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Abstract

Rational functions with real poles and poles in the complex lower half-plane, orthogonal on the real line,
are well known. Quadrature formulas similar to the Gauss formulas for orthogonal polynomials have been
studied. We generalize to the case of arbitrary complex poles and study orthogonality on a 9nite interval. The
zeros of the orthogonal rational functions are shown to satisfy a quadratic eigenvalue problem. In the case of
real poles, these zeros are used as nodes in the quadrature formulas.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider linear vector spaces of rational functions with poles in a prescribed set of complex
numbers. Let a sequence of poles A = {�1; �2; �3; : : :} ⊂ Ĉ = C ∪ {∞} be given (where C denotes
the complex plane) and de9ne

�n(z) =
n∏

k=1

(z − �k):

If Pn denotes the space of polynomials of degree at most n over the complex 9eld, then we can
de9ne the space of rational functions of degree n as Ln = {pn=�n: pn ∈Pn}.
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Since A is a countable subset of C, it is always possible to 9nd an �∈C such that �k 	= � for all
k. Without loss of generality we can take this value to be the origin. So in what follows we assume
that �k 	= 0, k = 0; 1; : : : . A basis for Ln is then given by

b0 = 1; bn =
n∏

k=1

Zk(z); n¿ 1 with Zk(z) =
z

1− z=�k
:

Take by convention �0 =∞. The involution operation or substar conjugate of a function is de9ned
as

f∗(z) = f( Iz)

and the superstar transformation for f∈Ln as

f∗(z) =
bn(z)
bn∗(z)

f∗(z):

Note that L∗
n =Ln.

Now let � be a positive bounded measure on the extended real line R̂ = R ∪ {∞} normalized
such that �(R̂) = 1 and whose support is an in9nite set, then

〈f; g〉=
∫
R̂
f(z)g(z) d�(z)

de9nes an inner product which turns Ln into a unitary space. By orthogonalization of the sequence
{b0; b1; : : :}, one obtains the orthonormal rational functions {�0; �1; : : :}. Assume these functions are
normalized such that the leading coeJcient of their expansion in the basis {bk} is real and positive.
Since the measure is normalized, it follows that �0 = 1. The function �n will be called exceptional
if its numerator pn satis9es pn(�n−1) = 0 and degenerate if p∗

n(�n−1) = 0. Note that if all �k =∞,
then the rational situation reduces to the polynomial case.

Furthermore, we de9ne para-orthogonal functions as

Qn(z; �) = �n(z) + ��∗
n(z); �∈T; n¿ 1;

where T denotes the unit circle in the complex plane. They are called para-orthogonal because they
are only orthogonal to a subspace of Ln−1: it is easily checked that Qn ⊥ (Zn−1=Zn∗)Ln−2.

In [1] a distinction is made between real poles and complex poles in the lower half-plane L. It
is our present aim to minimize that distinction as much as possible, for it turns out that the case
of real poles can mostly be treated as a special case of the general situation with arbitrary complex
poles. This is the approach we will follow.

In the next section, we will formulate a recurrence relation for the �n which holds for arbitrary
complex poles. Next we will look at certain Gauss-like quadrature formulas and limit our attention
to the case of orthogonality on a 9nite interval. In the case of real poles, the nodes in the quadrature
formulas are the zeros of �n(z). In the last section, we will show that they satisfy a quadratic
eigenvalue problem.
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2. A fundamental recurrence relation

In the case of real poles, it can be shown [1] that, under certain regularity conditions, the or-
thonormal functions �n satisfy the following three-term recurrence relation:

�n =
(
AnZn + Bn

Zn
Zn−1

)
�n−1 + Cn

Zn
Zn−2

�n−2:

The following theorem says that the same relation holds for functions with arbitrary complex poles,
if we replace Zn−2 with its substar conjugate Z(n−2)∗ (or equivalently �n−2 with I�n−2). For the proof
we refer to [5].

Theorem 2.1. For n=2; 3; : : : ; let �k ∈Lk , k=n−2; n−1; n be three successive orthonormal rational
functions associated with the pole sequence {�1; �2; : : : ; } ⊂ C \ {0}. Then �n−1 is nondegenerate
and �n is nonexceptional if and only if there exists a recurrence relation of the form

�n =
(
AnZn + Bn

Zn
Zn−1

)
�n−1 + Cn

Zn
Z(n−2)∗

�n−2; n¿ 2; (2.1)

where the constant An is nonzero.

If we de9ne �−1 = 0 the recursion holds for n¿ 1. Again if all poles are at in9nity, we recover
the well-known three-term recurrence relation for orthogonal polynomials.

