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SUMMARY

Bladder cancer (or urothelial cell carcinoma [UCC])
is characterized by field disease (malignant alter-
ations in surrounding mucosa) and frequent recur-
rences. Whole-genome, exome, and transcriptome
sequencing of 38 tumors, including four metachro-
nous tumor pairs and 20 superficial tumors, identified
an APOBEC mutational signature in one-third. This
was biased toward the sense strand, correlated
with mean expression level, and clustered near
breakpoints. A > G mutations were up to eight times
more frequent on the sense strand (p < 0.002) in
[ACG]AT contexts. The patient-specific APOBEC
signature was negatively correlated to repair-gene
expression and was not related to clinicopatholog-
ical parameters. Mutations in gene families and sin-
gle genes were related to tumor stage, and expres-
sion of chromatin modifiers correlated with survival.
Evolutionary and subclonal analyses of early/late
tumor pairs showed a unitary origin, and discrete
tumor clones contained mutated cancer genes. The
ancestral clones contained Pik3ca/Kdm6amutations
and may reflect the field-disease mutations shared
among later tumors.
INTRODUCTION

Bladder cancer is the fifth most common cancer in western

countries and is costly to treat because it usually involves

multiple recurrences over several years. Approximately 75% of

patients have a single or multiple non-muscle-invasive urothelial

cell cancers (UCCs), and 10%–15% of these patients progress.

The remaining 25% have a muscle-invasive cancer as the

first lesion (Babjuk et al., 2013). The molecular events that lead

to formation of field cancerization in urothelium (Majewski
C

et al., 2008), disease progression, and muscle invasion are

poorly understood, leaving few options for rational treatment.

Recently, the mutational events in mainly muscle-invasive

UCC have been described (Alexandrov et al., 2013; Balbás-

Martı́nez et al., 2013; Gui et al., 2011; Guo et al., 2013; Iyer

et al., 2013; Kandoth et al., 2013a; Ross et al., 2014). Apart

from the well-known frequent mutations in tumor suppressors

and oncogenes, mutations in many chromatin-modifying genes,

as well as in Stag2, were frequent. Invasive UCC has a relatively

high prevalence of somatic mutations that reflect an extensive

heterogeneity in UCC, with mutations scattered over many

different groups of gene functions, in contrast to, e.g., colorectal

cancer, where Apc, Tp53, and Kras dominate (Kandoth et al.,

2013a). Insight into non-muscle-invasive, low-grade UCC by

massively parallel sequencing has only been reported in a few

exomes (Balbás-Martı́nez et al., 2013), and whole-genome

data have not yet been reported for this tumor type.

Mutagenesis in UCC was recently suggested to reflect the ef-

fect of the APOBEC family of cytidine deaminases (Burns et al.,

2013b; Roberts et al., 2013). Mainly the enzyme APOBEC3B

provides a frequent mutational signature (Burns et al., 2013a).

The APOBEC enzyme has a mutational specificity for the motif

TCW, where W is T or A. This trinucleotide motif showed

a highly significant frequency of mutations in UCC, where C

mutated to T or G (Burns et al., 2013a; Roberts et al., 2013).

The signature was related to frequent mutations and the

presence of strand-coordinated clusters of cytosine mutations

(Burns et al., 2013b). However, no detailed relation to individual

UCC tumor characteristics has been presented.

It is important to define cancer cell subpopulations to further

our understanding of alterations that occur among clonal sub-

populations during disease progression (Aparicio and Caldas,

2013; Kandoth et al., 2013b). In UCC, characterization of cellular

subpopulations by sequencing is needed to gain insight into the

field disease of the mucosa and the population dynamics of

progression.

In this work, we sought to improve our understanding of

genomic alterations in low-grade and -stage UCCs, and clonal

composition in superficial and invasive cancers, with a special
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emphasis on the relation between the APOBEC signature and

genomic and clonal changes. We performed whole-genome

sequencing (WGS) of pairs of a superficial noninvasive tumor

(Ta) and a later mucosa- or muscle-invasive tumor (T1/T2) from

four patients, together with matched normal blood samples

(paired-WGS set; Table S1A). The metachronous tumor pairs

were separated by 323–997 days and were also subjected to

deep-exome sequencing to gain insight into cellular subpopula-

tions (Shah et al., 2012). These data were supplemented with

whole-exome sequencing (WES) on a new set of 30 mainly

low-stage tumors (20 Ta, 5 T1, 5 T2-4, WES set; Tables S1B

and S1C). RNA sequencing (RNA-seq) and SNP arrays provided

further data on molecular alterations.

We observed a strong APOBEC signature in one-third of

cases, which was present in both early and late tumors from

single individuals. The Apobec3b gene transcript was positively

correlated to high stage and increased in lymph node meta-

stases. We found frequent mutations in epigenetic modifiers

and cell membrane/cell adhesion proteins. The former group

mutated early in the disease course and at protein level EP300

provided an independent prognostic biomarker. Neither single

nucleotide variants (SNVs) nor clinicopathological parameters

were related to the APOBEC signature. The subclonal architec-

ture showed an ancestral common clone, a progression clone,

and a nonaggressive clone in all patients with paired tumors.

Many clones contained both mutated tumor suppressors and

oncogenes. The UCC ancestral clones, defining the field dis-

ease, were drivenmainly by Pik3ca andKdm6amutations, which

thus represent potential therapy targets.

RESULTS

Mutations in the Paired-WGS and WES Sets
From each tumor of the paired-WGS set, we generated �2,200

million paired sequences of 101 basepairs (bp), resulting in

a genome-wide average read depth of 49 3 (35.5–65.7) (Fig-

ure S1A; Table S1D; Supplemental Experimental Procedures).

This was supplemented with deep whole-exome sequencing

to a depth of 311 3 (181–405), which was mainly used for cell

population studies in the context of clonal evolution (Table

S1E). We identified 13,443–56,140 SNVs and 2,887–5,253 indels

per sample across the whole genome, and categorized these

by strength of evidence (from Cat 1 [high frequency and high
Figure 1. Overview of Mutations and APOBEC Signature Score

(A) Distribution of SNVs and indels (Tier 0-2, Cat 1-2) for the paired-WGS sample

(B) Mutation type profile for the paired-WGS samples. For each sample, we mad

(C) For each sample and for each trinucleotide with a cytosine as a middle base

neutral genomic regions for theWGS set taking into account only Cat 1 SNVs (left)

Cat 1-2 SNVs (right, color code for mutations upper right). Four WES samples

The score (shown in parentheses) was defined as the normalized ratio of the numb

context.

