
JOURNAL OF COMPLEXITY 8, 37-63 (1992)

Polynomial-Time Algorithms for Generation
of Prime lmplicants

TADEUSZ STRZEMECKI

Fordham University, Lincoln Center Campus, Division of Science and Mathematics,
113 West 60th Street, New York, New York 10023

Received May 18, 1989

A notion of a neighborhood cube of a term of a Boolean function represented in
the canonical disjunctive normal form is introduced. A relation between neighbor-
hood cubes and prime implicants of a Boolean function is established. Various
aspects of the problem of prime implicants generation are identified and neighbor-
hood cube-based algorithms for their solution are developed. The correctness of
algorithms is proven and their time complexity is analyzed. It is shown that all
presented algorithms are polynomial in the number of mintenns occurring in the
canonical disjunctive normal form representation of a Boolean function. A sum-
mary of the known approaches to the solution of the problem of the generation of
prime implicants is also included. 8 1~2 Academic PBS, IK.

I. INTRODUCTION

The problem of generation of prime implicants of a Boolean function
has been formulated by Quine (1952). The initial interest in the problem
was motivated almost exclusively by practical applications of prime impli-
cants in the minimization of Boolean functions. Generation of prime
implicants is the first step in the process of minimization of Boolean
functions, a classical problem in Switching Theory. At present, prime
implicants are also used in an alternative representation of Boolean ex-
pressions in various problems in Artificial Intelligence (Reiter and De-
Rleer, 1987; Slagle et al., 1969). Since the statement of the problem, there
has been an enormous effort devoted to finding an efficient solution to the
problem, but until now such a solution has not been found. Therefore,
besides practical aspects of the problem, it is also of considerable theoret-
ical interest to determine if such a solution exists. Here we present proce-
dures for various aspects of the problem that are, to our best knowledge,

37
0885464X/92 $3.00

Copyright 0 1992 by Academic Press. Inc.
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82557638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

38 TADEUSZ STRZEMECKI

the first known polynomial algorithms for generation of prime implicants.
The method proposed in the paper is a new method. It is based on a notion
of neighborhood cubes. Neighborhood cubes are computed from the ca-
nonical disjunctive normal form specification of a Boolean function. Prop-
erties of neighborhood cubes are then used to generate prime implicants.
Using neighborhood cubes, prime implicants containing a predefined set
of terms of Boolean function can also be generated. In Section II termi-
nology and definitions used throughout this paper are introduced. Section
III describes algorithms and their complexity analysis followed by conclu-
sions in Section IV. Below, the known results are summarized.

The first known method for the generation of prime implicants is due to
Quine (1952, 1955, 1959). He uses the idea of iterative consensus of
clauses of a Boolean formula to obtain prime implicants. The idea of a
consensus operation, although attributed by Quine to Samson and Mills
(1954), can be traced to the work of Blake (1937). It was refined by Quine
(1959) under the influence of Bing (1956), and developed into the General-
ized Consensus Theory by Tison (1967). The main disadvantage of the
iterative consensus approach was the large number of repeated clauses (k!
for clauses with k missing variables) obtained during the process of prime
implicant generation (McCluskey, 1956; Morreale, 1967). This signifi-
cantly decreased the performance of Quine’s algorithm. It can also be
seen (McCluskey, 1956, 1965; Morreale, 1967) that any consensus opera-
tion-based approach must result in an inefficient procedure for obtaining
prime implicants because of the complexity of a problem of determining
the set of clauses to which a consensus operation must be applied. Lee
(1954) and Urban0 and Mueller (1956) have laid the basis for an alterna-
tive (cubic) representation of Boolean functions. In a series of articles by
Roth (1956, 1958, 1959, 1968, 1972) this approach was developed and
resulted in the cubic and *-algorithms for the generation of prime impli-
cants. The results of the *-operation defined by Roth were the same as the
results of the consensus method of Quine (1959). Hall (1962) presented a
binary sieve method based on the observations made by Keister et al.
(195 1). Scheinman (1962) proposed a method based on recursive develop-
ing a function about its variables. In his approach not all the prime impli-
cants are always generated. The main disadvantage of his method is the
fact that essential prime implicants are not recognized directly. The fact
that the residue of a prime implicant is always zero resembles a Tison’s
(1963) assertion that the prime implicant is always a generalized consen-
sus. In 1965 Das and Choudhury proposed a tabular method for the gener-
ation of prime implicants starting from a maxterm-type expression of a
Boolean function represented in a decimal form. The idea used by Das
and Choudhury was originally proposed by Nelson (1955) (see also Das,
1971), who proved the theorem that the dnf form of a Boolean formulaf,

