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Abstract

The unilateral contact buckling behaviour of delaminated plates in a composite member is studied in this paper, where
the two-dimensional mechanical problem is simplified to a one-dimensional mathematical model following the assumption
of a buckling mode function in terms of the lateral coordinates. After the governing differential equations for the plate
parts in the contact and non-contact regions have been solved, the problem is reduced to just two nonlinear algebraic equa-
tions allowing the buckling coefficient to be obtained through an iteration method. A simplified method is also deduced
based on an assumed zero length of contact. The numerical results of the buckling coefficients based on both methods show
good agreement.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite members composed of several layers (especially where the layers vary significantly in thickness
and material properties), may potentially exhibit compressive buckling under mechanical or thermal loadings,
during which sections of the different layers become separated (delaminated), and then buckle away from each
other. Most commonly, a thin layer or ‘skin’ will buckle away from a thicker layer, or ‘core’, typically of lower
modulus. When the bonding action between the layers is ignorable, this type of buckling problem may be
modelled by treating the distinct layers as elastic plates in a state of unilateral contact (Fig. 1). Buckling prob-
lems of this type are difficult to analyse due to the inherent nonlinearities and the complexity resulting from the
unilateral contact effects.

Experiments conducted as part of a research project aimed at the development of composite components
for the construction industry in New Zealand, CSA (2004) have shown the pivotal importance of initial skin
buckling in the behaviour of composite wall panels, and also the failure initiation role played by post-buckling
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Fig. 1. Local buckling in composite members. (a) Cross-section of a thin-walled composite column, (b) cross-section of a hollow
composite panel, (c) cross-section of a flat composite panel, (d) cross-section of a corrugated composite panel, (e) compressive buckling
mode of contacting plates – longitudinal section.
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behaviour. Fig. 1 shows the cross-section of a number of composite members in which delamination-type plate
buckling could play a significant role. Confidentiality conditions currently prevent the publication of specific
details of certain specimens being developed, but do not constrain the dissemination of the governing
mechanics.

Seide (1958) and Co (1977) were among the earliest researchers of the contact buckling problem, which was
extended recently to a compressive plate on a tensionless rigid foundation by Shahwan and Waas (1994, 1998)
and Smith et al. (1999a). As a practical application, Wright (1995), Uy and Bradford (1996) and Smith et al.
(1999b,c) studied the local buckling problem of composite steel-concrete members. Chai (2001) conducted
analytical and experimental studies of post-local buckling response of unilaterally constrained thin plates.
In general, the contact buckling problem of a thin plate resting on a tensionless rigid medium may be consid-
ered as a simple non-contact plate model with only one half-wave. In a new approach to this type of problem,
de Holanda and Goncalves (2003) and Shen and Li (2004) constructed a numerical elastic contact post-buck-
ling model for simply supported plates on tensionless deformable foundations using perturbation and iteration
techniques. Most of the existing literature is confined to the case of a plate on a rigid or elastic spring
constraint.

In this paper, the unilateral contact buckling problem between two infinite plates with immovable ends is
investigated. Assuming a buckling mode function in terms of lateral coordinates allows the formulation of a
one-dimensional mathematical model, taking into account the coupling effect between the two plates. After
solving the governing buckling equations of the plate parts in both the contact and non-contact regions,
the problem is reduced to two nonlinear algebraic equations allowing the buckling coefficient to be obtained
by means of an iteration method.

2. Mechanical model of two plates in contact

Consider a single wavelength part of the two interacting plates (Fig. 2).
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Fig. 2. Mechanical model for buckling of contacting plates.
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For thin plates in compression, the governing equations are
D1 w1c;xxxx þ 2w1c;xxyy þ w1c;yyyy þ
p2K1

c2
w1c;xx

� �
¼ qr; qr P 0; ð1aÞ

D2 w2c;xxxx þ 2w2c;xxyy þ w2c;yyyy þ
p2K2

c2
w2c;xx

� �
¼ �qr; qr P 0; ð1bÞ

Di wi;xxxx þ 2wi;xxyy þ wi;yyyy þ
p2Ki

c2
wi;xx

� �
¼ 0; i ¼ 1; 2; ð1cÞ

Di ¼
Eit3

i

12ð1� m2
i Þ
; i ¼ 1; 2 and ð2Þ

Ki ¼
c2rxiti

p2Di
; i ¼ 1; 2; ð3Þ
where wic, wi are the vertical displacements in the contact and non-contact regions respectively of plate i; Di is
the well-known plate rigidity and Ki is a dimensionless coefficient; qr is the contact force between the two
plates; Ei, mi, ti are the elastic modulus, Poisson’s ratio and thickness of plate i and rxi is the normal stress
in the x-direction. The subscripts ,x(,y) indicate partial differentiation, o/ox(o/oy), etc.