(D) Fraction of mutation clusters by mutation type for somatic mutations from ei

10 kb containing at least twomutations of the same type (A/C, A/G, A/T, C/

of mutations.

(E) An APOBEC score was calculated for each sample in theWES andWGS sets. T

signature in the exome-capture genomic regions. The samples were further su

Figure S1I for the APOBEC mutational signature in the neutral genomic regions i

See also Figure S1 and Tables S1 and S2.

C

score] to Cat 3 [low frequency and low score]), and by expected

functional impact (Tier 0: loss of function; Tier 1: missense; Tier

2–4: synonymous and noncoding; see Supplemental Experi-

mental Procedures; Tables S2A–S2C). In the analyses presented

below, we focus on the Cat 1-2 SNVs.

In protein-coding regions of the WGS set, we found 50–302

SNVs with a protein-level effect (Tiers 0 and 1) per sample (Fig-

ure 1A; Table S2A), with a median mutation rate of 1.8 SNVs/

Mb (1.33–8.05). In neutral regions, away from protein-coding

genes and evolutionarily conserved elements, the mutation

rate was 3.1 SNVs/Mb excluding the sample P04 T2, which is

an outlier with a much elevated mutation rate of 9.2 SNVs/Mb.

Within protein-coding regions, we separately estimated the

synonymous mutation rate (dS = 3.7 SNVs/Mb) and the non-

synonymous mutation rate (dN = 2.7 SNVs/Mb), accounting for

the number of relevant sites. A dN/dS ratio (0.74) showed that

purifying selection overall dominated in protein-coding regions,

although a relaxed selection pressure on some genes combined

with driver mutations resulted in a much higher ratio than is

observed in human evolution (dN/dS = 0.25) (Scally et al., 2012).

In the WES set, 30 tumors and matched germline DNA were

sequenced to an average depth of 47 3 (31–126) (Table S1F).

In the protein-coding target regions, we observed an average

of 195 (26–779) SNVs and 23 indels (7–60) per sample. An

average of 79 (12–316) genes was affected at the protein level,

with 12 (1–34) genes inactivated by loss of function. The paired

WGS samples similarly had an average of 15 (6–37) genes with

loss-of-function mutations, in line with the rate found previously

(Gui et al., 2011). Overall, a total of 2,537 genes were affected at

the protein level and 402 were inactivated across all samples.

RNA-seq (Figure S1B; Table S1G) and Sanger sequencing of

PCR products validated >90% of SNVs and indels (Supple-

mental Experimental Procedures; Figures S1C–S1F; Tables

S2D–S2F and S3A). The observed mutation rate is similar to

that found in previous studies (Table 1), but lower than those

reported in recent studies using different algorithms and mainly

based on muscle-invasive UCC (6–8/Mb), which had a higher

mutation rate (Alexandrov et al., 2013; Kandoth et al., 2013a).

A Strong APOBEC Mutagenesis Pattern Is Observed
in One Out of Three UCCs
To gain more detailed insight into the mutational process,

we analyzed the 50 and 30 contexts of the mutated bases. We
s.

e a cumulative bar plot showing each type of transitions or transversions.

, the proportion of observed mutations was calculated. This was done on the

, and on the exome-capture regions for eight WES samples taking into account

with low APOBEC scores and four with high APOBEC scores were selected.

er of mutations from C to G or T in TCW context to the number outside of TCW

ght WGS samples. Mutation clusters are defined as genomic windows of size

A, C/G, or C/T). Colors indicate further grouping of the fractions into number

he score reflects the strength or weakness of the APOBECmutational (Cat 1-2)

bdivided into three groups based on the 35th and 65th percentiles (see also

n the WGS set and the TCGA set).

ell Reports 7, 1649–1663, June 12, 2014 ª2014 The Authors 1651



Table 1. Mutations Found by Deep Sequencing of UCC in Five Studies and the TCGA Set

Hugo

Symbol

Nonaggressive; Noninvasive, Low-Grade UCC

(Ta Grades I and II) Aggressive; High-Grade Atypia or Invasive UCC (Ta Grade III, T1–T4)

This Study

Balbás-Martı́nez

et al. (2013)a
Guo et al.

(2013)

This

Study

Balbás-Martı́nez

et al. (2013)a
Guo et al.

(2013)

Ross et al.

(2014)

Iyer et al.

(2013) TCGA

n = 20 n = 25 n = 5 n = 18

n = 51 PCR

validation n = 93 n = 35 n = 95 n = 126

TagI(2)

TagII(18)

TagI(14)

TagII(11)

TagI(3)

TagII(2)

TagIII(4)

T1(7)

T2(7)

TagIII(8)

T1(32)

T2(9)

TIS(2)

T1(32)

T2(28)

T3(21)

T4(12) T4(35)

T1(11)

T2(15)

T3(33)

T4(32)

CIS(4)

KDM6A* 13(65) 3(12) 3(60) 6(33.3) 7(13.7) 29(31.2) 10(29) 37(29.36)

FGFR3 8(40) 10(40) 1(20) 5(27.8) 4(7.8) 10(10.8) 4(11) 12(13) 17(13.49)

ARID1A 7(35) 3(12) 2(40) 3(16.7) 7(13.7) 13(14.0) 7(20) 42(33.3)

PIK3CA 5(25) 5(20) 2(40) 6(33.3) 4(7.8) 11(11.8) 9(26)b 17(18) 29(23)

EP300 5(25) 3(12) 2(40) 1(5.6) 4(7.8) 11(11.8) 22(17.46)

ELF3 5(25) 1(20) 0(0) 3(16.7) 6(6.45) 15(11.9)

STAG2 5(25)d 6(24) 0(0) 2(11.1)d 5(9.8) 11(11.8) 18(14.3)

MLL3 4(20) 0(0) 5(27.8) 1/12(8) 5(5.4) 35(27.8)

RARG 4(20) 0(0) 1(5.6) 4(4.3)e 10(7.9)

CREBBP 4(20) 4(16) 1(20) 4(22.2) 7(13.7) 14(15.1) 19(15.1)

RBM10 4(20) 1(20) 0(0) 3(16.7) 1(8) 3(3.2)e 8(6.3)

ZFP36L1 3(15) 0(0) 1(5.6) 9(9.7)e 8(6.3)

