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Abstract 

Balms, C., S.C. Cooper, C. Craviotto and J.H. McCabe, On the use of a corresponding sequence algorithm for 
S-fractions, Journal of Computational and Applied Mathematics 37 (1991) 57-69. 

This paper discusses an algorithm for generating a new type of continued fraction, a d-fraction, from a given 
power series. The S-fraction corresponds to the given power series at z = 0. Included are convergence results and 
truncation error bounds. 

Keywords: Continued fractions, algorithms, error bounds. 

1. Introduction 

In recent years there has been a revitalization of the analytic theory of continued fractions. 
With the aid of high-speed digital computers we are now in a position to take advantage of the 
algorithmic character of continued fractions. Continued fractions and the closely related Pad6 
approximants are being applied to problems in theoretical physics, chemistry and engineering. 
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There are several reasons that continued fractions are of such importance. One is that their 
approximants may converge in larger regions in the complex plane than the corresponding power 
series, which may not converge at all. Typically, the approximants are rational functions and as 
such often provide easily accessible information about zero and poles. Finally, the convergence is 
apt to be fast. 

The purpose of this article is to discuss an algorithm for generating a new type of continued 
fraction, a S-fraction, from a given power series. Before turning to the main discussion, we 
remind the reader of some basic facts and definitions. 

Most of the analytic theory of continued fractions is based in the complex plane. A continued 
fraction is an ordered pair 

((WY kJ)9 UJ>Y 

where { a, } and { b,, } are sequences of complex-valued functions, a,, f 0 for n 2 1, and { f, } is a 
sequence of complex-valued functions whose values may include the point at cc. The sequence 
{ f, } is defined as follows. Let 

SI1(W) := &-, n>,l, ~a( w) := b,, + w. 
n 

A second sequence { S,, } is defined inductively by 

&(w) :=&4, S,(w) := S,_,(S,(W)), n 2 1. 

The function f, is then obtained by setting f, = S,,(O). The functions a,, and b, are called the 
elements of the continued fraction or the partial numerators and partial denominators, respec- 
tively, and f, is called the nth approximant. The continued fraction can be written in the more 
intuitive form 

b0 + 
Ql 

b, + 
a2 

a3 

b2 + b, + 

which is usually abbreviated to 

(1-l) 

or 

The continued fraction can also be defined in terms of the functions A, and B,,, which satisfy 
the initial conditions 

A-, = 1, &=b,, B-r = 0, B,=l, (1.2) 
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and the three-term recurrence relations 

A,, = b,,A,_, + a,A,_*, B,, = b,,B,_, + anBn-2, n>l. (1.3) 

For the n th approximant of the continued fraction one then has 

fn=g n 20. 
n 

(1.4) 

The functions A,, and B,, are often referred to as the n th numerator and n th denominator, 
respectively. 

A continued fraction b, + K( an/b,,) is said to correspond at z = 0 to a fixed power series 

cg + ciz + c2z2 + - . . ) 

if the approximants f, are functions of z that satisfy 

f c,zi - f,(z) = O(Z+y, 
r=O 

where a(n) + cc as n + cc. (Here the notation 0( z”(“) ) indicates a power series in increasing 

powers of z starting with a power of z not less than a(n).) 
Several forms of continued fraction have been introduced and studied extensively. Three 

particular continued fractions with well-known correspondence properties are the following. 
(1) C-fractions [8,11,20] are of the form 

$3 +fy3 + . . . +p + . ..) (1-5) 
where each (Y,, is a positive integer and each p, is a nonzero complex constant. If (Y, = 1 for all n, 
the continued fraction is a regular C-fraction and if, in addition, p,, > 0 for all n, it is a Stieltjes 
fraction. 

(2) P-fractions [8,12] are of the form 

where each b,,(z) is a polynomial in l/z. 
(3) General T-fractions [7,8,13,14,18,19] are of the form 

where each F, is a nonzero complex constant and each G,, is a complex constant. 
Of the other frequently studied continued fractions, some are obtained by contracting or 

expanding the above or by equivalence transformations. Other ones arise in connection with 
moment problems. Further ones are described in connection with their links with the Pad6 table 
of the given power series [2,3], and this approach can be extended to derive interpolating 
continued fractions. 

