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A Human Atrial Natriuretic Peptide Gene
Mutation Reveals a Novel Peptide With Enhanced
Blood Pressure-Lowering, Renal-Enhancing,
and Aldosterone-Suppressing Actions

Paul M. McKie, MD,* Alessandro Cataliotti, MD, PHD,* Brenda K. Huntley, BS,*
Fernando L. Martin, MD,* Timothy M. Olson, MD,† John C. Burnett, JR, MD*

Rochester, Minnesota

Objectives We sought to determine the physiologic actions and potential therapeutic applications of mutant atrial natri-
uretic peptide (mANP).

Background The cardiac hormone atrial natriuretic peptide (ANP) is a 28-amino acid (AA) peptide that consists of a 17-AA
ring structure together with a 6-AA N-terminus and a 5-AA C-terminus. In a targeted scan for sequence variants
within the human ANP gene, a mutation was identified that results in a 40-AA peptide consisting of native
ANP(1-28) and a C-terminal extension of 12 AA. We have termed this peptide mutant ANP.

Methods In vitro 3=,5=-cyclic guanosine monophosphate (cGMP) activation in response to mANP was studied in cultured
human cardiac fibroblasts known to express natriuretic peptide receptor A. The cardiorenal and neurohumoral
properties of mANP compared with ANP were assessed in vivo in normal dogs.

Results We observed an incremental in vitro cGMP dose response with increasing concentrations of mANP. In vivo with
high-dose mANP (33 pmol/kg/min), we observed significantly greater plasma cGMP activation, diuretic, natri-
uretic, glomerular filtration rate enhancing, renin-angiotensin-aldosterone system inhibiting, cardiac unloading,
and blood pressure lowering properties when compared with native ANP. Low-dose mANP (2 pmol/kg/min) has
natriuretic and diuretic properties without altering systemic hemodynamics compared with no natriuretic or di-
uretic response with low-dose native ANP.

Conclusions These studies establish that mANP activates cGMP in vitro and exerts greater and more sustained natriuretic,
diuretic, glomerular filtration rate, and renal blood flow enhancing actions than native ANP in vivo. (J Am Coll
Cardiol 2009;54:1024–32) © 2009 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2009.04.080
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trial natriuretic peptide (ANP) is a 28-amino acid (AA)
eptide that consists of a 17-AA ring formed by a disulfide
ond together with a 6-AA N-terminus and a 5-AA
-terminus. Studies in animal models of altered ANP
roduction or receptor function as well as studies in humans
ith ANP infusion have demonstrated that ANP plays an

mportant role in integrated cardiorenal function; ANP
ossesses natriuretic, vasodilatory, lusitropic, renal enhanc-
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he Scientific Advisory Board of Nile Therapeutics.
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ng, and renin-angiotensin-aldosterone system (RAAS) in-
ibiting properties through activation of the natriuretic
eptide receptor A (NPR-A) and generation of the second
essenger 3=,5=-cyclic guanosine monophosphate (cGMP)

1–6). By activating NPR-A, ANP also is antihypertrophic
nd antifibrotic, and genetic deletion of either the ANP

See page 1033

ene (Nppa) or NPR-A results in hypertension, cardiac hyper-
rophy, and fibrosis (7–12). Importantly, ANP is cleared from
he circulation through degradation by neutral endopeptidase
NEP) and by a receptor mechanism after binding to the
atriuretic peptide receptor C (NPR-C) (13,14).
Most recently, mutations for the gene encoding pro-ANP

ave been reported. Rubattu et al. (15) reported that

ypertensive subjects carrying an allelic variant in the ANP
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ene promoter demonstrated increased left ventricular mass
ndex as compared with the wild-type genotype in associa-
ion with lower plasma pro-ANP levels. In contrast, a recent
eport involving the Woman’s Health Study reported that
he presence of an ANP promoter polymorphism is associ-
ted with a decrease in the development and progression of
ypertension (16).
We recently identified an ANP gene mutation in a Cauca-

ian family with familial atrial fibrillation (17). Translation of
he mutant gene results in a fusion protein consisting of the
ormal 28-AA mature native ANP plus an anomalous
-terminus possessing 12 additional residues (Fig. 1). We
ave termed this 40-AA peptide mutant ANP (mANP).
Previous studies have demonstrated that the C-terminus

f native ANP enhances the biological actions of ANP
ased upon augmenting interaction with NPR-A (18).
urther, Dendroaspis natriuretic peptide (DNP), which also
inds NPR-A, possesses an extended C-terminus (15 AA).
he DNP possesses greater resistance to degradation by
EP compared with other natriuretic peptides, demonstrat-

ng that the extended C-terminus contributes to the potent
iological properties of DNP (19).
In the current studies, we hypothesized that mANP

ould in vitro activate cGMP using cardiac fibroblasts,
hich are known to highly express NPR-A (20). Most

mportantly, using in vivo models, we hypothesized that
ANP, compared with native ANP, would possess more

ustained biological actions in the control of cardiorenal
unction and in suppression of the RAAS.