POLYNOMIAL-TIME ALGORITHMS 39

obtained from a cnf form off by using idempotent laws and the distribu-
tion of multiplication over addition, consists of all prime implicants of J
Svoboda (1967) proposed a technique based on the decimal representation
of minterms of a Boolean functionfand the correspondence between the
logical relation between the implicants off, and the relations existing
between the decimal values representing them. Tison (1967) proved the
theorem that each prime implicant is the generalized consensus of the
subsets of implicants of a Boolean function to which the consensus opera-
tion was applied, and used this result for the generation of all prime
implicants. The disadvantage of his approach was the determination of
the set of implicants to which the generalized consensus was to be ap-
plied. Another important drawback in the process of generating prime
implicants using his approach comes from the fact that generalized con-
sensus is still an iterative operation. The association of the identity of the
characteristic equality of the generalized consensus operation with the
identity of irredundant equalities of Ghazala (1957) is apparent and it was
noted by the author himself, and later, also commented on by Reusch
(1975). Necula (1967) proposed another numerical technique. His ap-
proach was essentially the test algorithm developed by Gavrilov (1959).
Morreale (1967, 1970a, 1970b) contributed procedures referred to as parti-
tioning list algorithms by defining a reduction operator on variables of
implicants of a Boolean function, and identity and nullification operators
on implicants. The significance of his work lies in the fact that it appears
that his approach resulted in the first P-Space approach for the generation
of prime implicants. It still remains in NP-Time however. This is caused
by the necessity of a verification of the redundancy of clauses generated
in the process. Necula (1968) presented another approach to the same
algorithm he described in 1967 that is based on “designation numbers”
proposed by Ledley (1960). In the same year Carroll (1968), using an
ordering on cubes of a Boolean function, developed a fast procedure that
according to his estimation was polynomial; but in his complexity analysis
he apparently did not take into account the number of comparisons that
had to be made between superfluous cubes generated in the process he
developed. Slagle (1970) described a new algorithm for the generation of
all prime implicants. His algorithm is applicable to the cnf or dnf represen-
tation of a Boolean function in both canonical and noncanonical forms.
The algorithm does not generate the same prime implicants twice. In case
a Boolean function is in cnf, the algorithm is applied first to obtain all
prime implicates, and again to a Boolean function in dnf, to get all prime
implicants next. The algorithm begins with finding the frequency ordering
of literals, and expanding a function about a literal with the highest fre-
quency. The resulting tree is called the semantic tree and prime implicants
are obtained by collecting literals at branches leading to a terminating