The possible nonexistence of a regular C-fraction for a given power series, the failure of 
P-fractions to have “ simple” elements and the failure of general T-fractions to terminate for 
rational functions are examples of the perceived deficiencies in the types of existing classes of 
continued fractions that inspired Lange to introduce a new class. 
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In his seminal paper on a-fractions [lo], Lange asked the following question. Is there a class of 
continued fraction that has the following properties? 

(a) The elements a,, ands b,, are polynomials in z of degree at most one. 
(b) Any regular C-fraction is a member of the class. 
(c) Given a power series, there exists a unique member of the class that corresponds to it. 
(d) If the series is the expansion about z = 0 of a rational function, then the continued 

fraction terminates. 
As Lange remarks, regular C-fractions as a class do not satisfy (c), C-fractions fail to meet (a), 

P-fractions fail to meet conditions (a) and (b), while general T-fractions fail to meet conditions 
(c) and (d). In introducing b-fractions, Lange provides a class of continued fractions for which 
all four conditions are met. 

A a-fraction is a finite or infinite continued fraction of the form 

b,,-S,z+& +# + a.. ++ + .--, (l-8) 

where b, and d, are complex constants and the S,, are real constants whose values are either zero 
or one. The S-fraction is said to be regular if d,, 1 = 1 whenever 6, = 1. The above conditions (a) 
and (c) are met. The regular C-fractions occur when 8, = 0 for all k. In [lo] Lange proves that 
for every formal power series (fps) there exists a uniquely determined regular b-fraction 
corresponding to the series (providing one chooses the terminating form whenever possible), and 
that for any finite or infinite &fraction there is a uniquely determined corresponding power 
series. He also proves that a power series is the Maclaurin series of a rational function 

R(z) = 
a,+qz+ *** +a,zn 

1 + prz + &z’ + - * * +&P 

if and only if there exists a finite regular a-fraction 

b,-l&z+& +& +..a+,* +p 

corresponding to it. Several convergence theorems are provided by Lange for functions that are 
analytic at the origin. These are then applied to many examples of b-fraction expansions of 
classical analytic functions. An example of such an expansion is that for Dawson’s integral 

F(z) = em’* 
/ 
’ et* dt. 

0 

Namely, 

and, in general, 
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This expansion was obtained not from the power series expansion of F(z) to which the fraction 
corresponds, but by extending the well-known continued fraction 

F(z)=$ ,_p _e+ +A+ _@I + . . . . 

The S-fraction expansion for each classical function considered by Lange is obtained in the same 
way, by extending an existing continued fraction, using the following procedure which can be 
found in [8,18,20]. Let A,/&,, n = 1, 2, 3,. . ., be the n th approximant of the continued fraction 

If the section 

is replaced with 

then the approximants of the extended fractions are 

Al h-1 A, - PA,-, Ak - . . . 
K”“’ B,_,' B,-pB,_,’ B,’ . 

In many cases this procedure can be applied repeatedly to extend a given continued fraction to 
the form of a &fraction. However, as the following example shows, this procedure is not always 
sufficient. The regular b-fraction and C-fraction expansions, respectively, for the function 
x3 +x4 + x5 are 

None of the approximants of the two expansions agree except for the final ones, which equal the 
original function. Thus, it is impossible to obtain the a-fraction from the C-fraction from 
extensions. 