To test these hypotheses, we synthesized mANP and
erformed studies in vitro and in vivo to determine the
bility of mANP and native ANP to activate cGMP, the
econd messenger of ANP, and to characterize the cardio-
enal and RAAS-suppressing properties of mANP and
ative ANP. In vivo studies were performed in normal
nesthetized dogs. The identification of this familial muta-
ion provided the opportunity to better understand the

Figure 1 Amino Acid Sequence of ANP and mANP

Amino acid sequence and structure of atrial natriuretic
peptide (ANP) and mutant atrial natriuretic peptide (mANP).
t

iology of ANP and the impor-
ant role of the C-terminus in
ediating biological activities.

ethods

eptides. Mutant ANP was
ynthesized by the Mayo Protein
ore Facility using solid phase
ethods, as previously described

17,21). Native ANP was pur-
hased from Phoenix (Mountain
iew, California). The structure
f each peptide was confirmed by
ass spectrometry, and HPLC

nalysis confirmed the purity of
ach peptide to be �90%.
ell culture. Human cardiac fi-

roblasts (ScienCell, San Diego,
alifornia) were cultured in fibro-
last media (ScienCell) and supple-
ented with fibroblast growth

erum, fetal bovine serum, and
enicillin/streptomycin, as previ-
usly described (22). Cultured
broblasts with 1 to 4 passages
ere treated with mANP or na-

ive ANP, and cGMP generation
as determined (23).
ntracellular cGMP. Cells
ere treated at 80% to 90% con-
uency, as described previously
22). Briefly, cells were incubated in Hank’s balanced salt
olution (Invitrogen, Carlsbad, California) containing 20
mol/l N-[2-hydroxyethyl]piperazine-N=[2-ethanesulfonic

cid], 0.1% bovine serum albumin, and 0.5 mmol/l 3-isobutyl-
-methylzanthine (Sigma, St. Louis, Missouri). Treated cells
eceived no treatment (control), ANP (10�6 M), or mANP
10�6 M, 10�8 M, or 10�11 M) for 10 min (Fig. 2). Of note,
e performed preliminary studies evaluating cGMP genera-

ion to various incubation times with the 2 peptides, including
0, 30, and 60 min. We found that 10 min provided a maximal
esponse in cGMP. Studies were performed in triplicate for
ach concentration of ANP, mANP, or control. Cells were
hen lysed in 6% TCA and sonicated for 10 min. The samples
ere ether extracted 4 times in ether, dried, and reconstituted

n 500 ml cGMP assay buffer. The samples were assayed using
ompetitive radioimmunoassay cGMP (Perkin-Elmer, Bos-
on, Massachusetts), as previously described (22).
n vivo experimental protocol. Studies were performed in
ormal male mongrel dogs (21 to 26 kg) on a fixed sodium
iet (58 mEq/day, Hill’s ID, Topeka, Kansas) for at least 5
ays before experiments, with free access to drinking water.
he study was performed in accordance with the Animal
elfare Act and with approval of the Mayo Clinic Institu-

Abbreviations
and Acronyms

AA � amino acid

ANP � atrial natriuretic
peptide

cGMP � 3=,5=-cyclic
guanosine monophosphate

CLLi � lithium clearance

DFRNa � distal fractional
reabsorption of sodium

DNP � Dendroaspis
natriuretic peptide

GFR � glomerular filtration
rate

mANP � mutant atrial
natriuretic peptide

MAP � mean arterial blood
pressure

NEP � neutral
endopeptidase

NPR � natriuretic peptide
receptor

PCWP � pulmonary
capillary wedge pressure

PFRNa � proximal
fractional reabsorption of
sodium

RAAS � renin-angiotensin-
aldosterone system

RBF � renal blood flow
ional Animal Care and Use Comm
ittee.
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The night before experimentation, dogs were fasted and
iven 300 mg lithium carbonate for assessment of renal
ubular function. All studies were initiated between 8:00 AM