40 TADEUSZ STRZEMECKI

node. His algorithm sometimes generates nonprime implicants and hence
can be used only as an approximate procedure. A Clause-Column Table
approach of Das and Khabra (1972) presents essentially the same ap-
proach, with the only difference being that at each node the expansion
takes place about all literals, not necessarily those with highest fre-
quency. Bredeson and Hulina (1971) showed that approaches of Necula
(1967) and Slagle et al. (1970) are in fact implementations of the theorem
proved earlier by Nelson (1955). Das (1971) also pointed out some similar-
ities in the ideas used by Slagle et al. (1970) and Scheinman (1962).
Sureshchander (1973, by partitioning variables of implicants of a Boolean
function into complemented and uncomplemented ones, obtained an effi-
cient method for generating prime implicants. Reusch (1975) used a prop-
erty of prime implicants of subfunctions of a switching function appearing
in the Shannon’s expansion theorem to provide another method. Caruso
(1984) introduces a new method for obtaining prime implicants. Prime
implicants in Caruso’s method are obtained by constructing a table of
pointers. The table requires possibly as many as 2” rows, and it is required
that they be ordered. Based on the table’s entries a tree-graph for each of
the vertices of the function is formed. Each vertex for which a tree-graph
is constructed appears at the root of the tree. Prime implicants are ex-
tracted from tree-graphs by identifying all longest paths. The procedure is
exponential because it requires an examination of all paths for each vertex
during a process of tree-graph construction. In Caruso’s method essential
prime implicants can be obtained from tree-graphs by examination. Caru-
so’s method can be applied to a Boolean function represented in the
canonical disjunctive normal form. Dagenais et al. (1986) use a modified
recursive procedure for prime implicants generation developed by Bray-
ton er al. (1982a). Biswas (1986) defines and uses notions of the degree of
adjacency of a minterm and candidate product term to obtain prime impli-
cants of a Boolean function. In Biswas’ approach essential prime impli-
cants can be obtained without generating all prime implicants of a Bool-
ean function first. The degree of adjacency of a minterm is also used in the
minimization process. Guest et al. (1984) use a partitioned list method
developed by Morreale (1967). Perkins and Rhyne (1988) use a procedure
based on the so-called RAD trees. In their method only those prime
implicants that are to be included in the minimal disjunctive normal form
of a Boolean function are generated. Essential prime implicants are identi-
fied from minterms that have no RAD trees associated with them. No
complexity results were presented. It must be added, however, that in the
estimation of space complexity, the size of the problem is measured in
terms of the number of full clauses and variables. Kuo (1987) discusses
the importance of generating essential prime implicants before generating
all prime implicants of a Boolean function. Using probabilistic arguments,

POLYNOMIAL-TIME ALGORITHMS 41

a formula for the number of vertices in a random function, i.e., the num-
ber of the particular type of essential prime implicants, has been obtained
(Fleisher et aI., 1989). Also lower and upper bounds for the number of
implicants with one dropped variable are presented. The examples pre-
sented show that the bounds are not sharp. Furthermore, the method used
to obtain the results seems complex and thus not readily applicable in
obtaining the estimation for the number of larger cubes. From the pre-
sented derivations it is clear that one of the reasons for disagreements
between presented formulas and experimental results is that quantities
Qi, i.e., the probabilities that cubes with II - i variables are detached,
were obtained without taking into account the number of vertices of a
Boolean function. Recently, no new method has been proposed for gener-
ating prime implicants. At best, some variations of existing methods are
being implemented. For example, Kean and Tsiknis (1988) use essentially
a Tison’s method.

There exist also a variety of heuristic procedures to the problem. It
must be said, however, that those methods were developed mainly as an
approach to the problem of minimization of Boolean functions, the pro-
cess that involves generating prime implicants first. Generation of prime
implicants in heuristic methods is usually intrinsically connected with
finding a minimum cover. A heuristic approach of Hong et al. (1974) gives
only approximate results. The rules they use for finding a minimum cover
result in a solution similar to that obtained by the use of the Karnaugh
(1953) map. Brayton et al. (1982b, 1984) use rather complex strategies to
obtain minimal cover, which lead to a cover that, although n-redundant,
might contain implicants that are not prime. Generation of prime impli-
cants in their case is done using a method developed by Sasao (1983). In
general, these and other heuristic methods (Breuer, 1968; Bubenik, 1972)
have one major disadvantage in common. They face the problem of esti-
mating how good the obtained solution is. One possible way of circum-
venting this problem is shown in (Ostapko and Hong, 1974). It may be
observed from what has been mentioned above that approximate solu-
tions appeared rather early (Breuer, 1968). However, it was only in the
mid seventies that opinions doubting the classical approach for finding a
minimum cover started being voiced explicitly (Hong et al. 1974). At
present, at least in many practical solutions, the emphasis is put on devel-
oping approximate methods with relatively complex strategies to obtain
the solution (Brayton et al., 1982; Breuer, 1968). All these algorithms are
in P-Space.