In addition to the above extension technique used by Lange, the only other method of deriving 
S-fractions that has been given is for those functions satisfying Riccati equations [5]. The method 
is analogous to those used for obtaining C-fraction solutions [4,15] and general T-fraction 
solutions [6] and is independent of the corresponding power series. Here we describe an 
algorithm for obtaining a a-fraction expansion directly from the power series to which it 
corresponds. Many algorithms for transforming power series into continued fractions are 
available if the approximants, or some sequence of them, form a path in the PadC table for the 
series [2,3]. In some cases, as Lange states, at least some of the approximants of the &fraction 
will be in the PadC table, but there are examples for which at most one of the approximants 
appears. Thus, methods with close connections to PadC tables do not appear promising. The 
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following very general algorithm, orginally developed by Viscovatoff in 180331806 [9], can be 
used to derive continued fractions whose elements have the form a,(z) =pnz”n, where p, is a 
constant and v, is a positive integer and b,(z) is a polynomial in z. Thus, C-fractions, general 
T-fractions, and P-fractions (after applying equivalence transformations) can be derived by this 
algorithm. The details of these applications are given in [16,17]. One major advantage of the 
algorithm is that, unlike other algorithms (e.g., the qd-algorithm), it will only fail if the particular 
continued fraction that is sought does not exist. This is never the case with S-fractions. In Section 
2 the general algorithm is presented. Section 3 is devoted to the application of the corresponding 
sequence algorithm to S-fractions. For the sake of completeness, some convergence results are 
summarized and relevant truncation error bounds are given in Section 4. 

2. The corresponding sequence algorithm 

This algorithm originated in work done by Viscovatoff between 1803 and 1806. In its primitive 
form, it was a clever way of producing regular C-fractions from power series without having to 
invert the series [9]. In papers [16,17], Murphy and O’Donohoe generalized the algorithm to 
apply to all continued fractions of the form 

$$ +# +...+%I +‘-‘, (2-l) 

where p,, is a constant, v,, is a positive integer and q,(z) is a polynomial of degree p,, for each 
n E N. They make the further stipulation that q,(O) = 1 for all n. Let g,(z) be the (possibly 
divergent) power series 

g,(z) = a, + a,z + u2z2 + * -. . (2.2) 

The algorithm is a method for generating the continued fraction (2.1), which has the property 
that the nth approximant satisfies the following correspondence criterion: 

An(z) d4 - BJz) = o(z”(n% 

where a(n) = Cl=ivi. There may be coefficients in the partial denominators q,(z) that are 
undetermined. In such a case, the number of undetermined coefficients is A, = p,, - vn + 1. They 
can be chosen arbitrarily, but of course once chosen they will affect subsequent partial 
numerators and denominators. 

If we set g_i( z) = 1 and v, = 0, then, provided we can determine the coefficients and 
constants involved, the set of recurrence relations 

g,(z) =z vn-1Pn&-2w - d4tL-l(4 (2.3) 

for n = 1, 2, 3 ,..., determine the continued fraction (2.1). Consider { g,(z)} as a sequence of 
power series of the form 

g,(z) = .a(@{ a,,, + u,,iz + - - - +un&Zk + * * * }, (24 

for n = 0, 1, 2 ,..., where u,,~ = uk for k = 0, 1,. . . . Substituting the appropriate expressions 
from (2.4) into (2.3) and equating coefficients of like powers of z, we have 

Uk,r = E’& { PkUk-2,r - G@-lb-l,r} 9 (2.5) 
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where E” is the shift operator defined by 

Emak,r = ak,r+me (2.6) 

The relation (2.5) must hold for all k 2 1 and for r > - vk. For r -C 0, ak r = 0. The equations for 
r= -Vn, -v,+1 >***, - 2, - 1 are then used to determine p,, and the coefficients in q,(z). The 
undetermined coefficients arise in the case where p,, > v,, - 1. The algorithm will fail only if ak,O 

is zero for some k. As Murphy and O’Donohoe proved, 

ak,o=pl xP2x em. ‘Pk+l? 

and one of the pk’s is zero only if the fraction does not exist or, in certain cases, is terminating 
and represents a rational function. 

In the next section, we modify this algorithm slightly and adapt it to the problem of finding a 
regular b-fraction that corresponds to a given power series. 

3. The corresponding sequence algorithm for regular S-fractions 

Let g,,(z) be the (possibly divergent) power series 

go(z)=a,+a,z+a2z2+ .... 