Assuming the two plates have the same compressive strain,
rx1=E1 ¼ rx2=E2; ð4Þ
(3) may be rewritten as
K2 ¼
t2
1ð1� m2

2Þ
t2
2ð1� m2

1Þ
K1: ð5Þ
The inequality qr P 0 in (1), which means that plate 1 is supported by plate 2, requires
K2 < K1; or t2
1ð1� m2

2Þ < t2
2ð1� m2

1Þ:
Considering that w1c = w2c = w3 in the contact area, adding (1a) to (1b), one obtains
w3;xxxx þ 2w3;xxyy þ w3;yyyy þ
p2

c2
K3w3;xx ¼ 0; ð6Þ

where K3 ¼
D1K1 þ D2K2

D1 þ D2

: ð7Þ
Thus the mechanical model is reduced to three Eqs. (1c) and (6), governing buckling.
Assuming wi(xi,y) = fi(xi)g(y), Eqs. (1c) and (6) may be rewritten as
f
0000

i g þ 2f 00i g00 þ fig
0000 þ p2

c2
Kif 00i g ¼ 0; i ¼ 1; 2; 3: ð8Þ
Assuming qr(x3,y) = qx(x3)g(y), (1a) may be rewritten as
D1ðf
0000

3 g þ 2f 003 g00 þ f3g
0000 þ p2

c2
K1f 003 gÞ ¼ qxg; ð9Þ
where primes denote differentiation with respect to x or y.
The boundary conditions of the problem are
gð�c=2Þ ¼ g00ð�c=2Þ ¼ 0 for simply supported plates ð10aÞ
and gð�c=2Þ ¼ g0ð�c=2Þ ¼ 0 for clamped plates: ð10bÞ
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The continuity condition between f1, f2, f3 is defined by
fið�a=2Þ ¼ f3ðb=2Þ; i ¼ 1; 2; ð11aÞ
f 0i ð�a=2Þ ¼ f 03ðb=2Þ; i ¼ 1; 2 and ð11bÞ
f 00i ð�a=2Þ ¼ f 003 ðb=2Þ; i ¼ 1; 2: ð11cÞ
To satisfy the boundary condition of (10), the lateral (buckling) mode function g(y) may be assumed as
gðyÞ ¼ cos
py
c

for a simply supported plate ð12aÞ

and gðyÞ ¼ ½1=4� ðy=cÞ2�2 for a clamped plate; ð12bÞ
where (12a) is the exact buckling mode function; while (12b) is approximate, but of good precision (Jones and
Milne, 1976; Smith et al., 1999a).

Taking the integral of (8) and (9) after multiplying both sides by function g(y), and introducing
fiðxiÞ ¼ ~f iðniÞ, where n1,2 = x1,2/a, /1,2 = a/c, n3 = x3/b, /3 = b/c, we get
~f
0000

i ðniÞ � /2
i ðk1 � p2KiÞ~f 00i ðniÞ þ k2/

4
i
~f iðniÞ ¼ 0; i ¼ 1; 2; 3 ð13Þ

and D1b~f
0000

i ðn3Þ � /2
3ðk1 � p2K1Þ~f 003ðn3Þ þ k2/

4
3
~f 3ðn3Þc=b4 ¼ qx; ð14Þ
where k1 = 2p2, k2 = p4 for a simply supported plate; or

k1 = 24, k2 = 504 for a clamped plate.
The symmetric solution of (13) may be written as
~f iðniÞ ¼ A1if1i þ A2if2i; ð15Þ
where the functions f1i and f2i depend on the value of the parameter Di ¼ p2Ki�k1

2

� �2

� k2 as follows:

Case 1: Di > 0:
f1iðniÞ ¼ cosðainiÞ; ð16aÞ
f2iðniÞ ¼ cosðbiniÞ; ð16bÞ

ai; bi ¼ /i
p2Ki � k1

2
�

ffiffiffiffiffi
Di

p� �1=2

: ð16cÞ
Case 2: Di = 0:
f1iðniÞ ¼ cosðainiÞ; ð17aÞ
f2iðniÞ ¼ ni sinðainiÞ; ð17bÞ

ai ¼ /i
p2Ki � k1

2

� �1=2

: ð17cÞ
Case 3: Di < 0:
f1iðniÞ ¼ ðeaini þ e�ainiÞ cosðbiniÞ; ð18aÞ
f2iðniÞ ¼ ðeaini � e�ainiÞ sinðbiniÞ; ð18bÞ

ai; bi ¼ /i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2Ki � k1

2

� �2

� Di

s
� p2Ki � k1

2

� �24 351=2

: ð18cÞ
The continuity condition, (11), may be rewritten as
~f ið�1=2Þ ¼ ~f 3ð1=2Þ; i ¼ 1; 2; ð19aÞ
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~f 0ið�1=2Þ=a ¼ ~f 03ð1=2Þ=b; i ¼ 1; 2 and ð19bÞ
~f 00i ð�1=2Þ=a2 ¼ ~f 003ð1=2Þ=b2; i ¼ 1; 2: ð19cÞ
(19) may be expressed in matrix form as
½K�½A� ¼ 0; ð20Þ
where
K¼

