution, and given by

PI ¼ det ZI

4p

Z
jnj¼1

n� n j ZI
nj�3dSðnÞ; ð17Þ

and

PDðUÞ ¼ det ZD

4p

Z
jnj¼1

n� n ZDUn



 


�3

dSðnÞ: ð18Þ

In addition, the comparison susceptibility vL is determined from
the solution of the ‘‘secant’’ linearization equation (Ponte Castañe-
da, 1998):

1
l0cI

eX L U; vL

� 	�b ¼m b ¼
eX L U; vL

� 	�b
cIvL

 !
; ð19Þ

where m is given as a function of b by expression (10). Even though
this equation is a vector equation, m(b) is such that both sides of
the equation are parallel, producing only one independent equation
to determine vL. Also it may appear in Eq. (15) that the magnetiza-
tion �m is linear in the applied magnetic field; however vL depends
on �b so the magnetization is nonlinear in the magnetic flux and also
depends on the deformation through J and PDðUÞ.

Correspondingly, the total Cauchy stress is given by

T ¼ Tme U
� 	
� 1

2l0

�b � �b
� 	

I þ 1
l0

�b� �bþ �m � �b
� 	

I � �m� �b

� l0

2
�m � �mð ÞI � l0

2
J

o

oU
�m � PD U

� 	
�m

h i
U; ð20Þ
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where

TmeðFÞ ¼ q
q0

ofW meðFÞ
oF

FT; ð21Þ

is the purely mechanical stress, and �m is given in terms of U and �b
via expression (15). Note, however, that the derivatives with respect
to U in Eq. (20) are taken with �m held fixed.

By comparing expression (20) for the homogenized stress with
expression (5) for the stress in a general magnetoelastic material,
it can be seen that, in addition to the usual magnetic terms, and to
the purely mechanical stress, there are two additional terms arising
from the derivatives of the effective free-energy with respect to the
deformation that are quadratic in the magnetization. The first is a
hydrostatic pressure which can be directly related to changes in
the concentration of the particles with the deformation, while the
second involves changes in the shape of the two-point distribution
of the particles with the deformation. They both come from the sec-
ond term in expression (11) for the effective energy function, which
describes the nonlinear magnetic susceptibility of the composite. In
this context, it is interesting to remark that while the particle–parti-
cle forces have not been computed directly, the estimate (20) for the
macroscopic stress does include these two-point interactions be-
tween the particles, as has just been remarked. In fact, this new
method for determining the macroscopic stress of the MRE requires
only the computation of derivatives of the nonlinear magnetic sus-
ceptibility of the composite. As a consequence, it is simpler to imple-
ment and generalize than other methods requiring the direct
computation of the particle–particle forces (Borcea and Bruno,
2001; Yin and Sun, 2006), which is much more involved in practice.

Since the loading is aligned with the principal axes, which are
symmetry axes for the composite, the second-order tensors T;eX L; PI and PD can be written in terms of their principal values as:

T ¼
X3

i¼1

Tiêi � êi; eX L ¼
X3

i¼1

eXLi
êi � êi;

PI ¼
X3

i¼1

PI
i êi � êi; and PD ¼

X3

i¼1

PD
i êi � êi:

ð22Þ

Therefore, the magnetization is aligned with the b field, as given by
expression (13), so that �m ¼ �mêk with:

�m ¼ eXLk
�b ¼ cIvL

�b

1� vL 1� PI
k þ cI PD

k � 1
� �h i ; ð23Þ

where it is recalled that the PD
k are functions of the principal

stretches �ki. Thus, expression (23) provides the average magnetiza-
tion in the MRE resulting from the application of a b field in the
k-direction, as a function of �b and the �ki, for a given volume fraction
of the particles and particle and distribution shapes.

Corresponding expressions can be also obtained from expres-
sion (20) for the principal components Ti of the average stress, as
functions of �b and the �ki. However, as we have already seen in
the context of expression (6), the actual tractions �ti that would
need to be applied on the boundaries of a representative volume
element of the MRE would be different from the principal stresses
Ti, and would depend on the boundary normals. Assuming that the
boundaries of the specimen are perpendicular to the symmetry
directions, such that ni ¼ êi, expression (6) gives the following re-
sults in each of the 3 symmetry directions:

�ti ¼ Ti �
�b2

2l0
for i ¼ k; and �ti ¼ Ti þ

l0
�h2

2
for i–k; ð24Þ

where it is recalled that k is a fixed number denoting the magnetic
field direction, and that �h is defined by �h ¼ �hêk. Then, making use of
Eq. (20) for the total stress components, the following magnetoelas-
tic traction-stretch relations are obtained:
�ti ¼ Tme
i

�ki
� 	
� l0

2
�m2dik �

l0

2
J �m2 oPD

k

o�ki

�ki no sum; i ¼ 1; . . . ;3; ð25Þ

where Tme
i is the principal component of the purely mechanical

stress tensor (21), and dij is the Kronecker delta (meaning that the
second term only contributes when i is in the direction of the ap-
plied field k).