The following algorithm will generate the regular S-fraction that corresponds to g,(z). If g,(z) is 
the power series expansion of a rational function, we choose the terminating form of the 
corresponding regular S-fraction. 

Let the function g,(z) be a power series of the form 

g,(z) = zn(a,,O +a,,iz+a,,2z2+ “’ +a,kzk+ “‘), a,,,fO, n>,l, (3.1) 

where aO,k = ak for k = 0, 1,. . . . Define the recurrence relations for { g,(z)} as follows: 

g1(z) = g,(z) - (& - &z), g2(4 = 4z - (1 - Wd4 (3.2a) 

g,(z) =4-,%-2(z) - Cl- L,z)g,-,(z), n a 3. (3.2b) 

Provided we can determine b,, S,, and d, for all n, the recurrence relations (3.2) will generate a 
b-fraction. 

By substituting the appropriate expressions for g, and g, from (3.1) into the first equation in 
(3.2a), and equating coefficients of like powers of z, we have 

bo=a,,,, a,p=ao,,+60 and ai,k=aO,k+i, fork=l,2,3 ,... . 

If aO,k = 0 for k = 1, 2, 3,. . . , then we choose 8, = 0 and hence gl( z) = 0, forcing the a-fraction 
to terminate with b. - 6,~. If al,k # 0 for some k >, 0, choose 

6, = 
i 

1, if a -0, 0,l - 

0, if ao,l # 0. 

so that a, o # 0. 
By substituting the appropriate expressions for gi(z) and g2(z) from (3.1) into the second 

equation in (3.2a), and equating coefficients of like powers of z, we have 

a2,k- -6 lal,k-al,k+lT for k=O, 1, 2y...9 and d, = alp. 
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If a I,k=O for k= 1, 2, 3 ,..., choose 8, = 0, implying that g2( z) = 0, and hence the S-fraction 
terminates with d,z/l. If al,k f 0 for some k > 0, choose 

if a 
6, = 

1 

1, -0, 1,l - 

0, if a,,, Z 0, 

so that al,0 # 0. Note that if 8, = 1, then ao,I = 0, implying that alp = 1, and hence d, = 1. 
If n 2 3, we substitute the appropriate expressions for g,(z), g,_i( z) and gn_2( z) from (3.1) 

into (3.2b) and equate coefficients of like powers of z to obtain 

a n,k = dn-lan-2,k+l + &-lan-l,k - an-l&+1, for k = 0, 1, 2,. . . , 

and 

dn_l=E. 

If dn-lan-2,k+l = an-l,k+l for k = 0, 1, 2, . . ., we choose S,_ 1 = 0, which forces g,(z) = 0, and 
the b-fraction to terminate with d,_,z/l. If dn_lan_2,k+l # an_I,k+I for some k 2 0, choose 

q-1 = 

i 

1, if an-,,, = dn-la”-*,l~ 

0, if a,-,,, + 4,-la.-2,1, 

so that a,,, # 0. Note that if a,_, = 1 and n = 3, then d,_, = 1. Similarly, if a,_, = 1 and n >, 4, 
then d, _ 1 = 1. Therefore, the S-fraction is regular. 

The above algorithm generates a regular S-fraction from the power series expansion of g,(z). 
The following theorem states that the regular a-fraction generated from g,(z) actually corre- 
sponds to g,(z). 

Theorem 1. The regular S-fraction obtained from the power series expansion g,(z) by the 
corresponding sequence algorithm for regular S-fractions corresponds to g,(z) at z = 0. 

Proof. Let { g, } be the sequence used in the corresponding sequence algorithm described above. 
Let A,/B,, be the n th approximant ((1.3) and (1.4)) of the a-fraction generated by the algorithm. 
Using induction, it is easy to show that 

w)n&+l 
4 

An for n co l 2 =g,- B’ , , ,--- . 
n 

(3.3) 

From the three-term recurrence relation for B,, (1.3), it is clear that B,, is a polynomial with 
constant term 1. Since g, + 1 is of the form (3.1), A,/B, is the n th approximant of the S-fraction, 
and from (3.3) we have 

~aiz+go_~= (-lp+l =o(z”+l). 

i=o 

Therefore, the regular a-fraction corresponds at z = 0 to go(z) and has the order of correspon- 
dence specified by [lo, Theorem 2.21. 0 
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The following is a summary of the algorithm, using series coefficients up to a,. 