nd 10:00 AM. On the day of the experiment, dogs were
nesthetized with pentobarbital sodium (15 mg/kg intrave-
ous), intubated, and mechanically ventilated with supple-
ental oxygen (Harvard respirator, Amersham, Massachu-

etts) at 12 cycles/min. A flow-directed balloon-tipped
hermodilution catheter was advanced to the pulmonary
rtery through the external jugular vein for measurement of
ardiac filling pressures and cardiac output. The femoral
rtery was cannulated for mean arterial blood pressure
MAP) monitoring and blood sampling. The femoral vein
as cannulated for inulin and normal saline infusion.
hrough a left lateral flank incision, the left kidney was

xposed and the ureter was cannulated for urine sampling. A
alibrated electromagnetic flow probe (Carolina Medical
lectronics, East Bend, North Carolina) was placed around

he renal artery to measure renal blood flow (RBF). Sup-
lemental nonhypotensive doses of pentobarbital were ad-
inistered as needed during the experiment.
The study protocol started with the administration of a

eight-adjusted inulin bolus. Continuous inulin and saline
nfusions at a rate of 1 ml/min each were started. After 60

in of equilibrium, a baseline clearance was performed. All
learances lasted 30 min and consisted of urine collection
ver 30 min. Arterial blood sampling and hemodynamic
easurements were measured midway through each clear-

nce. After the baseline clearance, the saline infusion was
eplaced by either high-dose native ANP (n � 7), high-dose

Figure 2 In Vitro cGMP Generation
in Response to ANP and mANP

In vitro 3=,5=-cyclic guanosine monophosphate (cGMP) generation in cultured
human cardiac fibroblasts in response to ANP (blue bar) and mANP (red bars)
compared with controls (no treatment) (open bar). Values are mean � SEM.
*p � 0.05 versus control by unpaired t tests. Abbreviations as in Figure 1.
ANP (n � 7), low-dose native ANP (n � 7), or low-dose w
ANP (n � 7). High dose was defined as 33 pmol/kg/min
nd low dose as 2 pmol/kg/min. Peptides were infused for a
otal of 45 min, which included a 15-min lead-in period
ollowed by a 30-min clearance. Peptide infusion was then
iscontinued, and 4 30-min clearances were performed
washout, recovery 1, recovery 2, and recovery 3).

Cardiovascular parameters measured included MAP, car-
iac output, and pulmonary capillary wedge pressure
PCWP). Cardiac output was measured by thermodilution
cardiac output computer model 9510-A, American Ed-
ards Laboratories, Irvine, California). Systemic vascular

esistance (SVR) was calculated as (MAP minus right atrial
ressure) divided by cardiac output. Glomerular filtration
ate (GFR) was measured by inulin clearance.

eurohormonal and electrolyte analysis. Plasma and
rine ANP were measured by radioimmunoassay as previ-
usly described (24). There is high cross-reactivity for
ANP with the above ANP assay. Plasma and urinary

amples for cGMP were measured by radioimmunoassay
sing the method of Steiner et al. (23). Plasma renin activity
25), angiotensin II (26), and aldosterone (27) were deter-
ined by commercially available radioimmunoassays as

escribed previously. Inulin concentrations were measured
sing the anthrone method for GFR analysis, as previously
escribed (28). Electrolytes, including lithium, were mea-
ured by flame photometry (IL943, Instrumentation Labo-
atory, London, United Kingdom), and GFR was measured
y the clearance of inulin. Employing the lithium clearance
CLLi) technique, we calculated the proximal fractional
eabsorption of sodium (PFRNa) according to the equation:
FRNa � [1 � (CLLi/ GFR)] � 100, and we calculated the
istal fractional reabsorption of sodium (DFRNa) according
o the equation: DFRNa � [(CLLi � CLNa) / CLLi] � 100,
n which CLLi � [(urine Li � urine flow) / plasma Li] and
LNa � [(urine Na � urine flow)/plasma Na].
tatistical analysis. Results are expressed as mean � SE.
tudent unpaired t tests were employed for single comparisons
etween groups. Comparisons within a group were made by
-way analysis of variance (ANOVA) for repeated measures
ollowed by Dunnett’s post-test analysis. The baseline mea-
urement was used as the “control” in Dunnett’s analysis.
wo-way ANOVA was used to compare the main group

ffects of mutant ANP versus native ANP, and group differ-
nces at specific time points were evaluated by Bonferroni
ost-test analysis. GraphPad Prism software (GraphPad Soft-
are, La Jolla, California) was used for the above calculations.
tatistical significance was accepted as p � 0.05.