It is evident from expression (25) that the traction depends on
the magnetic field only through the magnetization (i.e., �m2), even
though the total stress, as given by (20), includes terms that are
proportional to �b2 and �b �m. This means that while the total stress
continues to rise in the MRE as the magnetic field is increased,
the traction will necessarily saturate with magnetization, which
is consistent with experimental observation for actual MREs
(Bednarek, 1999; Ginder et al., 2002; Guan et al., 2008). In addition,
noting that the average magnetization is linear in the particle
concentration to leading order, it is easily deduced that the
magnetic part of the traction, again to leading order, is of second
order in the concentration, even though the total Cauchy stress in-
cludes terms that are of first order in the concentration. This result
means that the first-order contributions to the total stress must
cancel exactly with the magnetic stresses that are set up by the
MRE just outside the specimen. This result is physically consistent,
since at low concentrations, each particle behaves like an isolated
particle in a uniform magnetic field and experiences no net mag-
netic force and therefore does not contribute to the traction. This
result is also consistent with experimental results, as we shall
see below.
3.2. Small-strain approximation

The traction-stretch relations (25) are valid for large strains, and
arbitrary magnetic fields. In this work, however, we are interested
in the limit of small strains (but still arbitrary magnetic fields),
when the general expressions (23) and (25) for the average magne-
tization and traction, as functions of the stretch and magnetic field,
simplify. The infinitesimal strain tensor �� is aligned with the
stretch tensor U, as given by (14), so that:

�� ¼
X3

i¼1

��iêi � êi; ð26Þ

where ��i ¼ �ki � 1 and j��ij � 1. It then follows that the magnetiza-
tion can be expanded for small strains, and Eq. (23) can be written
as:

�m ¼ �mð0Þð�bÞ þ
X3

i¼1

�mð1Þi ð�bÞ��i þ o ��2
� 	

; ð27Þ

where

�mð0Þð�bÞ ¼ �m



�k1¼�k2¼�k3¼1 and �mð1Þi ð�bÞ ¼

o �m
o�ki






�k1¼�k2¼�k3¼1

: ð28Þ

In these expressions, and in the expressions to follow, the vertical
bars mean with their arguments (in this case, �k1; �k2; �k3) held fixed
(equal to 1).

The tractions can also be expanded for small strains, and under
the aligned loading assumption, they reduce to expressions of the
form:

�ti ¼ �tð0Þi ð�bÞ þ
X3

j¼1

eC tot
ij ð�bÞ��j þ oð��2Þ; ð29Þ

where �tð0Þi denote the tractions at zero strain, also called the actua-
tion stresses, and are functions of �b. They are given by

�tð0Þi ¼ �
l0

2
�mð0Þð�bÞ
� 	2

dik þ
oPD

k

o�ki







�k1¼�k2¼�k3¼1

24 35: ð30Þ
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On the other hand, eC tot
ij ð�bÞ is a matrix representing the effective total

modulus of the composite. It should be noted that the elements ofeC tot
ij are not the components of any general fourth-order elasticity

tensor, but simply relate the axial tractions to the axial strains in
this test. It should also be noted that eC tot

ij ð�bÞ can be broken into a
purely mechanical and a magnetic contribution, according to:eC tot

ij ð�bÞ ¼ eCme
ij þ eCmag

ij ð�bÞ: ð31Þ

The magnetic contribution of the modulus is given by

eC mag
ij ¼

l0 �mð0Þð�bÞ
� 	2

2
� oPD

k

o�kio�kj







�k1¼�k2¼�k3¼1

� ð1þ dijÞ
oPD

k

o�ki







�k1¼�k2¼�k3¼1

24 35
þ l0 �mð0Þð�bÞ

� 	
�mð1Þj ð�bÞ
� �

�dik �
oPD

k

o�ki







�k1¼�k2¼�k3¼1

24 35 ðno sumÞ;

ð32Þ
while the purely mechanical component is extracted from the elas-
ticity modulus ~Cme of the MRE relating the mechanical stress Tme to
the strain �� via:

Tme ¼ ~Cme��: ð33Þ

For rigid inclusions, the effective modulus of the composite can be
given in terms of the matrix modulus Cmat, as:
~Cme ¼ Cmat þ cIðPI � cIPDÞ�1

: ð34Þ

where PI and PD, are microstructural tensors, respectively describ-
ing the particle and distribution shapes (Ponte Castañeda and Wil-
lis, 1995). Note that eCme

ij ¼ ~Cme
iijj ðno sumÞ for aligned loadings.

3.3. Spheroidal microstructure with incompressible matrix

The previous results apply for general ellipsoidal shapes for the
particles and the distribution. However, in this section, we special-
ize these general results for the case where both the particles and
the distribution exhibit a spheroidal shape with the same symme-
try axes. Then, the MRE becomes transversely isotropic with the
symmetry axis given by the axis of revolution of the particles,
which we identify with ê1. In addition, we have that
wI

2 ¼ wI
3 ¼ wD

2 ¼ wD
3 ¼ 1 with wD ¼ wD

1 and wI ¼ wI
1, and we can

obtain explicit analytical expressions for the relevant microstruc-
tural tensors, and the corresponding expressions for the effective
properties simplify considerably. Thus, the zero-strain average
magnetization associated with the magnetic load (13) is obtained
from expression (23), and given by

�mð0Þð�bÞ ¼ cIvL
�b

1� vL 1� PkðwIÞ þ cI PkðwDÞ � 1½ �ð Þ ; ð35Þ

where

P1ðwÞ ¼

1
1�w2 �

w arccosðwÞ
ð1�w2Þ3=2 w < 1

1=3 w ¼ 1
1

1�w2 þ
w arccoshðwÞ
ð�1þw2Þ w > 1

8>>>>><>>>>>:
; ð36Þ

and

P2ðwÞ ¼ P3ðwÞ ¼

w2

2ð�1þw2Þ þ
w arccosðwÞ
2ð1�w2Þ3=2 w < 1

1=3 w ¼ 1
w2

2ð�1þw2Þ �
w arccoshðwÞ
2ð�1þw2Þ3=2 w > 1

8>>>>><>>>>>:
: ð37Þ

Note that wD – wI, in general.
The corresponding expression for the linear comparison suscep-

tibility vL, obtained from (19) specialized to the Langevin model, is
given by
�b
l0ms

vL

1� vL 1� PI
k þ cI PD

k � 1
� �h i

¼ coth
�b

l0ms

3v
1� vL 1� PI

k þ cI PD
k � 1

� �h i� �
0@ 1A

� l0ms

�b

1� vL 1� PI
k þ cI PD

k � 1
� �h i� �

3v : ð38Þ

Explicit expressions for �tð0Þi can also be obtained for spheroidal
microstructures from Eq. (30), together with the expressions in
Appendix A for the derivatives of the PD with respect to U. On
the other hand, the expressions for �mð1Þi ð�bÞ and eCmag

ij are more com-
plicated and will not be given explicitly here. However, we will
provide special forms for these quantities further below in the
important limits of small and large magnetic fields.