If aO,k = 0 for k = 1, 2, 3,. . . , m 

then So = 0 and stop 
else if ao,l = 0 then 6, = 1 

else 6, = 0 

b. = a,,0 

alp = a,,, + 60 

for k = 1, 2, 3,. . . , m - 1 

al,k = aO,k+l 

4 = al,0 

for k = 0, 1, 2,. . . , m - 2 

a2,k = -al,k+l 

If a2,k = 0 for k = 0, 1, 2,. . . , m - 2 
then 6, = 0 and stop 
else if a,,, = 0 then S, = 1 

else 6, = 0 
for k = 0, 1, 2,. . . , m - 2 

a2,k = S,al,k + a1, k+l 

for n = 3, 4, 5,. . . , m - n 

65 

for k = 0, 1, 2,. . . , m - n 
a n,k =dn-I%-2,k+1 - an-l,k+l 

if ank = 0 for k = 0, 1, 2,. . . , m - n 
then S,,_, = 0 and stop 
else if a,_,,, = dn_lan_2,1 then a,_, = 1 

else S,_, = 0 
for k = 0, 1, 2,. . . , m 

a n,k =a n,k + Gn-lan-l,k 

From the algorithm, it is easy to see that in order to accurately compute S,, and d,, one must 
use the first n + 1 coefficients in go. Thus, if a stopping point is preassigned, one can 
approximate go by the approximate Taylor polynomial without affecting the result. 

4. Convergence results and truncation error bounds 

This section includes convergence results and truncation error bounds which are important 
considerations when implementing the algorithm. Included are two theorems on convergence of 
S-fractions and one theorem on truncation error bounds. The two convergence theorems 
represent a reorganization of results from Lange’s original paper [lo]. The truncation error 
bounds are achieved by modifying results obtained in 1985 [l]. 

The first convergence theorem incorporates results found in [lo, Theorems 3.2, 3.4 and 3.51. 
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Theorem 2. Let 

be a &fraction satisfying 

lim d,=O. 
n+oo 

Then the &fraction (4.1) converges in the open disk D = { z: ( z 1 < l} to a function F(z) analytic 
at z = 0 and meromorphic in D. The convergence is uniform on compact subsets of D which contain 
no poles of F. Furthermore, L(F) = go. 

If, in addition, 8, = 0, n 2 N for some positive integer N, then the disk in the above statement 

may be replaced by C, the complex plane. 

The next theorem combines results found in [lo, Theorems 3.2 and 3.31 as well as a simple 
application of Worpitzky’s criterion (see [S]). 

Theorem 3. LA 

cc 

1 - hz + .!!I (44 

be a a-fraction satisfying 

O<Id,I<M, n>N, (4.3) 

where N is a positive integer and M is a positive real number. Then the a-fraction (4.2) converges in 
the disk 

D=[z: Iz( G(J~+M+~)-~] (4.4) 

to a function F(z) analytic at z =. 0 and meromorphic in D. The convergence is uniform on compact 
subsets of D which contain no poles of F. Furthermore, L(F) = go. 

If, in addition, S,, = 0, n >, N, then the disk D may be replaced by the larger disk 

D= [z: IzI < (4M)-‘1. (4.5) 

We now provide truncation error bounds, i.e., bounds on the error 

A”(4 
F(z) - B,(z) ’ 

which may be applied when the conditions of Theorems 2 and 3 are satisfied. We note the 
following. The bounds were originally derived for continued fractions of the form 

Thus, we consider the continued fraction 

(4.6a) 
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in the equivalent form 

67 

(4.6b) 

where 

44 = & and a,(z)= dnz 
1 (1 - 6,_,z)(l - 6,z) ’ n a 2- 

For a fixed z and N, define 

M:= sup (a,] and P:=+-{=. 
t7aN-b1 

Let B,, denote the nth denominator of the original a-fraction (4.6a) and let B,* denote the 
denominator of the equivalent continued fraction (4.6b). Then 

B,, = (1 - 6,z)(l - 6,~) + -a (1 - &z)B,*. 