3. Quadrature formulas

The use of the para-orthogonal functions Qn(z; �) as de9ned above lies in the fact that their zeros
are simple and real and can be used as nodes in quadrature formulas which are exact in certain
spaces of rational functions, analogous to the Gauss quadrature formulas for polynomials. This has
been shown for the case of complex poles in the lower half-plane [1], but the proof remains valid
for arbitrary complex poles. We need the following lemma. We omit the proof, which is very similar
to the one for the case of complex poles in L.

Lemma 3.1. Let �n(z) be an orthonormal rational function with arbitrary complex poles
{�1; �2; : : : ; �n} ⊂ C \ {0}. Let L and U denote the lower and upper half-plane, respectively. If
�n ∈U (L;R), then the zeros of �n(z) are in L (U;R). In particular, if �n is real, the zeros of �n
are real as well.

It follows that �n equals �∗
n (up to a constant of modulus one) if �n is real. In this case the zeros

of Qn(z; �) are independent of � and are just the (real) zeros of �n(z). Fix � and put Qn(z; �) =
qn(z; �)=�n(z) then Qn(z; �) is called regular if none of the zeros of qn(z; �) coincides with any of
the poles {�1; : : : ; �n}. In that case we have the following lemma. Again the proof is very similar to
the one for the case of complex poles in L.
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Lemma 3.2. Let �n(z) be an orthonormal rational function with arbitrary complex poles
{�1; �2; : : : ; �n} ⊂ C \ {0} and Qn(z; �) = �n(z) + ��∗

n(z), �∈T the associated para-orthogonal
function. If Qn(z; �) is regular, then Qn(z; �) has n simple zeros on R̂.

If the numerator qn of Qn has degree n − 1 we say that there is a zero at in9nity. It always holds
that the zeros of qn are real and simple, but if Qn is not regular, some of these zeros may cancel
against some of the poles. Now de9ne the space Rn as

Rn =Ln ·Ln∗ =
{

pn(z)
�n(z)�n∗(z)

: pn ∈P2n

}

and the weights �nk as

�nk =


n−1∑
j=0

|�j(�k)|2


−1

with �k = �nk(�), k =1; : : : ; n the zeros of the quasi-orthogonal function Qn(z; �). Then the following
theorem holds. It has been proved in [1] for poles in the lower half-plane, but since the proof depends
mainly on Lemma 3.2 and the fact that Qn ⊥ (Zn−1=Zn∗)Ln−2, it holds for arbitrary complex poles
as well.

Theorem 3.3. Assume Qn(z; �) is regular. Then the quadrature formula∫
R̂
f(z) d�(z) ≈

n∑
k=1

�nkf(�k)

with nodes and weights as de;ned above, is exact on Rn−1, i.e.
∫
R̂ f d� =

∑n
k=1 �nkf(�k) if

f∈Rn−1.

4. Finite interval

In this section, assume that � has compact support [a; b] and is absolutely continuous with respect
to the Lebesgue measure on [a; b]. Without loss of generality we may take this interval to be [−1; 1].
This means we can write d�(z) = w(z) dz where w(z) is a weight function which is nonnegative
almost everywhere (with respect to the Lebesgue measure) and vanishes outside [−1; 1]. Furthermore,
assume that none of the poles is in [− 1; 1].

Of course, the general theory as outlined above in Section 3 remains valid: the zeros of Qn are
real and simple and can be used as nodes in a quadrature formula. But in the case of a 9nite interval,
we would like the nodes to be inside this interval, which is not necessarily true for the zeros of Qn,
as will become clear later on. We have the following theorem.

Theorem 4.1. Let � be as de;ned above and assume none of the poles is in [ − 1; 1]. Then the
para-orthogonal function Qn(z; �) has at least n− 1 zeros inside the open interval (−1; 1).
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Proof. Fix � and put Qn(z; �)=qn(z; �)=�n(z). The zeros of qn(z; �) are real and simple, which means
we can normalize qn such that all its coeJcients are real. Assume this has been done. Note that
a function f is in (Zn−1=Zn∗)Ln−2 iO it can be written as f(z) = (z − I�n)pn−2(z)=�n−1(z) where
pn−2 ∈Pn−2. It follows that Qn ⊥ (z − I�n)=�n−1(z), or∫ 1

−1

qn(z; �)
|�n−1(z)|2 w(z) dz = 0:

Because of the nonnegativity of w(z) this is only possible if qn has at least one zero inside (−1; 1).
Now suppose there are only m6 n−1 zeros �1; : : : ; �m inside the interval. In that case the function

qn(z; �)(z − �1)(z − �2) · · · (z − �m) has constant sign on (−1; 1) so that∫ 1

−1

qn(z; �)(z − �1)(z − �2) · · · (z − �m)
|�n−1(z)|2 w(z) dz 	= 0:

This is impossible since (z − �1)(z − �2) · · · (z − �m)(z − I�n)=�n−1(z) is an element of (Zn−1=
Zn∗)Ln−2.