In applications, it is important to consider incompressible ma-
trix materials, leading to an indeterminate hydrostatic pressure p
in the traction-strain relation (29) for the composite, such that:

�ti ¼ �pþ �tð0Þi þ
X3

j¼1

eC tot
ij

��j; ð39Þ

where the constraint that ��1 þ ��2 þ ��3 ¼ 0 must be enforced. In this
case, the expressions for the elasticity moduli of the transversely
isotropic composite simplify (Ponte Castañeda and Willis, 1995),
and the components of ~Cme can be expressed in terms of three dif-
ferent shear moduli, eGp; eGn and eGa, corresponding to shear trans-
verse to the fiber axis, longitudinal shear in the direction of the
fiber axis and axisymmetric shear, respectively. They are given in
terms of the shear modulus of the matrix G as:

eGp wI;wD
� 	

G
¼1þcI4

3h wI
� 	

�2 wI
� 	2

1� wIð Þ2
� � �cI 3h wD

� 	
�2 wD
� 	2

1� wDð Þ2
� �

24 35�1

;

ð40Þ

eGn wI;wD
� 	

G
¼ 1þ cI2

1þ wI
� 	2

� �
2� 3h wI

� 	� 	h i
1� wIð Þ2
� �

24
� cI

1þ wD
� 	2

� �
2� 3h wD

� 	� 	h i
1� wDð Þ2
� �

35�1

; ð41Þ

eGa wI;wD
� 	

G
¼ 1þ cI 2

3

h wI
� 	

� 2 wI
� 	2 þ 2 wI

� 	2h wI
� 	h i

1� wIð Þ2
� �

24
� cI

h wD
� 	

� 2 wD
� 	2 þ 2 wD

� 	2h wD
� 	h i

1� wDð Þ2
� �

35�1

; ð42Þ

with

hðwÞ ¼

w½arccosðwÞ �w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2
p

�
ð1�w2Þ3=2 w < 1

2=3 w ¼ 1

w w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 1
p

� arccoshðwÞ
h i

ðw2 � 1Þ3=2 w > 1

8>>>>>>><>>>>>>>:
: ð43Þ

In any case, under the aligned loading conditions assumed here,
only the transverse and axisymmetric shear moduli are relevant,
and they can be related to the components of eCme

ij via:eCme
11

eC me
12

eC me
13eCme

21
eC me

22
eC me

23eCme
31

eC me
32

eC me
33

264
375 ¼

4
3
eGa � 2

3
eGa � 2

3
eGa

� 2
3
eGa

1
3
eGa þ eGp

1
3
eGa � eGp

� 2
3
eGa

1
3
eGa � eGp

1
3
eGa þ eGp

2664
3775: ð44Þ
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4. Axisymmetric microstructure and loading: uniaxial tension
test

The theory developed in the previous section for spheroidal
inclusions and distributions is valid for wD – wI; however, in this
section, for simplicity, it will be assumed that w = wD = wI. In addi-
tion, as depicted in Fig. 2, we let ê1 be the axis of symmetry for the
inclusion and distributional spheroids, and assume that the mag-
netic field is aligned with this symmetry direction such that
�b ¼ �bê1. Similarly, we consider axial traction such that �t1 ¼ �t with
�t2 ¼ �t3 ¼ 0. Under these conditions, the isotropic symmetry in the
transverse plane defined by ê2 and ê3, together with the incom-
pressibility constraint imply that the system can be described by
a single strain parameter �� ¼ ��1 ¼ �2��2 ¼ �2��3.

4.1. Magnetization response

In terms of ��, the magnetization can then be written as:

�m ¼ �mð0Þð�bÞ þ �mð1Þ1 ð�bÞ �
�mð1Þ2

2
ð�bÞ �

�mð1Þ3

2
ð�bÞ

" #
�� ¼ �mð0Þð�bÞ þ �mð1Þð�bÞ��:

ð45Þ

Because of the nonlinear magnetic behavior, the expressions for �mð0Þ

and �mð1Þ, as functions of �b, are complicated. However, simple
expressions can be obtained by considering the limits of small
and large �b, respectively, corresponding to linear and saturation
magnetization responses.