Let h, denote the ratio B/B,_,. Then h, = (1 - lS,,z)h,* where h,* = B,*/Bz_,. Also 

ri Iaj(Z)l ii IdjzI 
j=l j=l 

IB;-,j’ = w-w lL112’ 

Finally, define 

%+1(Z) 
‘:= 2-4]a,+,(z)] * 

With this notation we have the following theorem adapted from [l, Theorems 3.2, 3.3 and 4.11. 

Theorem 4. Let a 
defined by (4.4) or 
above. Let z E D. 

(a) Suppose 

&fraction (4.6a) be given satisfying (4.3) for positive M and N and let D be 
(4.5) (as the situation warrants). Let a,,(z), a, p and r,, n > N, be defined as 

‘I r, I G l-6,z TLNI. (4-7) 

Define p, := I r, I. Then for n > N + 1, 

A,(4 
2Pn l/i I djz I 

F(z) - Bn(z) G 
j=l 

I1 - 6,~ I I R-1 I ‘( I k/(1 - 6,~) + r, I 2 - d) . 
(4.8) 

(4.9) 

(b) Suppose 

Ih,l >~ll-bzl. 
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Then for n 2 N + 1, 

An(z) 
2~ ii I dp I 

F(z) B,(z) G 
j=l 

II- 42z I 14-l I ‘( I hn/(l - w I 2 - P2> . 
(c) If, in addition, 

IhNl >:Il-&+I, 
then for n 2 2, 

AN+nW 1 
n-1 

F(z> - BN+n(z) 1+ p-i(l - 2p)/(l+ 2p) ’ 

where 
N+l 

R Nfl := 

P,Ql WI 

11 + 6N+l I I BN I ‘( I hN+l/(l - sN+,) I 2 - p’) * 

(4.10) 

(4.11) 

(4.12a) 

(4.12b) 

Proof. (a) If z E D, where D is defined by (4.4), then 

dnz I44 I = (I- an_,z)(l - anz) G a, 
as Lange shows in the proof of [lo, Theorem 3.31. Hence condition (3.18) of [l, Theorem 3.31 is 
satisfied. By hypothesis, 

and thus condition (3.21) of [l, Theorem 3.31 holds, which gives us the bound (3.23) of [l, 
Theorem 3.31, and hence inequality (4.8) follows. If D is defined by (4.9, the result is trivial. 

(b) We have shown I a,(z) ( G : for n = 1, 2, 3,. . . , and hence M< $. Define 

p,:=p=+-/~<+, 

which implies 0 -C p < 1. Also I a,, I G M= ~(1 - p), and thus conditions (3.12a) and (3.12b) of 
[l, Theorem 3.21 are satisfied. Our hypothesis 

lhNl >~l(l-~Nz)l implies Ihjl:l= ll?~~zl >P, 

and hence condition (3.13) of [l, Theorem 3.21 is satisfied, and bound (4.10) follows. 
(c) Again define p,, := p for n = 1, 2, 3,. . . . Then condition (4.1) of [l, Theorem 4.11 holds 

since p(1 - p) = G < $. Our condition (4.11) insures that condition (4.2), and hence bound (4.3) 
of [l, Theorem 4.11, holds. With the conditions of [l, Theorem 4.11 satisfied, our bound (4.12) 
follows. q 

Note that condition (4.7) will be satisfied for all N sufficiently large if F(z) is finite and 
lim n+man=O. 
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Bounds (4.8) and (4.10) are a posteriori bounds since their computation requires knowledge of 
A,(z) and B,,(z). The simpler bound (4.12) is an a priori bound since bounds on the error 

AIv+“(z> 
F(z) - BN+J 2) 

essentially require only knowledge of AN(z) and B,(z). 
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