Now we would like to settle the question whether there are values of � for which all the zeros of
Qn(z; �) are in the interval. For real �n this follows immediately from Theorem 5.2. If �n is not real,
we may reason as follows. From the implicit function theorem it follows that the zeros of Qn(z; �)
are continuous functions of �. Because of Lemma 3.2 their graphs do not intersect. Also it is not
diJcult to show that these functions are monotonous. For a detailed description we refer to [5]. For
a certain value �c the numerator polynomial of Qn has degree n − 1, so one of the zeros tends to
in9nity. Since �= ei� ∈T we may as well consider arg(�) = �∈ [0; 2�]. Now suppose that for every
value of � only n − 1 zeros are inside the interval. Let us denote them by �1(�); : : : ; �n−1(�), in
ascending order. For a certain value �1, one of the outer zeros, say �1(�), will leave the interval
either to approach the zero outside the interval, or to approach in9nity. For another value �2 a zero
�e(�) will enter the interval from the other side such that �e(2�) = �n−1(0). If �2¿�1 then there
are only n− 2 zeros inside the interval for �∈ [�1; �2], which is impossible. It follows that �26 �1.
For � = �1 we then have n zeros inside the (closed) interval. To clarify the above discussion, an
example is given in Fig. 1. The zeros of Q7(z; �) are shown as functions of arg(�). The poles are
at {1 + i; 1− i;−1 + i;−1− i; 2 + i; : : :} and orthogonality is with respect to the Lebesgue measure.
Note that for almost all values of � there are n zeros inside the interval.

5. Real poles

Everything which was said before holds for arbitrary complex poles and is therefore also valid
for real poles. In the case of real poles, however, the para-orthogonal functions Qn(z; �) are (up to
a factor depending only on �) equal to �n(z) (this is also true if only the pole �n is real). This
follows immediately from the remark after Lemma 3.1. Now one de9nes quasi-orthogonal functions,
similar to the para-orthogonal functions, as follows:

Q̃n(z; �) = �n(z) + �
Zn(z)
Zn−1(z)

�n−1(z); �∈R; n¿ 1:
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Fig. 1. Zeros of Q7(z; �) as a function of arg(�).

We set by de9nition

Q̃n(z;∞) =
Zn(z)
Zn−1(z)

�n−1(z):

It is easily checked that also in this case we have Q̃n ⊥ (Zn−1=Zn∗)Ln−2 (note that Zn∗ = Zn). If we
put �= 0 we obtain the orthogonal rational function �n.

These quasi-orthogonal rational functions have basically the same properties as the para-orthogonal
functions de9ned above. We have the following lemma (with the usual de9nition of regularity), as
proved in [1].

Lemma 5.1. Let �n(z) be an orthonormal rational function with real poles {�1; �2; : : : ; �n} ⊂ R\{0}
and Q̃n(z; �) = �n(z) + �(Zn(z)=Zn−1(z))�n−1(z), �∈ R̂ the associated quasi-orthogonal function. If
Q̃n(z; �) is regular, then Q̃n(z; �) has n simple zeros on R̂.

Again the zeros of Q̃n are used as nodes in a quadrature formula. In [1] it is shown that Theorem
3.3 holds with Q̃n in place of Qn and �k the zeros of Q̃n.
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Now let us restrict our attention to the case of a 9nite interval as in Section 4. Under the same
conditions on the measure � and using the orthogonality of �n, the following theorem is easily
proved. We already know that the zeros of �n are real. Note that for all poles at in9nity we recover
a well-known property of zeros of orthogonal polynomials.

Theorem 5.2. Let �n be an orthogonal rational function on the interval [−1; 1] with poles outside
this interval. Then the zeros of �n are simple and contained in the open interval (−1; 1).

Since we assumed that all the poles are outside the interval of integration it follows from the previous
theorem that Q̃n(z; 0) is regular and that there are n simple zeros inside the interval. Using a similar
argument as in Theorem 4.1 we have the following result.