Small �b limit. For the case of small �b, the magnetization is pro-
portional to the magnetic flux so that:

l0 �m ¼ ~vi
�b; ð46Þ

where ~vi represents the initial susceptibility of the composite,
which depends on the strain, but not on �b. It can thus be written as:

~vi ¼
o �m

o�b






�b¼0
¼ ~vð0Þi þ ~vð1Þi

��; ð47Þ

where ~vð0Þi is the initial susceptibility of the composite at zero strain
given by

~vð0Þi ¼ l0
o �mð0Þ

o�b






�b¼0

¼

� cIvð1�w2Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2
p

ðw2½vðcI � 1Þ þ 1� � 1Þ �wvðcI � 1Þ arccosðwÞ
w < 1

3cIv
3þ 2ðcI � 1Þv w ¼ 1

cIvð�1þw2Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þw2

p
ðw2½vðcI � 1Þ þ 1� � 1Þ �wvðcI � 1ÞarccoshðwÞ

w > 1

8>>>>>>>>><>>>>>>>>>:
;

ð48Þ
Fig. 2. Relevant loading conditions and material variables for composites with axial
symmetry. The composite consists of spheroidal particles with aspect ratio wI and
distributional spheroid with aspect ratio wD. The magnetic field and stretch are
aligned with the particle aspect ratio and the normal traction on the surface.
and ~vð1Þi is a correction accounting for the strain given by

~vð1Þi ¼ l0
o �mð1Þ

o�b






�b¼0

¼

3wðcIÞ2v2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2
p

½3w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2
p

� ð1þ 2w2Þ arccosðwÞ�
2½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2
p

ðw2½vð1� cIÞ � 1� þ 1Þ þwvðcI � 1Þ arccosðwÞ�2
w < 1

18ðcIÞ2v2

5½3þ 2ðcI � 1Þv�2
w ¼ 1

3wðcIÞ2v2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þw2
p

½3w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þw2
p

� ð1þ 2w2ÞarccoshðwÞ�
2½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þw2
p

ðw2½vð1� cIÞ � 1� þ 1Þ þwvðcI � 1ÞarccoshðwÞ�2
w > 1

8>>>>>>>>><>>>>>>>>>:
:

ð49Þ

Large �b limit. In the limit as �b!1, the composite will reach
magnetic saturation with magnetization given by

�ms ¼ lim
�b!1

�m ¼ �mð0Þs þ �mð1Þs
��; ð50Þ

where

�mð0Þs ¼ lim
�b!1

�mð0Þ ¼ cIms; ð51Þ

and

�mð1Þs ¼ lim
�b!1

�mð1Þ ¼ 0: ð52Þ

These expressions can be easily derived by considering the compos-
ite saturation at finite strain. In the limit as �b!1, all the particles
saturate so the composite magnetization will be the product of the
particle saturation magnetization and the current volume fraction.
For an incompressible composite the particle concentration is fixed;
therefore, �ms ¼ cIms, independently of the strain. This result is con-
sistent with the recent experimental and theoretical predictions gi-
ven by Diguet et al. (2010).

4.2. Mechanical response

Under uniaxial loading, the composite symmetry and incom-
pressibility allow the reduction of Eq. (39) to the following expres-
sion for the uniaxial traction:

�t ¼ �tð0Þð�bÞ þ eEtotð�bÞ��: ð53Þ

In this expression, �tð0Þ corresponds to the traction at �� ¼ 0. It is the
effective uniaxial actuation stress of the composite, and is given by

�tð0Þð�bÞ ¼ l0 �mð0Þð�bÞ
� 	2

Dð0ÞðwÞ; ð54Þ

where D(0)(w) is a geometric factor defined by

Dð0ÞðwÞ ¼ �1=2� 1
2

oPD
1

o�k1
þ 1

2
oPD

1

o�k2

 !





�k1¼�k2¼�k3¼1

¼

�2þ 5w2 þ 2w2

4ð�1þw2Þ2
þ 3wð1þ 2w2Þ arccosðwÞ

4ð1�w2Þ5=2 w < 1

�3=10 w ¼ 1

�2þ 5w2 þ 2w2

4ð�1þw2Þ2
þ 3wð1þ 2w2ÞarccoshðwÞ

4ð�1þw2Þ5=2 w > 1

8>>>>><>>>>>:
:

ð55Þ

On the other hand, eEtot is the effective total Young’s modulus for
the composite, which can be broken up into a purely mechanical
part and a part depending on �b, such that:

eEtotð�bÞ ¼ eEme þ eEmagð�bÞ: ð56Þ

Thus, eEme is the mechanical Young’s modulus for the composite in
the axial direction, such that eEme ¼ 3eGa, where eGa is given by
Eq. (43). The magnetic modulus eEmag depends on the applied mag-
netic field �b in a complicated fashion; however, as was the case for



Table 1
Typical values of j for different constituent materials (Kaye and Laby Tables of
Physical and Chemical Constants, 2011).

Matrix G (MPa) Inclusions l0ms (Tesla) j

Elastomer 0.01–10 High purity iron 2.16 371–.370
Elastomer 0.01–10 Cast iron 1.70 230–.230
Elastomer 0.01–10 Nickel alloys 0.77 47.2–.0472
Elastomer 0.01–10 Cobalt–iron alloy 2.35 439–.439
Silicon rubber 0.1 Steels 2.00–2.15 31.8–36.8
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the magnetization, simpler expressions may be generated by con-
sidering the small and large �b limits.

Small �b limit. In the limit of small �b, it is found that:

�tð0Þ ¼ bi
�b2 þ Oð�b4Þ; ð57Þ

where bi is a material parameter characterizing the initial growth of
�tð0Þ with �b, such that:

bi ¼
1
2

o2�tð0Þ

o�b2







�b¼0

¼
~vð0Þi

� �2
Dð0ÞðwÞ

l0
: ð58Þ

In addition, in the limit of small �b, it is also found that:eEtot ¼ eEme þ oð�b2Þ; ð59Þ

so that the effective modulus reduces to the purely mechanical
modulus in this limit.