esults

yclic GMP generation in cardiac fibroblasts. In vitro
tudies measuring cGMP generation after exposure to
NP and mANP were performed in cultured human

ardiac fibroblasts, and results are shown in Figure 2. We
bserved an incremental cGMP generation dose response

ith increasing concentrations of mANP consistent with
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ctivation of NPR-A. There was no significant difference
n cGMP generation with ANP (10�6 M) and mANP
10�6 M).

ardiorenal and neurohormonal function, high dose. Sys-
emic hemodynamics, renal hemodynamics, and cGMP
esponses are reported in Table 1. There was an overall
reater and more sustained decrease in MAP with mANP
ompared with native ANP. Despite the greater reduction
n MAP, there was a greater and more sustained increase in
BF and GFR with mANP compared with native ANP.
here was a trend (p � 0.058) toward greater suppression of
CWP with mANP compared with ANP. There also was
reater activation of plasma cGMP with mANP compared
ith native ANP, with a trend (p � 0.064) for greater urinary

GMP activation.
Figures 3A and 3B illustrate urine flow and urinary

odium excretion with high-dose (33 pmol/kg/min) infu-
ion of mANP and native ANP. There was a greater peak
nd an overall greater increase in urine flow and sodium
xcretion with mANP infusion when compared with native
NP. The increased natriuresis with mANP infusion was

ocalized to the distal nephron, where there was a greater
ecrease in DFRNa with mANP infusion compared with
ative ANP (Fig. 3C). There was no difference in PFRNa

etween the 2 peptides.
Assessment of the RAAS is reported in Figure 4.

here was no significant difference in baseline values of
lasma renin, angiotensin II, or aldosterone between
ANP and native ANP groups as measured by Student

npaired t test. Overall, there was a greater decrease in
lasma renin activity with mANP infusion compared

ardiovascular, Renal Hemodynamics, and cGMP-Activatingroperties With High-Dose (33 pmol·kg�1·min�1) mANP and NativeTable 1 Cardiovascular, Renal Hemodynamics, and cGMP-Activ
Properties With High-Dose (33 pmol·kg�1·min�1) mAN

Peptide Baseline

MAP, mm Hg* mANP 133 � 6

Native ANP 136 � 4

CO, l/min* mANP 3.9 � 0.3

Native ANP 3.8 � 0.3

PCWP, mm Hg mANP 4.8 � 0.6

Native ANP 4.7 � 0.5

SVR, mm Hg·l�1·min�1 mANP 33.8 � 2.1

Native ANP 35.7 � 3.7

RBF, ml/min* mANP 251 � 30

Native ANP 245 � 25

GFR, ml/min* mANP 41.5 � 5.2

Native ANP 36.1 � 4.3

Plasma ANP, pg/ml mANP 38.9 � 2.6

Native ANP 33.4 � 2.8

Plasma cGMP, nmol/ml* mANP 12.8 � 2.7

Native ANP 11.6 � 1.5

Urine cGMP, pmol/min mANP 946 � 100

Native ANP 1,000 � 155

alues are mean � SE. *p � 0.05 for main group effect of mANP versus native ANP (2-way analys
t a specific time point (2-way ANOVA and Bonferroni post-tests).

ANP � atrial natriuretic peptide; cGMP � 3=,5=-cyclic guanosine monophosphate; CO � cardiac output;

ressure; PCWP � pulmonary capillary wedge pressure; RBF � renal blood flow; SVR � systemic vascula
ith native ANP (Fig. 4A). Further, there was a signif-
cantly greater and sustained decrease in both angiotensin
I (Fig. 4B) and aldosterone (Fig. 4C) from baseline with
ANP infusion compared with native ANP. Figure 5A

llustrates the significantly greater increase in urinary
xcretion of ANP immunoreactivity with mANP com-
ared with native ANP.
ardiorenal and neurohormonal function, low dose.
igures 6A and 6B illustrate urine flow and urinary sodium
xcretion with low-dose (2 pmol/kg/min) infusion of
ANP and ANP. A significant increase in urine flow was

bserved only after mANP administration. There was a
ignificantly greater overall increase in sodium excretion
ith mANP infusion when compared with native ANP,

nd this increase was sustained for 120 min after infusion.
gain, the greater natriuresis was localized to the distal
ephron, with a greater decrease in DFRNa with mANP