RANBP2 3(15) 0(0) 1(5.6) 3(3.2)e 11(8.7)

XIRP2 3(15) 1(20)e 1(5.6) 10(10.8)e 14(11.1)

MLL2 3(15)d 6(24) 0(0) 1(5.6)d 5(9.8) 1(1.1)e 1(2.9) 46(36.5)

HRAS 2(10) 1(20) 1(5.6) 12(12.9) 1(2.9) 7(5.6)

ASH1L 2(10) 0(0) 1(5.6) 2(2.15)e 12(9.5)

FAT1 2(10) 4(22.2) 2(16) 16(12.7)

DCHS2 2(10) 0(0) 2(11.1) 1(8) 6(6.45)e 8(6.3)

CACNA1D 2(10) 1(20) 0(0) 2(11.1) 1(1.1)e 4(3.2)

C1orf173 2(10) 0(0) 2(11.1) 2(2.15)e 7(5.6)

LRRC7 2(10) 0(0) 3(16.7) 1(8) 1(1.1)e 12(9.5)

VCAN 2(10) 0(0) 1(5.6) 1(8) 2(2.15)e 13(10.3)

ZFYVE26 2(10) 0(0) 1(5.6) 2(2.15)e 6(4.8)

TP53* 1(5) 2(8) 0(0) 10(55.6)f 9(17.6)f 24(25.8)f 19(54)f 32(34)f 77(61.1)f

RB1 1(5) 1(4) 1(20) 4(22.2) 3(5.9) 12(12.9) 6(17) 15(16)f 22(17.46)f

OSMR 1(5) 0(0) 0(0) 1(1.1)e 3(2.4)

PCDHA9 1(5) 0(0) 2(11.1)f 2(2.15)e 9(7.14)f

TSC1 1(5) 0(0) 3(16.7)f 5(5.4) 2(6) 7(7) 11(8.7)

NEB 1(5) 2(11.1)f 1(8) 19(15.1)f

OBSCN 1(5) 2(11.1)f 1(8) 15(11.9)f

PDZD2 1(5) 0(0) 3(16.7)f 2(16) 6(6.45) 8(6.3)

LGALS8 1(5)d 1(5.6)d 0(0)

ATM 1(5)d 4(16) 0(0) 0(0) 4(7.8) 5(5.4) 20(15.8)

MYCBP2 1(5)d 2(8) 0(0) 0(0) 2(3.9) 3(3.2) 11(8.7)

FANCA 1(5)d 0(0) 0(0) 0(0) 4(7.8) 2(2.15)e 1(2.9) 6(4.8)

CPAMD8 0(0) 0(0) 3(16.7)f 4(4.3)e,f 3(2.4)f

BRAF 0(0) 2(8) 0(0) 0(0) 5(9.8)f 4(4.3)f 2(6)f 2(2.1)b,f 3(2.4)f

CCND1 5(14)c,f 14(14.7)c,f 2(1.6)f

(Continued on next page)
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Table 1. Continued

Hugo

Symbol

Nonaggressive; Noninvasive, Low-Grade UCC

(Ta Grades I and II) Aggressive; High-Grade Atypia or Invasive UCC (Ta Grade III, T1–T4)

This Study

Balbás-Martı́nez

et al. (2013)a
Guo et al.

(2013)

This

Study

Balbás-Martı́nez

et al. (2013)a
Guo et al.

(2013)

Ross et al.

(2014)

Iyer et al.

(2013) TCGA

n = 20 n = 25 n = 5 n = 18

n = 51 PCR

validation n = 93 n = 35 n = 95 n = 126

TagI(2)

TagII(18)

TagI(14)

TagII(11)

TagI(3)

TagII(2)

TagIII(4)

T1(7)

T2(7)

TagIII(8)

T1(32)

T2(9)

TIS(2)

T1(32)

T2(28)

T3(21)

T4(12) T4(35)

T1(11)

T2(15)

T3(33)

T4(32)

CIS(4)

CCND3 0(0) 1(1.1)e,f 3(11)c,f 4(3.2)f

CDKN2A/B 0(0) 1(1.1)e,f 8(23)f 24(25.3)f 13(10.3)f

EGFR 0(0) 1(1.1)f 2(6)b,f 3(2.4)f

ERBB2 0(0) 0(0) 2(11.1)d,f 5(5.4)f 2(6)b,f 5(5.3)c,f 12(9.5)f

ERCC2 0(0) 5(20) 1(20) 0(0)f 1(2.0)f 6(6.45) 16(12.7)f

FGFR1 0(0) 0(0) 0(0) 1(1.1)e,f 5(14)b,f 5(5.3)c,f 5(4)f

INADL 0(0) 2(11.1)f 5(4)f

LPHN3* 0(0) 4(22.2)f 2(16) 7(5.6)f

MAPK8IP3 0(0) 3(12) 0(0) 0(0)f 2(3.9)f 1(1.1)e,f 4(3.2)f

MCL1 4(11)b,f 3(2.4)f

MDM2 0(0) 2(2.15)e,f 4(11)c,f 5(5.3)c,f

NF1 0(0) 1(20) 1(20) 1(5.6)d,f 1(8) 6(6.45) 2(6)f 2(2.1)f 11(8.7)f

TNC 0(0) 0(0) 2(11.1)f 1(1.1)e,f 6(4.8)f

WNK1* 0(0) 0(0) 4(22.2)f 1(8) 2(2.15)e,f 10(7.9)f

Numbers in parentheses indicate %. *p < 0.05 comparing nonaggressive and aggressive tumors. See also Table S3.
aSeventeen tumors were exome sequenced and the remaining tumors were subjected to targeted PCR-based sequencing. Figures in italic are from

exome-seq screen only.
bGene amplifications included as event.
cAll events are gene amplifications.
dNo validation performed; Tier 0-1, Cat 1-2.
ePredicted, not validated.
fMutation frequencies 32 or more in invasive/high grade compared with non-muscle-invasive low grade.
evaluated the enrichment of the observed contexts relative to

what would be expected if mutations were context independent

and just followed the genomic background (Nik-Zainal et al.,

2012; Figure S1G). Overall, C > T mutations were the most com-

mon across all WGS tumors (Figure 1B). As expected, CpG sites,

which when methylated can spontaneously deaminate to TpG,

accounted for the majority of these and were consistently over-

represented across all tumors with 5.8- to 14-fold enrichment (all

p < 10�61, binomial [BN] test). In addition, CpG to ApG were also

consistently enriched, by up to 6-fold (2.5–6.0; p = 10�2 to 10�30,

BN test; Figure S1H; Tables S4A–S4H).