f11ð�1=2Þ f21ð�1=2Þ �f12ð�1=2Þ �f22ð�1=2Þ 0 0

f 011ð�1=2Þ=a f 021ð�1=2Þ=a �f 012ð�1=2Þ=a �f 022ð�1=2Þ=a 0 0

f 0011ð�1=2Þ=a2 f 0021ð�1=2Þ=a2 �f 0012ð�1=2Þ=a2 �f 0022ð�1=2Þ=a2 0 0

f11ð�1=2Þ f21ð�1=2Þ 0 0 �f13ð1=2Þ �f23ð1=2Þ
f 011ð�1=2Þ=a f 021ð�1=2Þ=a 0 0 �f 013ð1=2Þ=b �f 023ð1=2Þ=b

f 0011ð�1=2Þ=a2 f 0021ð�1=2Þ=a2 0 0 �f 0013ð1=2Þ=b2 �f 0023ð1=2Þ=b2

2666666664

3777777775

and½A� ¼ ½A11 A21 A12 A22 A13 A23 �T:
For a non-trivial solution of (20) we require that the determinant of the coefficient matrix should vanish,
jKj ¼ 0: ð21Þ
Observing that the shearing force equilibrium equation on the borderline between the contact and non-con-
tact areas is
D1bw3;xxx þ ð2� m1Þw3;xyycx¼b=2 þ D2bw3;xxx þ ð2� m2Þw3;xyycx¼b=2

¼ D1½w1;xxx þ ð2� m1Þw1;xyy �x¼�a=2 þ D2½w2;xxx þ ð2� m2Þw2;xyy �x¼�a=2 ð22Þ
and recalling that wi(xi,y) = fi(xi)g(y), and using the relationships of (11b) and (15), (22) may be rewritten as
D1½A13f 00013ð1=2Þ þ A23f 00023ð1=2Þ�=b3 � D1½A11f 00011ð�1=2Þ þ A21f 00021ð�1=2Þ�=a3

¼ D2½A12f 00012ð�1=2Þ þ A22f 00022ð�1=2Þ�=a3 � D2½A13f 00013ð1=2Þ þ A23f 00023ð1=2Þ�=b3: ð23Þ
Considering the contact pressure between the two plates, (14) may be rewritten as the following inequality:
qx ¼ D1fA13bf
0000

13 ðn3Þ � /2
3ðk1 � p2K1Þf 0013ðn3Þ þ k2/

4
3f13ðn3Þc þ A23½f

0000

23 ðn3Þ � /2
3ðk1 � p2K1Þf 0023ðn3Þ

þ k2/
4
3f23ðn3Þ�g=b4 P 0; jn3j 6 1=2: ð24Þ
Enforcing the tensionless condition on the borderline contact force requires
Qx ¼ D1½A11f 00011ð�1=2Þ þ A21f 00021ð�1=2Þ�=a3 � D1½A13f 00013ð1=2Þ þ A23f 00023ð1=2Þ�=b3 P 0: ð25Þ
In the non-contact area, the displacements of plate 1 cannot be less than those of plate 2, thus w1 P w2,
which means
A11
~f 11ðn1Þ þ A21

~f 21ðn1Þ � ½A12
~f 12ðn1Þ þ A22

~f 22ðn1Þ�P 0; jn1j 6 1=2: ð26Þ
Considering Eqs. (5) and (7), and inequalities (24)–(26), leads to solutions of Eqs. (21) and (23), for values
of K1 and /2 for varying /1. The true value of /1 is that which minimizes K1. The minimum K1 defines the
buckling coefficient K1cr.
3. Simplified model of plates in contact

If the contact length is assumed negligible, b! 0, and the boundary condition for (19) becomes



X. Ma et al. / International Journal of Solids and Structures 44 (2007) 2852–2862 2857
~f 1ð1=2Þ ¼ ~f 2ð1=2Þ and ð27aÞ
~f 01ð1=2Þ ¼ ~f 02ð1=2Þ ¼ 0: ð27bÞ
The shearing force equilibrium equation at the boundary may be written as
D1
~f 0001 ð1=2Þ þ D2

~f 0002 ð1=2Þ ¼ 0 ð27cÞ

and thus ½eK�½eA� ¼ 0; ð28Þ
Fig. 3. Relationship between buckling coefficient and elastic modulus ratio.