nfusion (Fig. 6C).
The systemic and renal hemodynamics with low-dose infu-

ion are reported in Table 2. In contrast to high-dose infusion,
here was no decrease in MAP after low-dose mANP infusion.
urther, there was no difference in MAP between mANP and
ative ANP.
Plasma levels of renin, angiotensin II, and aldosterone

evels were not significantly different between the 2 peptides
data not shown). Plasma cGMP was greater with ANP
nfusion but was increased with both peptides. Urinary
GMP excretion was increased with both peptides (Table
). Figure 5B illustrates that there was no difference in
rinary excretion of ANP immunoreactivity with mANP
nd native ANP at low dose.

Native ANP

-Dose Infusion 30-Min Post-Infusion 120-Min Post-Infusion

20 � 5† 120 � 5† 122 � 6†

27 � 4† 132 � 3 134 � 4

.6 � 0.3 2.9 � 0.3† 2.8 � 0.2†

.6 � 0.3 3.5 � 0.3 3.3 � 0.2

.3 � 0.7† 2.3 � 0.7† 3.7 � 1.0†

.9 � 0.4† 3.3 � 0.4 5.0 � 0.9

.8 � 2.8 42.4 � 3.7† 43.0 � 3.1†

.0 � 3.6 37.7 � 4.0 40.6 � 4.1

33 � 21† 317 � 16† 305 � 15†

88 � 22† 282 � 21† 280 � 20†

.4 � 6.6† 53.2 � 5.7‡ 49.1 � 2.8

.1 � 4.3† 33.9 � 3.9 43.1 � 6.4

.8 � 25.7† 53.7 � 1.3 35.4 � 2.4

.1 � 103.8† 31.8 � 4.7 38.2 � 4.1

.4 � 3.0† 33.0 � 4.1† 10.6 � 1.4

.1 � 3.6† 22.7 � 2.3† 11.6 � 2.4

84 � 1,433† 6,281 � 1,374† 1,451 � 266

21 � 1,105† 4,487 � 773† 1,358 � 223

riance [ANOVA]); †p � 0.05 versus baseline (1-way ANOVA); and ‡p � 0.05 for mANP versus ANP
ANPating
P and

High

1

1

3

3

2

2

33

35

3

2

65

54

313

478

52

47

8,6

6,5

is of va
mANP � mutant atrial natriuretic peptide; GFR � glomerular filtration rate; MAP � mean arterial
r resistance.
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iscussion

n this study, we have demonstrated that mANP, compris-
ng native ANP and a 12-AA addition to the C-terminus,
ctivates cGMP in vitro, thus indicating the mANP is
apable, despite its extended C-terminus, to interact with its
articulate guanylyl cyclase receptor, NPR-A. High-dose
ANP in normal dogs demonstrated greater blood pressure

owering properties together with greater diuretic, natri-
retic, GFR enhancing, and RAAS inhibiting properties

Figure 3 Renal Excretory Response
to High-Dose ANP and mANP

(A) Urine flow (UV), (B) urine sodium excretion (UNaV), and (C) distal tubular
fractional sodium reabsorption (DFNaR) after infusion of high-dose (33 pmol/
kg/min) ANP (blue lines) and mANP (red lines) in normal dogs. Values are
mean � SEM. *p � 0.05 versus baseline by 1-way analysis of variance
(ANOVA). †p � 0.05 for mANP versus ANP at a specific time point as mea-
sured by 2-way ANOVA and Bonferroni post-tests. The p value shown repre-
sents the main group effect between ANP and mANP as measured by 2-way
ANOVA. BL � baseline; infusion � infusion of high-dose (33 pmol/kg/min)
mANP or ANP; Rec 1 � 30 to 60 min post-infusion; Rec 2 � 60 to 90 min
post-infusion; Rec 3 � 90 to 120 min post-infusion; WO � washout (0 to 30
min post-infusion); other abbreviations as in Figure 1.
hen compared with native ANP. These enhanced cardio-
enal and neurohumoral properties observed with mANP
ere associated with a greater increase in plasma cGMP

han with native peptide. We also found that low-dose
ANP, in normal dogs at nonhypotensive concentrations,

as natriuretic and diuretic properties that were not ob-
erved with native ANP.