Another aspect of the problem is the bound on the number of prime
implicants of a Boolean function. It is a commonly accepted fact that the
number of prime implicants is exponential in the number of variables of a
Boolean function. On the basis of his analysis, Miller (1965) provided a

42 TADEUSZ STRZEMECKI

bound which later appeared in a modified form in Hong et al. (1974).
Another bound on the number of prime implicants, also exponential in the
number of variables, is cited by Hayes (1978). Among more recent results
addressing the bound on the number of prime implicants, confirming es-
sentially the previous conclusions, is a paper by Chandra and Markowsky
(1978). At present, it is generally agreed that this bound is O(3”). The first
to notice the fact that the number of prime implicants can be much greater
than the number of clauses of a Boolean formula was Fridshal(l957). An
interesting complexity result concerning prime implicants is discussed by
McMullen and Shearer (1986). The authors were able to derive a sharp
upper bound on the number of prime implicants. There are two aspects of
their approach that limit the significance of the result. First, the bound is
obtained in terms of the minimum number of products and not in terms of
the actual input size. Second, the derived bound is sharp for some Bool-
ean function of the assumed size, and not necessarily for the one under
consideration. The relation of the obtained bound to a considered Bool-
ean function is not discussed. Nevertheless, the paper is significant be-
cause it correctly assumes that the complexity of the minimization (and
also prime implicant generation) problem should be measured in terms of
the number of cubes present in the specification of a Boolean function and
not only in terms of the number of variables. Such an approach to the
measure of the size of the problem is also assumed in (Perkins and Rhyne,
1988; Strzemecki, 1991).

As far as the complexity of known algorithms for the generation of
prime implicants is concerned, it is known, for example, that the Quine’s
algorithm is O(n!). Most of the other methods are O(3”) (Necula, Svo-
boda, Gavrilov), or in some cases (for example, Morreale) O(2”). Most of
existing algorithms are also in P-Space.

II. DEFINITIONS

In this work we use a geometric representation of a Boolean function
that is obtained by mapping a Boolean function of n-variables onto the IZ-
dimensional unit cube. Since geometric intuition of such a representation
is clear only up to four variables, we introduce an analytic description of
this mapping. Bk is the set of all k-tuples of O’s and l’s = {X (x: [k] + (0,
l}}.’ Letf: Br+k -+ Br be the projection functionJ?(br , . . . , b,, b,+ I, . . . ,
br+k) = @I, . . . , b,). Functionf is surjective, and k-subcube of Br+k is
J’-‘(x), for some x E B’, where

’ [n] = {I, , n}.

POLYNOMIAL-TIME ALGORITHMS 43

f: kl
increasing

- [r + 4,
r+k + B’,

{ix:, . . .) &tk) = bl,, X4, . . . , $1.

The subcubes of B” are named as follows: write f’(xi , . . . , x,) as
h, . * * 7 artk), where

{-

if i 66 Image(f),
Ui =

Xi otherwise,

If C is a cube (a,, . . . , &+k) we say thejth coordinate of C is$xed if Uj E
(0, l}, andfree if uj = “-.‘I Throughout this work, I = (-, . . . , -) is the
name of a cube denoting the whole cube B”. Having defined the n-dimen-
sional unit cube B” we can now set up the mapping of the n-variable
Boolean function T(xl , . . . , x,) onto B”. It is done by defining a corre-
spondence between the terms of the canonical disjunctive normal form of
T and the vertices of B”. This correspondence is set up in the following
way: an element (bi , . . . , b,) in B” corresponds to the term (x!‘, . . . ,
~2). Note that X? = xk if bk = 1 and x: = Xj if bj = 0. T corresponds to the
set of vertices x such that T(x) = 1. The elements of Tare called vertices,
points, or 0-subcubes of B”. Hence, geometrically, a Boolean function T is
a subset of vertices of the n-dimensional unit cube B”. Clauses of T over
{XI,. * . , x,} are subcubes of B”. If C is a subcube of B”, then dim(C), the
dimension of C, is the number of occurrences of “-” in the name of cube
C. A cube p G B” is a maximal or prime subcube of a formula T if: (1) p c
T, and for every subcube q c B” (2) if p c q and q C T, then p = q.
Throughout this work PT denotes the set of all maximal subcubes of the
formula T c B”. We often write just P for PT. A cube e C B” is an essential
maximal subcube of T if and only if e is a maximal subcube of T and there
exists a point x in T such that: (1) x E e, and (2) if p E P and x E p, then
e = p. A formula in disjunctive normal form (dnf for short) is a set of
subcubes of B”. Formulas U, V G B” are logically equivalent, or just
equiuulent, if and only if U = V. If x and y are the vertices of the n-
dimensional unit cube B”, then the distance d(x, y) between x and y is the
number of coordinates in which x and y differ. The k-neighborhood of
point x, contained in some subset H of the n-dimensional cube Bfl, de-
noted by Nk(x, H), is the set Nk(x, H) := {y E H 1 d(x, y) = k}. If T c B”
and x is a point in T, then the T-neighborhood of x is the set N,(x, T) c
T C B” defined by iVi(x, T) := {y E T 1 d(x, y) = 1) = N,(x, B”) n T. For
example, if n = 3 and T = {(OOO), (OOl), (Oil), (Ill)) C B3, then the T-
neighborhood of point x = (001) is the set N,(x, T) = {(000), (011)). If y is a
point (11 l), the distance d(x, y) between x and y is 2. If F = Bn - T, the F-