In patients P02 and P04, C > G transversions were more than

four times as common as in the other two patients, P01 and P03

(Figure 1B). This was driven by a >15-fold higher C > G mutation

rate at the 30 end of TpC dinucleotides (p < 10�16, BN test; Tables

S4A–S4H). In the other two patients (P01 and P03), the C > G

transversions showed little or no increase in prevalence at TpC

sites.

These context preferences correspond to recent descriptions

of an APOBECmutational signature (Burns et al., 2013b; Roberts

et al., 2013). APOBEC3B mutagenesis leads to frequent C > T
C

and C > G mutations at a TCW motif, where W is A or T (Roberts

et al., 2013). We searched specifically for this mutational signa-

ture, eliminating overlap with the highly mutable CpG sequence,

in the paired-WGS set. There was a clear enrichment of the

APOBEC signature mutations in the four tumors from patients

P02 and P04, in contrast to the four tumors from patients P01

and P03 (Figures 1C and 2A). Previously, this signature has

been related to strand-coordinated clusters of cytosine muta-

tions, defined as two or more mutation events per 10 kb window,

and named ‘‘kataegis’’ (Alexandrov et al., 2013). Clusters with

C > T and C > G mutations clearly dominated in the four tumors

with the APOBEC signature (Figure 1D).

We searched for the APOBEC signature in our WES set

and found a strong signature in 11/30 tumors, a medium signa-

ture in 8/30, and a low signature in 11/30 tumors (Figure 1E).

Finally, we downloaded The Cancer Genome Atlas (TCGA)

bladder cancer WGS set (http://cancergenome.nih.gov/) and

found a strong APOBEC signature in 25%, a medium signature

in 22%, and a low signature in 53% of the 95 tumors (Figure S1I).

We conclude that about one-third of UCCs carry an APOBEC

cytidine deaminase mutagenesis pattern. We examined the
ell Reports 7, 1649–1663, June 12, 2014 ª2014 The Authors 1653
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exomes for APOBEC-related mutation clusters and found evi-

dence for these in 5/26 cases, all overlapping with the APOBEC

signature (Figures 2 and S1J; p < 0.03, including WGS-set

patients). We conclude that clustered C > T and C > Gmutations

reflect the APOBEC mutagenesis in individual cases of UCC.

Both the mutational signature and clustering were strikingly

similar in early and late tumors from an individual patient, indi-

cating a stable mutagenesis mechanism over time (Figures 1C,

1D, S1G, and S1H). Similarly, the number of mutations generally

varied greatly between early and late samples; however, their

composition was remarkably similar in the individual patient (Fig-

ures 1A and 1B; Tables S2E, S2F, and S4A–S4H).

CommonMutations in Coding Regions of Nonaggressive
and Aggressive UCCs Are Independent of the APOBEC
Signature
A total of 26 genes were significantly mutated in the WES set

by high-impact SNVs or indels (Tier 0-1) after correction for

various parameters, including gene size and background

mutation rate (Figures 2B and S1F; Table S3A). The most

frequently mutated genes were Kdm6a (47%), Tp53 (32%),

Arid1a (29%), Fgfr3 (29%), Rbm10 (18%), Fat1 (15%), Rb1

(15%), Tsc1 (12%), and Ranbp2 (12%), using both sets. We

evaluated the generality of these findings by comparing them

with recent results (Balbás-Martı́nez et al., 2013; Guo et al.,

2013; Iyer et al., 2013; Ross et al., 2014), split into superficial

mainly nonaggressive and mainly aggressive tumors (Table

1). All 26 genes were also found to be mutated in either of

two large data sets on aggressive UCC containing 96 exomes

(Guo et al., 2013) and 126 exomes (TCGA). A few publications

have included up to five exomes on nonaggressive tumors

(Balbás-Martı́nez et al., 2013; Guo et al., 2013). Here, we

sequenced 20 of these and described the most frequently

mutated genes in the aggressive and nonaggressive groups

(Table 1). A significant difference was found for Tp53 (p <

0.003), which was mostly mutated in aggressive UCC; Lphn3

(p < 0.04) and Wnk1 (p < 0.04), which were only mutated in

aggressive UCC; and Kdm6a, which was mostly mutated in

nonaggressive UCC (p < 0.01).

Most genes were mutated mainly by SNVs, except for Elf3,

which showed indels in five out of eight cases (Figures 2 and

S2C). More generally, the highest dN/dS ratio was observed

in many cancer pathways (e.g., bladder, non-small cell, and

pancreatic cancer pathways), and a strong degree of purifying

selection was found in metabolic pathways (Table S3B). The

gene mutations were uncorrelated with both the APOBEC sig-

nature and a previously published UCC mRNA progression
Figure 2. Landscape of Genetic Variation and Protein Expression in Bl

Data tracks (rows) facilitate the comparison of clinical, protein, and genomic data

set (B). Samples in the WES set are ordered according to tumor stage. Color co

their types. Middle panel: mutational landscape. Mutations were validated by RNA

in theWES; ** marks significance after Benjamini-Hochberg (BH)multiple testing c

data set (MutSigCV & BH, p < 0.01). IHC panel: immunohistochemical staining of

different APOBEC signature groups (see Figure 1E for explanation). APOBEC-rel

progression signature defines the likelihood of progression based onmRNA transc

mutations per gene in the WES group.

See also Figure S4 and Table S4.

C

signature (Dyrskjøt et al., 2003), as was immunohistochemical

staining for the proteins (Figure 2).

We identified 13 gene families that were significantly altered

by inactivating SNVs and indels, after correction for gene size

and numbers (Table S3C). When these families were grouped

into related superfamilies, proteins related to epigenetic modi-

fication were most commonly altered, comprising four out

of 13 families (chromatin demethylases, methyltransferases,

acetyltransferases, and histone proteins; Table S3C). Another

commonly mutated superfamily consisted of membrane pro-

tein/cell adhesion protein families involved in extracellular inter-

actions (Table S3C). Additional adhesion proteins that were not

included in the superfamily were also significantly mutated

(LPHN3, FAT1, and INADL). The plasma membrane proteins

were significantly more mutated in aggressive tumors (p <

0.0002; Figure 2B), and could be involved in the well-known

reduced cohesion of high-grade bladder tumors.