We and others have pursued in the past the molecular
esign of chimeric natriuretic peptides that combine se-

ected AA sequences from the native natriuretic peptides so
s to produce novel designer hormones whose biological
ctions go beyond those of the native natriuretic peptides. In
he current study, we have utilized information from an
NP gene mutation found in a Caucasian family with

amilial atrial fibrillation (17). Specifically, this new ANP is
result of the translation of the mutant gene resulting in a

usion protein consisting of the normal 28-AA mature

Figure 4 RAA Response to High-Dose ANP and mANP

Measurement of the renin-angiotensin-aldosterone (RAA) system after infusion
of high-dose (33 pmol/kg/min) ANP (blue lines) and mANP (red lines) in nor-
mal dogs: (A) plasma renin activity, (B) angiotensin II, and (C) aldosterone.
Values are mean � SEM. *p � 0.05 versus baseline by 1-way ANOVA. The
p value shown represents the main group effect between ANP and mANP as

measured by 2-way ANOVA. Abbreviations as in Figures 1 and 3.
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ative ANP plus an anomalous C-terminus possessing 12
dditional residues (Fig. 1).

Our in vitro assay clearly demonstrated that mANP
an activate natriuretic peptide receptors linked to par-
iculate guanylate cyclase as cGMP generation increased
ith mANP in cultured human fibroblasts that are
nown to express NPR-A (20). Increasing mANP con-
entrations resulted in incremental increases in cGMP
eneration. These in vitro results establish that mANP,
haracterized by the 12-AA extension to native ANP,
aintains biological activity. When we compared cGMP

eneration of mANP with ANP in cultured fibroblasts,
here was no significant difference between the 2 pep-
ides. This finding suggests that the in vivo differences
een between mANP and ANP are likely secondary to

Figure 5 Urinary ANP Immunoreactivity
Excretory Response to ANP and mANP

Urinary atrial natriuretic peptide immunoreactivity excretion (UANPV) after infu-
sion of (A) high-dose (33 pmol/kg/min) and (B) low-dose (2 pmol/kg/min)
ANP (blue lines) and mANP (red lines). Values are mean � SEM. *p � 0.05
versus baseline by 1-way ANOVA. †p � 0.05 for mANP versus ANP at a spe-
cific time point as measured by 2-way ANOVA and Bonferroni post-tests. The
p value shown represents the main group effect between ANP and mANP as
measured by 2-way ANOVA. Infusion � infusion of low-dose or high-dose mANP
or ANP; other abbreviations as in Figures 1 and 3.
ltered degradation of mANP and not to enhanced
ctivation of NPR-A. Further studies will be needed to
larify this speculation.

It is well documented that native ANP promotes diuresis
nd natriuresis through its direct actions on the kidneys and
nhibition of the RAAS together with renal vasodilatory
roperties (29–32). In this study using normal dogs, we
bserved a greater natriuretic response with both high- and
ow-dose mANP when compared with native ANP. The
reater natriuretic properties of both high- and low-dose
ANP appear to be at least partially localized to the distal

ephron, where NPR-A is highly expressed (31), with a
ignificantly greater reduction in DFRNa when compared
ith native ANP. We also demonstrated a greater increase

n GFR and RBF with mANP compared with native ANP.

Figure 6 Renal Excretory Response
to Low-Dose ANP and mANP

(A) Urine flow (UV), (B) urine sodium excretion (UNaV), and (C) distal tubular
fractional sodium reabsorption (DFNaR) after infusion of low-dose (2 pmol/kg/
min) ANP (blue lines) and mANP (red lines) in normal dogs. Values are mean
� SEM. *p � 0.05 versus baseline by 1-way ANOVA. †p � 0.05 for mANP ver-
sus ANP at a specific time point as measured by 2-way ANOVA and Bonferroni
post-tests. The p value shown represents the main group effect between ANP
and mANP as measured by 2-way ANOVA. Infusion � infusion of low-dose (2
pmol/kg/min) mANP or ANP; other abbreviations as in Figures 1 and 3.
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his too is consistent with high expression of the NPR-A in
he glomerulus and renal vasculature (33).