44 TADEUSZSTRZEMECKI

neighborhood of x is denoted by Ni(x, F) and is defined similarly to
the T-neighborhood of x. Throughout this work we write N(x, T) and
N(x, F) instead of Ni(x, 7’) and A/,(x, F), respectively. The set N(x, B”) =
N(x, T) U N(x, F) is referred to as the unit-neighborhood of x. The unit-
neighborhood of point x in the example above is the set N(x, B”) = {(000),
(lOl), (01 I)}. If x = (xi, . . . , x,) and y = (yi , . . . , y,J are points of T
such that y E N(x, B”), then the coord(x, y) denotes the index of the
unique coordinate in which x and y differ. For every subset C of the n-
dimensional cube B” there exists the smallest subcube of B” that contains
all points in C. Such a cube is denoted by cube(C). It can be shown that
cube c = (ci , . . . , c,) defined as

Xi

i-

if x E C, and for all y E C, x; = yi,
Ci =

otherwise

is the smallest subcube of B” containing all points of set C. For example, if
C = {(000), (011)) then cube(C) is the cube (0--).

III. ALGORITHMS

Essential Maximal Subcubes

It is a well-known fact that any alternative representation of a Boolean
function using prime implicants must contain all essential prime impli-
cants of the formula (McCluskey, 1965; Quine, 1959). In all existing meth-
ods, with few exceptions that require a specific representation of a Bool-
ean function (Bahnsen, 1981; Sasao, 1983), determining essential prime
implicants can be done only after all prime implicants are known. Since
there are Boolean formulas which have prime implicant representation
consisting of essential prime implicants exclusively, it would be advanta-
geous, in the general case, to determine essential prime implicants before
generating all prime implicants first. The next two theorems imply a poly-
nomial-time algorithm for achieving such a goal. The algorithm presented
below assumes that a Boolean function is represented as a subset of the n-
dimensional cube B”. With such input, the previously mentioned methods
for determining essential prime implicants are exponential in time.

DEFINITION 1. The neighborhood cube Ri of the vertex Ti = (11, . . . ,
t,) of T C Bn is the subcube (r, , . . . , m) of B” defined as

I- if there exists i‘j E iV(Ti, T) such that k = coord(Ti, Tj),
rk =

tk otherwise.

POLYNOMIAL-TIME ALGORITHMS 45

R = {Ri}iEI,], where 111 is the number of points in T, is the set of neighbor-
hood cubes of vertices of T.

For example, if T = {(000), (OOl), (Oil), (Ill)} C B3, then the T-neigh-
borhood of point T2 = (001) is the set N(T2, T) = {(000), (01 l)}, and the
neighborhood cube of T2 is RZ = (0--). It is worthwhile to observe that a
simple relationship exists between the neighborhood cube Ri of the point
Ti and the smallest cube of B” containing the T-neighborhood of Ti,
namely Ri = cube(iV(Ti, T)). It also follows directly from Definition 1 that
Ti E Rim

PROPOSITION 2. Zf C is a subcube of T and Ti E C, then C C Ri.

PROOF. Without the loss of generality write C as (-, . . . , -, CX) and Ti
as (bi , . . . , bj, . . . , bk , a), where (Y is some point in B’. Hence, C C Ri
by Definition 1. n

LEMMA 3. Let T be a Boolean formula and let R be the set of neigh-
borhood cubes of T. Zf the neighborhood cube Ri of some point Ti of T is a
subset of T, then Ri is maximal subcube of T.