Large �b limit. As previously noted, the applied traction in Eq. (53)
depends only on the magnetic fields through the magnetization;
therefore in the limit of large �b, the magneto-mechanical effects
must also saturate. The saturation value of the traction, �ts, depends
on the strain, and can be written as:

�ts ¼ lim
�b!1

�t ¼ �tð0Þs þ eEtot
s

��; ð60Þ

where �tð0Þs and eEtot
s are the saturation values of �tð0Þ and eEtot, respec-

tively. In this limit, it can be shown that:

�tð0Þs ¼ l0m2
s ðcIÞ2Dð0ÞðwÞ; ð61Þ

whileeEtot
s ¼ eEme þ eEmag

s ; ð62Þ

witheEmag
s ¼ l0m2

s ðcIÞ2Dð1ÞðwÞ; ð63Þ

where

Dð1ÞðwÞ¼ � oPD
1

o�k1o�k1
þ2

oPD
1

o�k1o�k2
�1

2
oPD

1

o�k2o�k2
�1

2
oPD

1

o�k3o�k2
�oPD

1

o�k1
�1

2
oPD

1

o�k2

 !





�k1¼�k2¼�k3¼1

¼

�8þ251w2þ299w4�2w6

32ð�1þw2Þ3
þ3wð7þ125w2þ48w4Þarccos ðwÞ

32ð1�w2Þ7=2 w<1

�3=35 w¼1
�8þ251w2þ299w4�2w6

32ð�1þw2Þ3
�3wð7þ125w2þ48w4Þarccosh ðwÞ

32ð�1þw2Þ7=2 w>1

8>>>>><>>>>>:
:

ð64Þ
4.3. Magnetostriction

For magnetically susceptible materials, the magnetostrictive
strain, ��m is a very important property. It corresponds to the mag-
netically induced deformation when no mechanical traction is ap-
plied. An expression for the magnetostrictive strain is obtained by
setting �t ¼ 0 in Eq. (53), and solving for ��, with the result that:

��mð�bÞ ¼ ��tð0Þð�bÞeEme þ eEmagð�bÞ
: ð65Þ

However, Eq. (65) must be consistent with the small-strain
approximation. The terms �tð0Þ and eEmag can be shown to be of the
same order of magnitude, and the small-strain requirement im-
plies that �tð0Þ and eEmag must be assumed to be small compared toeEme. Since �tð0Þ saturates to �tð0Þs , the strain will be small for all mag-
netic fields provided that:

��tð0ÞseEme












 ¼ l0m2

s ðcIÞ2 Dð0ÞðwÞ



 




3eGa

� 1: ð66Þ
This condition is satisfied when the dimensionless parameter:

j ¼ l0

G
m2

s ð67Þ

is small enough. The parameter j relates the magnetic forces among
the particles at saturation to the stiffness of the matrix. Higher val-
ues for j indicate strong magnetic effects relative to the stiffness of
the matrix. For known magnetic materials, l0ms 6 2.44T, but j can
still be large if the matrix is soft enough (i.e., G is small), see Table 1.

When j is such that condition (66) is satisfied, Eq. (65) reduces
to:

��mð�bÞ ¼ �
�tð0Þð�bÞeEme

: ð68Þ

More explicit expressions can then be obtained in the limits of small
and large �b, as given next.

Small �b limit. In this limit, �tð0Þ is given by expression (57), and it
follows that:

��mð�bÞ ¼ ai
�b2 þ oð�b4Þ; ð69Þ

where

ai ¼
1
2

o2��m

o�b2







�b¼0

¼
� ~vð0Þi

� �2
Dð0ÞðwÞ

3l0
eGa

; ð70Þ

is a parameter describing ��m in the linear magnetization regime,
where, according to (69), ��m grows quadratically with �b.

Large �b limit. For large �b, the magnetization saturates and ��m is
given by

��m
s ¼ lim

�b!1
��m ¼ �

�tð0Þs

3eGa

¼ �l0m2
s ðcIÞ2Dð0ÞðwÞ

3eGa

; ð71Þ

which is proportional to j and to the square of the volume fraction
cI (for small cI).

4.4. Actuator energy density

The actuation stress �tð0Þs and the magnetostriction ��m
s are both

important measures of actuator performance. However, in applica-
tions, the actuation energy density, describing the potential for en-
ergy transfer, is often more important (Pelrine et al., 2000).

At saturation, the actuation energy density for the uniaxial load-
ing conditions of this section can be estimated as:

�ea ¼ ��m
s

�tð0Þs



 

 ¼ l2
0m4

s ðcIÞ4ðDð0ÞðwÞÞ2

3eGa

; ð72Þ

which can also be written in terms of the parameter j as:

�ea ¼ jl0m2
s

G

3eGa

ðcIÞ4ðDð0ÞðwÞÞ2: ð73Þ

This means that, for combinations of G and ms resulting in the same
j, the energy density is maximized for the largest value of ms. Also,
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Fig. 3. The magnetization in the unstrained composite �mð0Þð�bÞ as a function of magnetic flux �b for various microstructures. (a) The magnetization curves for various
concentrations cI with spherical aspect ratio w = 1. (b) The curves for a fixed concentration cI and a variety of aspect ratios w. (c) The magnetization curves for spherical aspect
ratios w = 1 for different particle susceptibilities v. (d) The magnetization curves for elongated aspect ratios w = 10 for different particle susceptibilities v.
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note that, at saturation, the energy transfer is proportional to the
volume fraction cI to the fourth power (for small cI).
5. Discussion of the results for uniaxial loading