To obtain a deeper insight into the prognostic importance of

the epigenetic modifiers, we performed immunohistochemistry

(IHC) for selected proteins (Figures 2 and 3). For KDM6A and

ARID1A, a borderline significant relation to progression-free

survival (PFS) (Figures 3A, S2A, S2D, and S2E; Table S5) was

observed. The presence of mutations correlated with depleted

protein for ARID1A (p < 0.021). The histone methyl transferases

SMYD3 and ASH1L, and the acetyltransferase EP300 (Figures

3B–3G, S2A, S2B, and S2F) were all changed by at least one

SNV/indel and/or copy number increase. Remarkably, strong

ASH1L nuclear immunostaining was related to both PFS (p <

0.024), disease-specific survival (DSS; p < 0.004), and overall

survival (OS; p < 0.006); negative staining of SMYD3 was related

to PFS (p < 0.046) and DSS (p < 0.046); and positive staining

of EP300 was related to PFS (p < 0.0016), DSS (p < 0.029),

and OS (p < 0.0068) (Figures 3B–3F, S2A, and S2B; Table S5).

Somatic Rearrangements and Fusion Transcripts
Analysis of somatically acquired genomic rearrangements

(Wang et al., 2011) revealed that the four tumors from patients

P01 and P04 were most unstable (Figures S3A and S3B). Dele-

tions and inter- and intrachromosomal rearrangements were

dominating in all tumors with varying frequencies (40%–70%

of rearrangements). Inversions showed only a relatively high

frequency in two Ta tumors, and were not seen in the more

invasive tumors (Figures S3A and S3B). In many cases, the

number of breakpoints was higher in gene regions than in

intergenic regions (0.0009 < p < 0.001; Figure S3C), probably

pointing toward selection. Validation of somatic rearrange-

ments by PCR and Sanger sequencing confirmed 81% of
adder Cancer

across cases with bladder cancer (columns) in the WGS set (A) and the WES

des are shown at bottom right. Upper panel: counts per Mb of mutations and

-seq and targeted deep sequencing. Genes followed by * have a p value < 0.01

orrection in theWES;>marks significance in the TCGA bladder cancer (BLCA)

individual FFPE sections. APOBEC panel: samples were categorized into three

ated kataegis was grouped according to the number of mutation clusters. The

ripts. Clinical sample information appears at the bottom. Right graph: counts of
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Figure 3. IHC Analysis of Epigenetic Modifier Proteins and Their Correlation to Clinical Endpoints

(A) Kaplan-Meier PFS estimates according to the expression level of KDM6A.

(B and C) Kaplan-Meier PFS estimates according to the expression level of SMYD3/KMT3E for (B) all tumors and (C) T1 tumors only.

(D) Kaplan-Meier DSS estimates according to the expression level of ASHL1/KMT2H with regard to Ta tumors only.

(E and F) Kaplan-Meier PFS estimates according to the expression level of EP300/KAT3B for (E) all tumors and (F) Ta tumors only.

(G) Examples of characteristic IHC staining patterns for these molecules.

The significance levels are indicated in all graphs.

See also Figure S2 and Table S5.
154 events (Figures S3D–S3F), in line with previous publica-

tions (Wang et al., 2011).

In a combined breakpoint analysis of both DNA-seq and RNA-

seq data, we identified six significant fusion transcripts (Table

S6A), all validated by Sanger sequencing. They included fusions

involving the cancer-relevant genes Ctnnbl1, Mtss1, Polb, and

Kdm6a (Tables S6A and S6B), which could lead to truncated

protein products. The Ctnnbl1 promotor was placed in front of

the Fam110a gene in the in-frame fusion (Tables S6A and

S6B), and could lead to increased levels of Fam110a, partly sup-

ported by the transcript data.

The fusions were confined to a specific tumor in five of

six fusions. In four of six fusions, it was not present in the early

tumor from the same individual, showing that they mostly arose

relatively late in the development of the individual tumors.

Having defined the breakpoints, we then analyzed whether

local hypermutability was related to breakpoint loci, as recently

suggested (Drier et al., 2013). In all tumors, the mutation fre-

quency increased toward the breakpoint for all mutations, which

was most clearly seen within 1,000 nt from the breakpoint (Fig-

ure 4A). C > G and C > Tmutations accounted for a large fraction

of the mutations that were enriched for (p < 0.03), and the APO-

BEC context was dominating (Figure 4).

DNA Damage Response Pathways Anticorrelated with
the APOBEC Signature
We studied pathways involved in bladder cancer using informa-

tion from both the genome and transcripts. In the genome, SNVs
1656 Cell Reports 7, 1649–1663, June 12, 2014 ª2014 The Authors
and indels involved a number of pathways mainly driven by

Rb1and Pik3ca (Tables S7A–S7E), and, to a lesser degree,

Tp53 and Atm mutations.

When we compared transcriptome-defined pathways in late

versus early tumor to identify pathways involved in progression,

we found four pathways that were downregulated in both of

the two non-APOBEC tumor pairs (‘‘EIF2 signaling’’ [p < 10�32

and p < 10�39 for P01 and P03, respectively], ‘‘regulation of

EIF4 and p70s6k signaling’’ [p < 10�16 and p < 10�9], ‘‘mitochon-

drial dysfunction’’ [p < 10�4 and p < 10�19], and ‘‘mTOR signal-

ing’’ [p < 10�13 and p < 10�8]; Table S7F). No pathway changes

were common to the two APOBEC tumor pairs.

In the WES-set, transcriptome canonical pathways were

downregulated in the ten samples with a strong APOBEC signa-

ture comparedwith thosewith aweak signature. Interestingly, 11

of the 20 most significantly downregulated pathways (p < 0.01)

reflected the DNA damage response, cell-cycle checkpoints,

and double-strand break repair (DSB; Tables S7G–S7I). In con-

cert with this, the Stag2 transcript was strongly anticorrelated

with the level of the APOBEC signature (Table S7G). Stag2 and

other sister chromatid cohesion and segregation molecules

were recently reported to be inactivated in 11%–16% of UCCs

(Balbás-Martı́nez et al., 2013; Guo et al., 2013). As the APOBEC

signature is not correlated to stage and grade, the pathway

correlations do not simply reflect an increased cell-cycle rate

in high-stage tumors. We hypothesize that reduced DNA repair

and cell-cycle checkpoint control may lead to increased chro-

mosomal instability and recruit APOBEC3 enzymes to DSB sites
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Figure 4. Mutational Patterns across Chromosomal Breakpoints and Transcribed Regions

(A) Elevated mutation frequency at breakpoints. The mutation frequency for all mutation types (black), C to G or T mutations (yellow), and APOBEC signature

mutations (red) are shown for regions within a given distance (100 bp to 1 Mb) of a break point.