Despite a decrease in MAP, we observed a significant
nhibition of the RAAS with high-dose mANP as com-
ared with native ANP. The reduction in renin secretion
as likely secondary to increased sodium delivery to the
acula densa as previous studies have demonstrated an

nverse relationship between sodium delivery to the macula
ensa and renin secretion in view of the enhanced GFR
ith mANP (34). A direct cGMP-dependent action of
NP has also been demonstrated in juxtaglomerular cells,
hich may be an alternative mechanism for greater renin

uppression (35). The reduction in angiotensin II most
ikely results from suppression of renin but may also be
econdary to increased renal perfusion. Regarding aldoste-
one, native ANP is known to directly inhibit both the basal
nd angiotensin II-induced secretion of aldosterone from
he zona glomerulosa, where there is a high concentration of
PR-A receptors (33,36,37). The suppression of aldoste-

one activation observed with mANP is likely multifactorial,
ncluding reduced angiotensin II levels as well as greater or
rolonged activation of the NPR-A receptors in the adrenal
lands and may have contributed to the greater diuresis and
atriuresis of mANP.
A hallmark of the natriuretic peptides especially ANP,

-type natriuretic peptide (BNP), and Dendroaspis natri-
retic peptide (DNP) is their ability to unload the heart by
rterial and venodilation together with a reduction in
re-load through diuresis and natriuresis. Of note, mANP
emonstrated a more sustained reduction in PCWP com-
ared with native ANP. Further, as stated in the preceding

ardiovascular, Renal Hemodynamics, and cGMP-Activatingroperties With Low-Dose (2 pmol·kg�1·min�1) mANP and Native ATable 2 Cardiovascular, Renal Hemodynamics, and cGMP-Activ
Properties With Low-Dose (2 pmol·kg�1·min�1) mANP

Peptide Baseline

MAP, mm Hg mANP 133 � 3

Native ANP 131 � 6

CO, l/min mANP 3.1 � 0.1

Native ANP 3.3 � 0.4

PCWP, mm Hg mANP 4.1 � 1.0

Native ANP 3.6 � 0.4

SVR, mm Hg·l�1·min�1 mANP 48.5 � 3.1

Native ANP 52.4 � 5.7

RBF, ml/min mANP 255 � 13

Native ANP 251 � 32

GFR, ml/min mANP 41.9 � 4.2

Native ANP 37.1 � 5.2

Plasma ANP, pg/ml mANP 55.1 � 3.9

Native ANP 51.9 � 2.4

Plasma cGMP, nmol/ml† mANP 10.4 � 0.7

Native ANP 12.1 � 0.7

Urine cGMP, pmol/min mANP 1,271 � 192

Native ANP 1,221 � 164

alues are mean � SE. *p � 0.05 versus baseline (1-way ANOVA); †p � 0.05 for main group effect
2-way ANOVA and Bonferroni post-hoc tests).

Abbreviations as in Table 1.
ext, reduction in arterial pressure and increase in RBF were t
reater with mANP compared with native ANP. Thus,
espite a greater reduction in arterial pressure with mANP
t the high dose employed with the current study, renal
unction was more enhanced. This feature is unique com-
ared with other conventional vasodilators that tend to
educe renal perfusion and thus might be a highly favorable
haracteristic with clinical implications.

With low-dose mANP, we did not observe significant
AP reduction in this study, nor did we demonstrate an

nhibition of the RAAS or changes in GFR or RBF.
owever, it should be noted that low-dose mANP resulted

n a significant and sustained natriuresis when compared
ith native ANP. Indeed, this sustained effect on sodium

xcretion and DFRNa was more prolonged than at high
ose, underscoring the intrinsic natriuretic properties of
ANP and the importance of renal perfusion in modulating

he renal response to natriuretic peptides.
Regarding the mechanisms of the greater and sustained

ctions of mANP, it is possible that the elongated
-terminus of mANP renders the peptide more resistant to
egradation by either NEP or clearance by NPR-C. Kinetic
tudies have shown the rank order for hydrolysis by NEP is
-type natriuretic peptide � ANP � BNP, suggesting that

he longer the C-terminus, the greater resistance to NEP
egradation by the peptide (19,38). Indeed, studies show
hat DNP with a 15-AA C-terminus is highly resistant to
EP degradation and potently natriuretic, which has been

ttributed to resistance to degradation by NEP (19,39,40).
s mANP has a 17-AA C terminus, longer than the 15-AA
-terminus of DNP, resistance to hydrolysis by NEP,