Fig. 3 shows the magnetization curves for the composite when
�� ¼ 0, as determined by the nonlinear variational estimate (Eqs.
(35)–(38)). The plots are normalized by the magnetic saturation
ms. The initial slope of these curves is ~vð0Þi and the value as
�b!1 is the magnetic saturation �ms. Fig. 3(a) shows how the sat-
uration magnetization and the initial susceptibility increase with
the inclusion concentration. In agreement with expression (51),
the results show that the saturation magnetization scales linearly
with the concentration, while the initial susceptibility has a more
complicated dependence on concentration. On the other hand,
Fig. 3(b) shows that the initial susceptibility of the composite has
a marked dependence on particle shape, while the saturation mag-
netization is independent of particle shape. Fig. 3(c) and (d) depict
the effect of particle initial susceptibility v on the properties of the
composite. Examining both plots we can see that changing the ini-
tial susceptibility of the particles affects the initial susceptibility of
the composite, but not the corresponding saturation values.
Fig. 4 shows more detailed plots of the effect of microstructure
on the zero-strain initial susceptibility of the composite ~vð0Þi . Elon-
gated initial shapes (w > 1) lead to larger initial susceptibilities for
the composite. This makes sense because elongated, isolated parti-
cles (with w > 1) magnetize more easily than disk shaped particles
(with w < 1). The composite susceptibility also depends on the par-
ticle susceptibility, but the focus here is on values of v close to 1,
where the change in v has a relatively small effect on the behavior
of the composite. The effect of the strain �� on the initial suscepti-
bility ~vi may be obtained via expression (47), but is relatively small
and will not be shown here. Also, as already mentioned, the strain ��
has no effect on the saturation magnetization of the composite.

Fig. 5 depicts the effects of the magnetic field on the traction-
strain curve. The traction is non-dimensionalized by the shear
modulus of the matrix phase. Fig. 5(a) shows the magnetic field
has the effect of shifting the curve downwards; essentially, this
means that a compressive traction would be necessary to prevent
the sample from elongating. The value of this traction is specified
by the vertical intercept of the curves and is the actuation stress
�tð0Þ. The corresponding horizontal displacement defines the magne-
tostrictive strain, ��m. As the magnetic field increases, the plots ap-
proach the saturation traction-strain curve whose vertical and
horizontal intercepts are �tð0Þs and ��m

s respectively. These plots were
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obtained neglecting the contribution of eEmagð�bÞ because the effect
of eEmagð�bÞ is small, as we will show. Fig. 5(b) shows the effect of
increasing j on the saturation traction-strain curves. As expected
for larger j, there is a more pronounced effect of the magnetic field
indicating that the magnetic effects are stronger compared to the
mechanical effects.

The plots in Fig. 6 show the traction as a function of the strain
for j = 16. The plots are for �b ¼ 0 and �b!1. The different slopes
in Fig. 6(a) and (c) illustrate the mechanical reinforcement effect of
the particles on the composite. They depend on the particle shape
and concentration. Fig. 6(b) and (d) show the corresponding plots
when a magnetic field is applied. The slope of the curve remains
the same but there is a shift downwards. The vertical shift in-
creases monotonically with concentration, but shows a more com-
plex dependence on the particle aspect ratio. There is a very small
change in the slope of the curves due to the magnetic field, which
is not visible here, but will be discussed next when we look at the
modulus curves.

Fig. 7 depicts the magnetoelastic moduli of the composite at
high magnetic field normalized by the shear modulus of the
matrix. The total modulus eEtot

s depends on the magnetic field, buteEmag
s is small relative to the mechanical contribution even though
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Fig. 5. The traction �t as a function of the strain �� for different magnetic loadings and mat
saturation traction-strain curves for different values of j.
the magnetic field is large enough to bring all the particles to sat-
uration. Thus, the primary effects seen in Fig. 7(a) and (c) are the
role of aspect ratio w and concentration cI on the purely mechani-
cal reinforcement of the composite. It is interesting that even
though the magnetic modulus is small, it can be negative or posi-
tive depending on particle aspect ratio, as shown in Fig. 7(b) and
(d). This magnetic modulus is due to the magnetic forces on parti-
cles changing relative positions with the deformation. These parti-
cle forces depend in a complicated way on the microstructure;
subsequently, the modulus depends on how the microstructure
changes with the deformation. In principle we could also consider
fixed m, fixed h, and fixed b moduli which would be different for
magnetic fields below saturation; however since the magnetic field
would be smaller the overall effect would also be minimal.

Fig. 8 shows the magnetostriction ��m as a function of �b for dif-
ferent aspect ratios w and concentrations cI. The magnetostriction
is normalized by j indicating that, for fixed microstructure, mag-
netostriction is a balance between the magnetic saturation of the
particle and the stiffness of the matrix, and can be increased by
softening the matrix. The effect is initially quadratic in �b but then
saturates. The range of �b where the magnetostriction is quadratic is
the range where the magnetization is linear. The initial curvature
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erial parameters. (a) The traction-strain curves for different magnetic flux �b. (b) The
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Fig. 6. The traction �t vs strain �� with no magnetic field and with high magnetic field �b!1. (a) The traction-strain curves for spherical aspect ratio w = 1 at different
concentrations cI when the magnetic field is off. (b) Corresponding plots when the magnetic field is large enough to saturate the composite. (c) The traction-strain curves for
cI = 0.3 and different aspect ratios w when the magnetic field is off. (d) Corresponding plots when the magnetic field is large enough to saturate the composite.
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of the lines is determined by the parameter ai, defined by (70), and
the limiting value of magnetostriction by ��m

s , defined by (71). The
predicted effect is always extension in the direction of the applied
magnetic field regardless of aspect ratio and concentration. This is
confirmed by experiments on spherical particles (Ginder et al.,
2002; Guan et al., 2008).