(B) The APOBEC signature mutations are biased toward the sense strand of transcribed genes. Each bar represents the ratio of the sense to antisense mutation

rate for the given mutation type among all possible sites across the top 25%most expressed genes. The bias is significant for both patients P02 (p < 0.0074) and

P04 (p < 10�5; Fisher’s exact test).

(C) A/G mutations are also biased toward the sense strand, irrespective of mutational context. Same analysis as in (B). All ratios with asterisks are significant

(10�12 < p < 0.0164).

(D) Both the APOBEC signature mutations and A/G mutations correlate positively with expression level. The strand bias is evaluated as in (B) for all genes

divided into ten expression classes. Asterisks indicate significance (p < 0.01). For APOBEC, only results for patients P04 and P02, which showed significant bias in

(B), are included.

(E) Strand-specific mutation rate as function of expression level across the ten gene classes.

See also Table S8.
for repair (Nowarski et al., 2012). The APOBEC3 enzymes then in

turn insert mutations via deamination, serving a dual role in pre-

venting cell death and promoting mutations that drive the cancer

(Nowarski and Kotler, 2013).

We analyzed the transcripts from the APOBEC3 family,

Apobec3a,b,c,d,f,g,h, and Apobec2 on three different micro-

array platforms across 177 samples using an in-house data

set. Apobec1 and Apobec4 were not expressed in UCC. We

found a correlation between an increased level of Apobec3b

and increased stage (p < 0.003), and an increased level in lymph

node metastases compared with the primary tumors (p < 0.03;

Figure S4). In the 34 WES and WGS individual cases with RNA

data, the transcripts did not correlate with the APOBEC sig-

nature at either the single or the combined level, corroborating

a recent study (Roberts et al., 2013). Accordingly, there may

be other enzymes involved, or a time issue may influence the

measurements.

Finally, we asked whether the mutation pattern was related

to gene expression, potentially through transcription-coupled
C

repair (TCR) processes, which act specifically on the antisense

(transcribed) strand (Lans et al., 2010). For this purpose, we

separately evaluated the sense and antisense strand-specific

mutation rates of all possible mutation types, including nucleo-

tide neighbor contexts (n = 192), across all highly expressed

genes (top 25%) of each WGS patient (Table S8). The APOBEC

signature mutations were significantly enriched on the sense

strand (up to 1.20-fold, p < 0.01) in the two APOBEC patients

(Figure 4B). Even more strikingly, A > G mutations were up to

eight times more frequent on the sense strand (p < 0.002) in

[ACG]AT contexts and showed a consistent bias irrespective

of context across all four patients (Figure 4C). When we divided

all genes into expression classes, we found that the sense

strand bias correlated strongly with expression level for both

APOBEC mutations (Spearman rho = 0.88; p < 0.01) and A > G

mutations (rho = 0.96; p < 10�16; Figure 4D).

To better understand the source of the bias, we finally plotted

the mutation rate separately for the sense and antisense strands

as a function of expression level (Figure 4E). For the APOBEC
ell Reports 7, 1649–1663, June 12, 2014 ª2014 The Authors 1657
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mutations, both the sense and antisensemutation rates increase

with expression level (rho = 0.71; p = 0.03 versus rho = 0.41; p =

0.24), but the sense-strand rate grows faster. This suggests that

the APOBEC mutation rate overall increases with expression

(Lawrence et al., 2013), but the effect is dampened on the anti-

sense strand by TCR. In contrast, for the A > G mutations, the

sense-strand rate is uncorrelated with expression level (rho =

0.006; pz 1) and the antisense rate is strongly negatively corre-

lated (rho = �0.95; p < 10�16), suggesting that the strand bias

for the A > G mutations may be driven by TCR correcting

A > G mutations on the antisense strand during transcription

(Green et al., 2003).

Ancestral Cell Clones Define the Field Disease in UCC
The total number of SNVs generally increased from superficial

tumors to invasive tumors, and their frequency distribution

altered dramatically. Three of the four paired WGS-set patients

had bimodal distributions in the early Ta tumor, with modes at

the heterozygous allele ratio and at low frequency (Figure 5A).

In contrast, late invasive tumors only showed the low frequency

mode (Figure 5A), which could be due to extreme copy-number

variation or to pervasively mutated subclones (Carter et al.,

2012). Patient P03 showed a reversed pattern, which may imply

that the sequence of tumor resection may not always be related

to the age of the tumor (van Tilborg et al., 2000).

Assignment of mutations to the branches of the evolutionary

trees showed that a high fraction of point mutations were unique

to the early and late tumors (Figures 5B–5D, S3G, and S3H).

Furthermore, very few rearrangements were in common be-

tween early and late tumors. This was most evident in patient

P04, where almost no rearrangement was found in both tumors,

although 25% of SNVs were in common (Figures 5C and S3H).

This indicates that the ancestral cells were mainly hit by SNVs

and developed into subpopulations that separately acquired

rearrangements and SNVs. Furthermore, both loss-of-heterozy-

gosity (LOH) and fusion transcripts were specific for early or late

tumors (Tables S6C–S6E). This suggests that the field canceri-

zation in UCC could be represented by the mutual ancestral

changes, and that individual tumors, formed over time, have a

divergent evolution with private alterations in addition to the

ancestral ones.

To understand patterns of clonal selection related to progres-

sion, we analyzed the deep exomes from the paired-WGS set

(181x–405x) and inferred the clonal population structure using

PyClone (Shah et al., 2012; Roth et al., 2014). Estimating the

cellular prevalence of a set of mutations provides insight into

the relative timing of mutations in a tumor’s evolutionary history

and approximates the number of clones present in a tumor.

PyClone assigns cellular prevalence estimates to individual
Figure 5. Mutational and Structural Events during Progression of UCC

(A) Stacked histograms of SNV frequencies for the paired-WGS set. Categories

(B) Common and unique SNVs in patient P01. Left, scatterplot showing freque

histograms of the unique SNVs in the Ta tumor (top) and the T2-4 tumor (bottom

(C) Evolution trees inferred by all SNVs, Cat 1-2 SNVs, indels, or breakpoints. Fo

events contributing to the ancestral branch (black), the Ta branch (green), and th

(D) Branch-specific circos plot for patient P01. All SNVs, indels, and rearrangem

See also Figure S3 and Table S6.