hereby potentiating mANP’s actions, is plausible. Impor-

ative ANP

-Dose Infusion 30-Min Post-Infusion 120-Min Post-Infusion

137 � 3 137 � 3 136 � 3

131 � 6 132 � 6 135 � 7

2.6 � 0.2 2.6 � 0.3 2.7 � 0.2

2.6 � 0.3* 2.3 � 0.2* 2.5 � 0.3*

4.1 � 0.9 4.5 � 1.1 5.0 � 1.1

3.8 � 0.5 4.5 � 0.5 6.5 � 1.5*

4.2 � 5.2 56.0 � 6.7 54.0 � 5.8

5.9 � 4.8 59.9 � 5.3 58.9 � 6.1

256 � 6 258 � 13 265 � 14

219 � 14 223 � 17 232 � 20

0.1 � 5.1 49.2 � 5.5 45.9 � 6.5

1.0 � 4.0 42.0 � 4.8 46.2 � 6.5

1.8 � 7.8* 63.1 � 7.4 69.8 � 11.3

1.6 � 7.1* 69.6 � 3.4 70.9 � 5.7*

4.1 � 1.0* 10.9 � 1.0 10.4 � 1.0

9.9 � 1.9* 14.2 � 1.2 12.3 � 1.2

013 � 241* 1,665 � 265 1,436 � 228

505 � 345* 2,007 � 320 1,402 � 143

P versus native ANP (2-way ANOVA); and ‡p � 0.05 for mANP versus ANP at a specific time point
NPating
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Low

5

5

5

5

8

12

1

1

2,

2,

of mAN
antly, we noted that high-dose mANP resulted in signifi-



c
A
b
t
w
e
s
m
s
t
T
a
C
a

h
o
s
h
m
i
w
f
r
u
S
c
v
p
e
t
a
t
F
m
(
t
m
d

C

I
o
a
d
N
s
i
e
G
u
w
m
r
A

p
p
a

A
T
L
S

R
M
E

R

1

1

1

1

1

1

1

1

1031JACC Vol. 54, No. 11, 2009 McKie et al.
September 8, 2009:1024–32 Cardiorenal and Neurohumoral Properties of mANP
antly greater urinary ANP excretion compared with native
NP, consistent with greater resistance to renal degradation
y NEP. Alternatively, Shimekake et al. (18) demonstrated
hat the C-terminus of ANP enhances ANP interactions
ith the NPR-A, resulting in greater cGMP activation,

nhanced vasorelaxing actions, and augmented renal re-
ponses. It is possible that the extended C-terminus of
ANP also enhances ligand-receptor interactions. Further

tudies are needed to address this issue, including defining
he biological actions of the novel entire C-terminus itself.
he concept that the C-terminus itself has biological

ctions is consistent with the report that the 15-AA
-terminus of DNP has intrinsic natriuretic and diuretic

ctions (21).
Native ANP is currently approved for the treatment of

eart failure in Japan. The greater and sustained properties
f mANP underscore its own therapeutic potential. Recent
tudies demonstrate the increasing prevalence of systolic
ypertension in the setting of acute heart failure (41). Thus,
ANP may provide a reduction in blood pressure while

mproving renal hemodynamics, natriuresis, and diuresis
ith suppression of the RAAS. Alternatively, in acute heart

ailure patients with low blood pressure and subsequent
enal compromise, low-dose mANP could increase natri-
resis without affecting blood pressure.
tudy limitations. There are several limitations to the
urrent study, including the lack of time controls for the in
ivo studies. It is therefore possible that the experimental
rotocol may account for some of the changes seen with
ither ANP or mANP infusion. However, we believe that
he hemodynamic and neurohumoral data from washout
nd recovery periods suggest that the changes are secondary
o peptide infusion and not the experimental protocol.
urthermore, anesthesia may alter the response to ANP and
ANP, and extrapolation of the data to conscious subjects

animals and humans) should be done cautiously. Finally, in
his study, we sought to define the pharmacodynamics of
ANP, and future studies will need to be performed to

efine the pharmacokinetics of mANP.

onclusions

n summary, these studies highlight the important biology
f the C-terminus of ANP, especially the novel properties of
C-terminus defined by a human ANP mutation. Here, we
emonstrate the ability in vitro of mANP to activate the
PR-A linked to cGMP. This novel mANP, which pos-

esses a longer C-terminus (17-AA) than native ANP—and
ndeed the longest C-terminus of known natriuretic peptides—
xhibits greater and more sustained natriuretic, diuretic,
FR, and RBF enhancing actions together with cardiac

nloading and RAAS suppressing properties as compared
ith native ANP. The greater cardiorenal and neurohu-
oral actions of mANP may be secondary to increased

esistance to NEP degradation and/or clearance by NPR-C.

dditionally, greater interactions with NPR-A are also
ossible. These biological properties underscore the thera-
eutic potential of mANP in cardiorenal disease syndromes
nd warrant further studies.
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