Theorem 5.3. Let � be as de;ned above and assume none of the poles is in [ − 1; 1]. Then the
quasi-orthogonal function Q̃n(z; �) has at least n− 1 zeros inside the open interval (−1; 1).

If �=∞ one of the zeros of Q̃n is the pole �n−1 which is outside the interval.

6. Zeros of orthogonal rational functions

It is a well-known property of orthogonal polynomials that their zeros are the eigenvalues of a
tridiagonal matrix, the Jacobi matrix, containing the recursion coeJcients. In this section, we derive
a similar property for orthogonal rational functions, but here the zeros are eigenvalues of a quadratic
eigenvalue problem.

Taking the numerator of the recurrence relation (2.1) and rearranging yields

−�n−1Cnpn−2(z) + Bnpn−1(z) +
1
�n
pn(z)

=
[
−
(
�n−1

I�n−2
+ 1

)
Cnpn−2(z) +

(
Bn
�n−1

− An

)
pn−1(z)

]
z +

Cn
I�n−2

pn−2(z)z2:

This equation can be written down for every n and after collecting the coeJcients in n× n-matrices
we obtain the following expression:




B1
1
�1

−�1C2 B2
1
�2

. . . . . . . . .

−�n−2Cn−1 Bn−1
1

�n−1

−�n−1Cn Bn







p0(z)

p1(z)

...

pn−2(z)

pn−1(z)



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=




B1
�0

− A1

−( �1I�0 + 1)C2
B2
�1

− A2

. . . . . .

−( �n−2

I�n−3
+ 1)Cn−1

Bn−1

�n−2
− An−1

−( �n−1

I�n−2
+ 1)Cn Bn

�n−1
− An







p0(z)

p1(z)

...

pn−2(z)

pn−1(z)



z

+




0
C2
I�0

. . .

Cn−1

I�n−3

Cn
I�n−2

0







p0(z)

p1(z)

...

pn−2(z)

pn−1(z)



z2 − 1

�n




0

0

...

0

pn(z)



:

We now have an equation of the form −Cnp(z) = Bnp(z)z + Anp(z)z2 − 1=�nq(z) with An;Bn;
Cn ∈Cn×n and p(z); q(z)∈Cn[z]. Let � be a zero of pn then this reduces to the following quadratic
eigenvalue problem:

(An�2 +Bn�+ Cn)p(�) = 0: (6.1)

Thus, we have proved that the zeros of �n satisfy a quadratic eigenvalue problem. In general, a
quadratic eigenvalue problem of size n has 2n eigenvalues. It can be shown, however [5], that due
to the speci9c structure of the matrices An, Bn and Cn there are only n 9nite eigenvalues, so Eq.
(6.1) does not introduce spurious solutions.
Now consider the quadratic matrix equation

AnX 2 +BnX + Cn = 0: (6.2)

If S is a solution of (6.2) then

An�2 +Bn�+ Cn =−(Bn +AnS +An�)(S − �In):

This means that every eigenvalue–eigenvector pair of S is also an eigenvalue–eigenvector pair for
the quadratic eigenvalue problem. Since there are only n eigenvalues in our case, the existence of a
solution S implies that its eigenvalues are the zeros of �n(z). The eigenvectors vi corresponding to
the zeros �i of �n(z) are

v1 =




p0(�1)

p1(�1)

p2(�1)

...

pn−2(�1)

pn−1(�1)




; v2 =




p0(�2)

p1(�2)

p2(�2)

...

pn−2(�2)

pn−1(�2)




; : : : ; vn =




p0(�n)

p1(�n)

p2(�n)

...

pn−2(�n)

pn−1(�n)




:
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Since the polynomials pk(z) all have degree exactly k, these vectors are linearly independent. It
follows that S = V%V−1 with V = [v1 · · · vn] and %=diag(�i) forms a solution to (6.2). We have
thus proved the following theorem.

Theorem 6.1. With An, Bn and Cn as de;ned above, the zeros of the orthonormal rational function
�n(z) are the solutions of the quadratic eigenvalue problem

(An�2 +Bn�+ Cn)p(�) = 0

and the eigenvalues of any matrix X solving

AnX 2 +BnX + Cn = 0:

Numerical experiments have indicated that this quadratic eigenvalue problem is very ill-conditioned.
Further research needs to be done to investigate this. In another contribution of these proceedings
[2] it is shown that the zeros of �n also satisfy a generalized eigenvalue problem, which seems to
be less ill-conditioned. For a more detailed description of solving quadratic eigenvalue problems and
quadratic matrix equations, we refer to [3,4].
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