C

mutations while accounting for their copy-number states and

the presence of regional LOH. Since tumor cellularity was esti-

mated histologically to be >90% for our cases, we corrected

for this number.

In general, groups of mutations with different distinct cellular

prevalence were observed, indicating clonal subpopulations

(Figures 6A–6D). All four patients exhibited a unitary ancestral

origin, with primary and invasive tumor pairs sharing identical

mutations at high cellular prevalence. The ancestral clones con-

tained several mutations that are commonly mutated in cancer

and/or are listed as tumor suppressors or oncogenes (e.g.,

Fgfr3, Kdm6a, Pik3ca, and Tp53; Figures 6A–6D; Vogelstein

et al., 2013). We suggest that the ancestral clone is amajor driver

of the malignant process in general, and an obvious therapy

target. In all cases, we also observed expansion of a clone in

the progression sample that was absent or present at minor

prevalence in the early tumor, with mutations in tumor inhibitors

such as Tp53, Mll3, Fbxw7, and Setd2 (Figures 6A–6D). This

clone may be driving the progression. Furthermore, all samples

had nonaggressive subclones that were present in the early Ta

tumor, with mutations such as Fgfr3, Mllt4, and H3f3a, and

more or less absent in the invasive tumor (Figures 6A–6F). Any

relation to the APOBEC signature was not seen in this small

material.

Pathway analysis of subpopulations showed Cell Cycle: G2/M

DNA Damage Checkpoint Regulation to be enriched in the

progression populations, and FGF signaling in populations with

a Pik3ca mutation (Figure S5).

DISCUSSION

The APOBEC signature in one-third of tumors was patient spe-

cific, as it was present or absent in both early and late tumors

from the same patient. Consequently, the mutation mechanism

was conserved over time and could reflect a basic property of

the urothelium, either due to a patient-specific genomic back-

ground with specific polymorphisms in DNA-editing enzymes or

due to the impact of infectious agents that may have triggered

the APOBEC enzymes, as suggested by Roberts et al. (2013).

We searched for papilloma virus nucleotide sequences, as these

have been related to UCC (Abol-Enein, 2008), but did not find

any, in accord with the TCGA findings (http://cancergenome.

nih.gov/). However, other agents could have been in play.

The Apobec3b expression level correlated to stage as in

ovarian cancer (Leonard et al., 2013). The lack of correlation

between the APOBEC signature and the APOBEC3 family of

deaminases is interesting because it indicates that the APOBEC

signature-creating machinery contains other enzymes or may

fluctuate over time. Others also found a lack of correlation in
Based on Paired Sets of Tumors—Paired-WGS Set

are indicated by colors.

ncies of the ancestral SNVs in the Ta versus the T2-4 tumor. Right, stacked

).

r each tree, the number of events is written at the bottom. The percentage of

e T1/T2-4 branch (blue) is shown.

ents were plotted in the same plot (see Figure S4H for details).
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Figure 6. Subclonal Populations in the Paired-WGS Set
(A–D) Cellular prevalence of individual SNVs were inferred with PyClone and plotted (black dots) for both early-stage (Ta) and late-stage (T1/T2) samples from

each patient in the paired-WGS set. Selected SNVs are named and the overall density is indicated (red shading). The enumerated SNV clusters reflect the clonal

structure of the samples. Samples P01 T2 and P03 Ta have a lower maximal cellular prevalence than the other samples, suggesting tumor purity slightly lower

than the histologically estimated 90%. Underlined genes are driver genes (either tumor suppressors (T) or oncogenes (O) (Vogelstein et al., 2013). Genes marked

with * are found in the Cosmic database.

(legend continued on next page)
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individual cases, although they did find a general correlation for

the whole population examined (Roberts et al., 2013).

The fidelity of the DNA strand is overseen by many molecules,

and, surprisingly, the DNA cell-cycle checkpoints, as well as

some DSB repair pathways and molecules, were anticorrelated

to the APOBEC signature at the transcript level, including the

recently reported Stag2. Without knowing what is the cause

or effect at this point in time, we suggest that a low repair activ-

ity could lead to an increased number of breakpoints and

maybe even a longer exposure time of single-stranded DNA

(ssDNA) to editing or modifying enzymes, giving more time for

formation of the mutation-based signature on these ssDNA

regions. This fits into the finding of more signatures, and muta-

tions in general, closer to breakpoints (Roberts et al., 2013).

The lack of correlation between the APOBEC signature or

enzyme transcript level and specific genes mutated, proteins

expressed, or clinical outcome was unexpected. However,

although the signature is very distinct, it may not provide spe-

cific properties to the cells. Much more research is needed

before we can draw firm conclusions about this aspect. The

A > G sense-strand bias may be a general phenomenon, as it

has previously been observed in species evolution and coupled

to TCR (Green et al., 2003).

We describe the mutational spectrum in low-grade and low-

stage UCC because previous reports have almost exclusively

focused on muscle-invasive cancers. Kdm6a showed a signifi-

cantly higher mutation frequency in these tumors, and a number

of mutations were either not present or were seen at a signifi-

cantly lower frequency (e.g., Tp53, Lphn3, and Wnk1). A gene

family that was frequently mutated in invasive UCC was plasma

membrane proteins, mainly related to cell adhesion. This may

explain the low cohesion of UCC cells, and offers an explanation

for this phenomenon, which leads to exfoliation of multiple

tumor cells into the urine of patients with UCC. The dN/dS ratio

was <1, pointing toward a purifying selection; however, it was

striking that the oncogenic pathways showed significantly

more nonsynonymous mutations than expected, and the meta-

bolic genes showed fewer than expected. We interpret this

as indicating a selection for the malignant genotype, as muta-

tions in oncogenes and tumor suppressors drive malignancy,

whereas the metabolism needed for cell survival in general is

protected and only synonymous mutations are tolerated in

these genes.