Fig. 4. Relationship between buckling coefficient and thickness ratio.
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where
eK ¼
f11ð1=2Þ f21ð1=2Þ �f12ð1=2Þ �f22ð1=2Þ
f 011ð1=2Þ f 021ð1=2Þ 0 0

0 0 f 012ð1=2Þ f 022ð1=2Þ
D1f 00011ð1=2Þ D1f 00021ð1=2Þ D2f 00012ð1=2Þ D2f 00022ð1=2Þ

26664
37775 and

½eA� ¼ ½A11 A21 A12 A22 �T:
For a non-trivial solution of (28) we require that the determinant of the coefficient matrix vanish,
jeKj ¼ 0: ð29Þ
Fig. 5. Relationship between contact force and modular ratio (assumes A11 + A21 = 1).

Fig. 6. Relationship between contact force and thickness ratio (assumes A11 + A21 = 1).
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The inequality for tensionless contact force on the borderline is
Qx ¼ �D1½A11f 00011ð1=2Þ þ A21f 00021ð1=2Þ�=a3 P 0: ð30Þ
Considering (5) and (30), and solving (29) yields values of K1 for varying /1. The true value of /1 is that
which minimizes K1, with the minimum K1 defining the buckling coefficient, K1cr.
4. Numerical results and verification

For two long, finite-width plates in contact, with Poison’s ratio m1 = m2, the calculated buckling coefficients
for plate 1 (K1cr) for varying ratios of elastic modulus and varying thickness ratios are shown in Figs. 3 and 4.
Fig. 7. Relationship between wavelength and modular ratio.

Fig. 8. Relationship between contact length and modular ratio.
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The calculated contact forces between the two plates, Qx are shown in Figs. 5 and 6, where model 1 refers to
the precise method of (21) and (23), and model 2 denotes the simplified method of (29). The results show that
the buckling coefficients and the contact forces increase when plate 2 has a higher elastic modulus or a greater
thickness, tending to a constant value when the relative rigidity of plate 2 is sufficiently large to simulate a rigid
constraint. The results also show that the simplified method compares well with model 1 for accuracy of cal-
culated buckling coefficients, despite inevitable errors in wavelength due to the assumption of zero contact
length. The wavelength of /1 + /2 (or (a + b)/c) and contact length of /2 (or b/c) are shown in Figs. 7 and
8. The buckling mode displacements of plates with lateral edges simply supported are given in Figs. 9 and
10, which show that the assumption of zero contact length in the simplified method leads to displacement
Fig. 9. Buckling mode of plates with lateral edges simply supported – Model 1.

Fig. 10. Buckling mode of plates with lateral edges simply supported – Model 2 (simplified).



Fig. 11. Pressure distribution in the contact area (assumes A11 + A21 = 1, t2/t1 = 2).

Table 1
Comparison of results

Boundary condition Method in the paper Existing theory

E2/E1 K1cr /1 + /2 K1cr /1 + /2

Simply supported 10�5 (t2/t1 = 2) 4.0 2.00 (Model 1) Plate a 4.0 (Bloom) 2.0 (Bloom)
2.00 (Model 2)

10 (t2/t1 = 10) 5.33 1.74 (Model 1) Plate b 5.33 (Shahwan) 1.73 (Shahwan)
1.73 (Model 2)

Clamped 10�5 (t2/t1 = 2) 6.98 1.33 (Model 1) Plate a 6.97 (Bloom) 1.32 (Bloom)
1.32 (Model 2)

10 (t2/t1 = 10) 10.01 1.15 (Model 1) Plate ba 9.80 (Bloom) 1.20 (Bloom)
1.14 (Model 2) 10.30 (Uy) 1.00 (Uy)

a The single wavelength part of an infinite plate with lateral edges clamped and resting on rigid constraints is similar to an unconstrained
plate with four edges clamped.
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incompatibility between the two plates. The pressure distributions between the two plates in the contact area
are shown in Fig. 11.

To verify the results above we consider two extreme conditions. ‘Plate a’ represents the conditions when the
flexural stiffness of plate 2 is very small, and the behaviour of the skin sheet approaches that of a long, uncon-
strained plate. ‘Plate b’ corresponds to the case when the flexural stiffness of plate 2 is very large, and the
behaviour of the skin sheet is similar to that of a long plate resting on a tensionless, rigid constraint. The com-
parison between the results of the methods in this paper and existing theory (Bloom and Coffin, 2001; Shah-
wan and Waas, 1998; Uy and Bradford, 1996) are shown in table 1.
5. Conclusion

Two unilateral contact models have been presented for the problem of local buckling of delaminated plates
in a composite panel. Good agreement with existing solutions has been demonstrated for two limiting cases.
Numerical results show that the simplified model, in which the contact length is assumed to be zero, generally
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leads to satisfactory results for both the buckling coefficients and the interaction forces at the points of contact
between the plates, although there are inevitable errors in the calculation of wavelength and buckling mode.
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