The plots in Fig. 9 show the effect of concentration cI and the as-
pect ratio w on the initial and saturation behavior of magnetostric-
tion. Plots Fig. 9(a) and (c) characterize the magnetostriction when
the composite is magnetically linear, while plots Fig. 9(b) and (d)
show the magnetostriction at saturation. The two effects are
clearly different. The saturation magnetostriction depends on the
distribution of the particles, the saturation magnetization, and
the mechanical reinforcement. For fixed concentration, the
mechanical reinforcement is minimized for aspect ratios below
1(b) so the maximum ��m

s is obtained when cI � 0.61 and
w � 0.67. The initial behavior depends on the same parameters
and on the composite susceptibility. The composite susceptibility
is larger for elongated particles, w > 1, which initially leads to large
magnetostriction despite the additional stiffening effect. Both ef-
fects tend to vanish as cI ? 1 or w is far from 1 because the com-
posite is becoming mechanically rigid. Overall, for fixed j,
magnetostriction is maximized by increasing the magnetic forces
produced by the inclusions and minimizing their reinforcement
of the composite.
Fig. 10 shows the actuation stress �tð0Þ normalized by l0m2
s as a

function of �b for different aspect ratios w and concentrations cI. The
effect is initially quadratic in �b but then saturates as �b becomes
large. The range of �b where the actuation stress is quadratic is
the range where the magnetization is linear. The initial curvature
of the lines is the parameter bi and the limiting value of actuation
stress is �tð0Þs , as given by expressions (58) and (61), respectively.
These curves are independent of the matrix and the mechanical
stiffening. They correspond to a property of the initial configura-
tion of magnetic particles and represent the net magnetic force
generated by the current distribution of magnetic particles.

The plots in Fig. 11 show the effect of the concentration cI and
aspect ratio w on the initial and saturation behaviors of the actua-
tion stress. Plots Fig. 11(a) and (c) characterize the actuation stress
when the composite is magnetically linear, while plots Fig. 11(b)
and (d) show the actuation stress at saturation. �tð0Þs is quadratic
in the concentration because it depends only on the saturation
magnetization and the distribution of the particles. It is not com-
pensated for by the mechanical reinforcement like the magneto-
striction. In the range of linear magnetic behavior, the composite
susceptibility also affects the actuation stress which leads to the
more complicated behavior for bi. Prolate shapes (with w > 1) tend
to have a bigger effect on bi than oblate shapes (with w < 1), but
both prolate and oblate shapes tend to increase the saturation trac-
tion j�tð0Þs j. This indicates that both prolate and oblate shapes can
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Fig. 7. The total magnetoelastic Young’s modulus eEtot
s and the magnetic contribution to the modulus eEmag when the field is large enough to bring all the particles to saturation.

(a) The total Young’s modulus of the composite as a function of concentration cI. (b) The corresponding magnetic part of the Young’s modulus. (c) The total Young’s modulus
of the composite as a function of aspect ratio w. (d) The corresponding magnetic part of the Young’s modulus.
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lead to a greater actuation stress, but in the linear regime oblate
shapes are slower to magnetize, limiting the actuation stress of
the composite.
Fig. 12 shows the actuation energy density �ea as a function of
the concentration cI and aspect ratio w. The actuation energy den-
sity is quartic to leading order in the concentration, so that even for
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Fig. 9. The coefficient of magnetostriction ai and the saturation magnetostriction ��m
s for different microstructures. The results correspond to the magnetostriction in the range
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concentrations up to 40%, it is relatively small. The dependence on
the aspect ratio is more subtle, showing that for a set concentration
there are two local maxima for the energy density. This effect is the
result of a complex dependence on the magnetic and mechanical
properties of the composite. The actuation energy also goes to zero
when cI ? 1 or w is far from 1 because the composite is becoming
mechanically rigid. On the other hand, when cI = 0, the magnetic
energy is unavailable to the composite because the magnetization
vanishes.

Fig. 13 provides a comparison of the predictions of the theory
against the experiments of Guan et al. (2008), for the magnetostric-
tion ��m as a function of the magnetic intensity �h. Even though the
precise material properties for the matrix and particles were not
provided by the authors, it was still possible to infer values of
the properties in our model to achieve a reasonable match to the
experimental data. The model does predict a somewhat weaker ef-
fect of particle concentration than the experiments. This is consis-
tent with the use of estimates of the Hashin–Shtrikman type for
the magnetic and elastic effects, which are known to underesti-
mate the effect of particle interactions, especially at large volume
fractions. However, given the uncertainties involved in the experi-
mental data, the model does capture very well the qualitative fea-
tures of the experiments, and can even provide reasonably good
predictive capabilities. In addition, it should be noted that Guan
et al.’s experiments exhibited hysteresis, which is not accounted
for in our theory. The hysteresis of the particles themselves is very
difficult to describe and including these effects in the homogeniza-
tion is beyond the scope of the present work.

It is also relevant to mention that Diguet et al. (2010) have mea-
sured experimentally the magnetostriction of a cylinder made of
an MRE. However, their results depend on the aspect ratio of the
cylinder (which is not the same as the aspect ratio of the inclu-
sions) and do not correspond to the magnetostriction defined in
this paper, which is a shape-independent (i.e., a material) property.
However the results are qualitatively consistent and of the same
order of magnitude.
6. Concluding remarks