UCC is a field disease that encompasses a large and variable

part of the urothelium, mainly in patients who experience recur-

rent tumors and disease progression. Our data on the subclones

present in each tumor pair showed one or two ancestral clones in

each patient that theoretically could originate from coresected

‘‘normal’’ cells, but probably identify the field-disease mutations

(see the Supplemental Discussion). These cells may have an

almost normal phenotype in the light microscope, but are known

to have profoundly altered transcriptomes (Dyrskjøt et al., 2004;
(E) SNVs found at high prevalence in both samples are ancestral (blue) and inc

thought to be nonaggressive (green), whereas the T1/T2-specific clones underlie

(F) Example of clonal structure interpretation based on the inferred frequencies (pa

the T1 sample.

See also Figure S5 and Table S7.

C

Majewski et al., 2008). These cells undergo a divergent evolution,

leading to private mutations in each tumor that over time de-

velops from the cells in the field. Both the ancestral and the

nonaggressive and progression clones contained mutated on-

cogenes and tumor suppressors. The mutated genes varied,

except for Pik3ca, which was present in three out of four ances-

tral clones. Since mutated Kdm6a was present in two ancestral

clones and supplemented Pik3ca, these two molecules might

have been ideal as therapy targets (treatment by nilotinib and

AKT inhibitor VIII, respectively) in the patients examined.
EXPERIMENTAL PROCEDURES

Sample Preparation

UCC samples were obtained fresh from resection, embedded in Tissue-Tek,

and stored at�80�C. The inclusion criteria are defined in Supplemental Exper-

imental Procedures. Blood samples were collected at the time of the patients’

initial visit. Genomic DNA and total RNA were extracted from serial cryosec-

tions. The project was approved by the Central Denmark Region and National

Committees on Health Research Ethics (file 1300174).

NGS Library Construction

For WGS, high-molecular-weight genomic DNA (100–400 ng) was fragmented

prior to library construction using standard Illumina kits. For WES, exome

capture was performed using a NimbleGen kit on libraries prepared with the

Illumina TruSeq Kit, using either 1 mg genomic DNA or 2.5 mg whole-genome

amplified (WGA) DNA. For whole-transcriptome RNA-seq, libraries for

paired-end and indexed RNA-seq were prepared from rRNA-depleted total

RNA (300–400 ng) using Ribo-Zero and ScriptSeq (Epicenter).

Sequencing

We employed standard sequencing kits (Illumina HiSeq2000) to generate 2 3

100 bp paired-end sequencing. All sequencing data were deposited to the

European Genome-Phenome Archive (EGA).

Sequence Processing, Mutation, and Rearrangement Identification

Overlapping read pairs were joined using AdapterRemoval prior to mapping

against the HG19. DNA samples were mapped using BWA, and RNA samples

were analyzed using the Tuxedo Suite. For DNA samples, the alignments were

recalibrated and realigned using the Picard (http://picard.sourceforge.net/)

and GATK suites. nFuse was used to identify fusion transcripts combining

the RNA-seq and whole-genome DNA-seq data. MuTect was used to call

somatic mutations (SNVs) and the Somatic Indel Detector from GATK was

used to call Indels in the paired-WGS set and the WES set. CREST was

used to detect structural rearrangements in the paired-WGS set.

Annotation and Validation of Mutations

The SNVs and indels were functionally annotated using snpEff (v2_1b) (Cingo-

lani et al., 2012). Additional annotations were made using the UCSC Genome

Browser database (see the Supplemental Experimental Procedures). SNVs

and indels were put in three categories and five tiers. SNVs and genomic rear-

rangements were validated using one of the following: (1) Sanger sequencing

onWGA DNA, (2) PCR-based targeted resequencing onMiSeq, (3) deepWES,

and (4) RNA-seq. Fusion transcripts predicted by nFuse were validated by

Sanger sequencing of cDNA amplified from RNA using the Ovation PicoSL

WTA System V2 (NuGEN).
lude the initial driver events. Clones specific for the Ta samples are generally

tumor progression (red).

tient P03). Clone 1 is present at low frequency in the Ta sample, but dominates
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SNP Array Data

DNA was labeled and hybridized to SNP Arrays 6.0 (Affymetrix). The R pack-

age aroma.affymetrix was used for preprocessing/probe summarization of

the SNP6.0 data. The R package Rseg (Lamy et al., 2011) was used to segment

each tumor sample. Allelic imbalance was defined at heterozygous SNPs in

the germline sample, and Rseg was used to segment the samples from the

paired-WGS set, except for patient P04.

IHC, TissueMicroarray,Microscopy, andCorrelation to Clinical Data

IHC was performed on 4 mm FFPE sections from the eight paired-WGS

samples, 27 of the 30 WES samples, and on a tissue microarray (TMA)

with 283 biopsies from primary, stage Ta and T1 urothelial bladder

tumors with long-term follow-up data (Fristrup et al., 2013). TMA core images

(Nanozoomer; Hamamatsu) were scored manually using VIS software

(Visiopharm).

Ingenuity Pathway and Cluster Analysis

Data were analyzed with the use of IPA, build May 2013 (Ingenuity Systems,

http://www.ingenuity.com). Hierarchical cluster analysis was performed using

Cluster 3.0 software and visualized using Java tree-view software.

Parental Copy Number for the Paired-WGS Set

The HMMcopy suite of tools (Ha et al., 2012) was used to estimate the copy

numbers for each of the paired-WGS samples. The copy-number information

from tumor and normal samples were entered into the APOLLOH program for

LOH estimation (Ha et al., 2012).

Statistical Inference of Tumor Cell Populations Using Deep-Exome

Sequencing

PyClone 0.12.0 (Roth et al., 2014) was used to infer subclonal populations in

the paired-WGS set.

Analysis of dN/dS Ratios

The dN/dS ratios were computed with codeml of the PAML software (Yang,

2007). The dN/dS ratios were evaluated genome wide and for gene sets

defined by KEGG. Confidence intervals and significance levels were estimated

by a Monte Carlo approach using 1,000 samples obtained by random sam-

pling with replacement.

Identification of the Effect of Transcription on Mutation Patterns

Using the SNVs of the WGS set and the RNA-seq, mutations and possible

mutable sites on the sense and antisense strands were counted for the 192

mutation types, including neighbor context. Differences were assessed using

Fisher’s exact test with Benjamini-Hochberg correction at a false-discovery

rate of 0.05 (Figures 4B and 4C).

To evaluate the mutation intensity ratio and expression level, the entire gene

set was ordered into ten bins based on expression level. The correlation was

evaluated using Spearman’s rank correlation test (Figures 4D and 4E).

Statistics

For statistical analysis, Fisher’s exact test was used unless otherwise

indicated.
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