In this work, estimates have been developed for the magneto-
elastic properties of spheroidal-particle MREs under aligned load-
ing conditions. The properties include the magnetostrictive
strain, the field-dependent Young’s modulus, the actuation stress,
and the actuation energy density. The results are based on the fi-
nite-strain homogenization framework and partial decoupling
approximation introduced in Ponte Castañeda and Galipeau
(2011), which provides estimates for the total stress and magneti-
zation in MREs with rigid magnetic inclusions. In particular,
expressions for the applied traction on the composite are derived
from the total stress by accounting for the magnetic stress outside
the sample. The results are formulated in the finite strain context,
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but then specialized for small strains, where we define appropriate
parameters characterizing the magnetoelastic behavior of the
composites.
The magnetoelastic effects in these systems are found to be of
second order in the particle concentration and limited by the mag-
netic saturation of the particles. In this context, it should be
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emphasized that while the macroscopic stress inside a given MRE
specimen includes contributions that are of first order in the con-
centration, such contributions drop out from the corresponding
expressions for the external traction (on the specimen), because
of the Maxwell stresses that surround the specimen. This result
is consistent with the fact that for small (dilute) concentrations,
the particles do not interact and the net forces on the particles van-
ish, producing no magnetoelastic coupling effects. In addition, the
magnetoelastic coupling is seen to arise from the dependence of the
(nonlinear) magnetic susceptibility of the MRE on the deformation,
and has been linked to certain microstructural tensors characteriz-
ing the two-point correlation function for the random distribution
of the particles in the elastomer matrix. However, the thermody-
namically consistent approach followed in this work is different
from earlier approaches (Borcea and Bruno, 2001; Yin and Sun,
2006), which estimated the average stress in the composite by
means of a direct computation of the inter-particle forces. Although
the specific results developed in this work made use of variational
estimates (Ponte Castañeda and Willis, 1995) incorporating up to
two-point statistics for the distribution of the particle in the com-
posite, the method is more general and could, in principle, be gener-
alized to include the effects of higher-order statistics, to obtain more
accurate estimates at higher particle concentrations.

Concerning the specific results of this work, it is important to
distinguish between two different regimes: the linear magnetiza-
tion regime and the saturation magnetization regime. In the linear
regime, the magnetoelastic coupling is largely controlled by the
composite susceptibility, with microstructures that magnetize eas-
ily favoring strong magnetoelastic effects. In the saturation regime,
the effects are controlled by the saturation magnetization of the
particles and their distribution in space. For small applied mag-
netic fields �b, the magnetostrictive strain grows quadratically with
�b. The corresponding coefficient increases and then decreases with
the particle concentration and aspect ratio (from oblate to prolate
shapes), reaching a maximum effect for a particle concentration of
about 0.2 and a prolate particle shape with aspect ratio of about 4.
On the other hand, for large values of �b, the effect saturates and
scales with the dimensionless parameter j ¼ l0m2

s =G, characteriz-
ing the relative strengths of the magnetic to the elastic forces in the
MRE systems. The maximum magnetostrictive strain is reached at
saturation for a particle concentration of about 0.61 and an oblate
particle shape with aspect ratio of about 0.67. These different re-
sults for different regimes demonstrate clearly the need to account
for the magnetic nonlinearity of the material when seeking to opti-
mize the microstructure in these MRE systems. Predictions for the
optimal microstructure based on the (linear) magnetic susceptibil-
ity of the material do not continue to hold when the magnetic sat-
uration of the particles – corresponding to the largest possible
magnetostrictive strain that the composite material can sustain –
is accounted for. Corresponding predictions for the actuation stress
(at saturation) show that the effect is enhanced by larger concen-
trations of particles and by both strongly oblate and prolate shapes.
Now, while the optimal microstructures for the magnetostrictive
strain and the actuation stress are somewhat contradictory, in
applications, a more useful figure of merit is the actuation energy
density of the material, which is found to be optimized by rela-
tively large volume fractions in the order of 75% and either slightly
prolate shapes, or somewhat oblate shapes (with aspect ratios of 2
and 0.2, respectively). Finally, the effect of the magnetic field on
the Young’s modulus of the material was found to be relatively
small compared to the purely mechanical modulus of the compos-
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ite, although it is worth emphasizing that prolate shapes can be
used to reduce the total modulus of the MRE under application
of a magnetic field.

The results presented in this paper have focused on magnetic and
mechanical loadings that are aligned with the uniaxial symmetry
axes of the particles. We have also considered magnetic loadings
that are perpendicular to this symmetry axis, and investigated the
effects of particle distributions in an attempt to model chain distri-
butions of spherical particles. However, the characterization of such
systems requires consideration of more general orthotropic symme-
tries for the material behavior, leading to significantly more complex
expressions and results, which will be reported elsewhere
(Galipeau, 2012). More generally, if the magnetic and/or mechanical
loading axis are not aligned with the particle axes, additional effects
are expected due to the particle rotations that would be generated
by the magnetic and elastic torques on the particles. The particle
rotations generated by a non-aligned magnetic field have been ad-
dressed recently by Siboni and Ponte Castañeda (2011a) in the con-
text of small strains and rotations. Such particle rotations, whether
induced mechanically or magnetically, have been shown to produce
effects that are of the same order as the particle concentration, and a
dilute theory has been developed accordingly by Siboni and Ponte
Castañeda (2011b), again in the small strain/small rotation context.
More general calculations in the context of finite deformations for
non-aligned situations are in progress and will be reported else-
where (Galipeau and Ponte Castañeda, in preparation).

Finally, it should be noted that the results of this work concern-
ing the effects of particle shape for MREs are also expected to be
relevant for certain types of dielectric elastomer composites. In-
deed, it has been shown recently (Ponte Castañeda and Siboni,
2011) that the framework of Ponte Castañeda and Galipeau
(2011) for magnetoelastic composites can be extended to certain
classes of electroactive polymer composites consisting of stiff
dielectric (ferroelectric) particles that are randomly distributed in
a soft dielectric elastomer matrix that can be idealized as having
a deformation-independent dielectric coefficient.
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Appendix A. The derivatives of PD.

In this appendix, we provide the derivatives of the distribution
tensor PD(U), evaluated when �k1 ¼ �k2 ¼ �k3 ¼ 1, for spheroidal dis-
tributions aligned with the ê1 axis. Note that in these expressions
w = wD.
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