Proof. Since the neighborhood cube Ri is a subset of T, there exists a
maximal subcube of T containing Ri. Let p be such a subcube. If Ri C p c
T, then Ti E p because Ti E Ri. Therefore, p = Ri by Proposition 2. n

COROLLARY 4. Let p be a maximal subcube of T. Zf Ti E p and Ri c T
then Ri = p.

Proof. By Proposition 2, p G Ri. But since p is maximal then p =
Ri. n

THEOREM 5. Zf Ri C T then Ri is an essential maximal subcube of T.

Proof. Ri is a prime subcube of T by Lemma 3. It follows from Corol-
lary 4 that Rt is the only maximal subcube of T containing Ti . Therefore, Ri
is an essential maximal subcube of T by definition of an essential maximal
subcube. n

For example, if T = {(000), (OOl), (Oil), (111)) c B3, then the T-neigh-
borhood of point TJ = (111) is R4 = (-11). Since R4 C T, Rq is an essential
maximal subcube of T.

THEOREM 6. Let T c B” and let E C PT be the set of essential maximal
subcubes of T. Then E = {Ri 1 Ri c T}.

Proof. We shall prove the theorem by showing that if Ri is not a subset
of T, then Ti is contained in at least two maximal subcubes of T. Let Ti be
an arbitrary point in T and let p be a maximal subcube of T such that Ti E
p. Assume that Ri is not a subset of T. Write Ri = (-, . . . , -, a). By

46 TADEUSZ STRZEMECKI

Proposition 2, p c Ri. Write p, without the loss of generality, as (-, . . . ,
-7 b I,.. *, b,, (Y). Consider any point q E (Ri - p) II N(Ti, T) such that
coord(Ti, Tj) E [r]. Let 4 be a maximal subcube of T containing Ti such
that Tj E q. Such a maximal subcube always exists because Zj E N(Ti, T).
Since both Ti and Tj are contained in q, the coordinate of q corresponding
to coord(Ti, Tj) is a free coordinate in the name of q, because otherwise
either Ti or Tj are not in q. Therefore, a maximal subcube q is distinct from
p, because coord(Ti, ZJ is a fixed coordinate in the name of p. n

ALGORITHM 1. Generation of essential maximal subcubes of a Bool-
ean function

Input. T = {Ti}icL,] G B”
Output. Set E E PT of essential maximal subcubes of T
Procedure.

fori:= 1 tomdo
determine Ri
ifRi C Tthen

Output Ri
end if

end for

Proof of the Correctness. Follows immediately from Theorems 5
and 6. n

Complexity Analysis. A neighborhood cube Ri of an arbitrary point Ti
in T can be computed using at most m - 1 comparisons between Ti and the
remaining points of T. Each comparison between two points of T requires
up to n coordinate comparisons. Verification of whether a subcube of B”,
say C, is a subset of T requires at most m comparisons between points of
T and the name of C, and each such comparison requires at most n
comparisons between coordinates of points and coordinates in the name
of C. Since the process of obtaining R; and verifying whether Ri c T must
be performed for each of m points of T, the time complexity of Algorithm
1 is O(m2n).

Nonessential Maximal Subcubes

We first introduce new definitions and present basic results used in this
section. Let c = (cl, . . . , c,) be a subcube of B”. The set Free(c) is the
set Free(c) := {i 1 ci is “-“}. The set Fix(c) is defined as Fix(c) := [n] -
Free(c). If x = (x1, . . . , x,) is a point in T and c is a subcube of B”
containing x, then the point y = (y, , . . . , y,) in c, where

POLYNOMIAL-TIME ALGORITHMS 47

xi
if i 4 Free(c),

yi =
Xi if i E Free(c),

is denoted by xFreecc).
For example, if c = (--O-00) then Free(c) = (1, 2, 4}, and Fix(c) =

[6] - Free(c) = {3,5,6}. If x is a point (000000) in c then xFree(c) is the point
(110100).

Let c = (ci , . . . , c,) be a subcube of Bn and let i E Fix(c). Then ci =
WI 7 * * . , d,) is the subcube of Bn where

4= cj C ifj f i,

ifj = i.

For example, if c is a cube (--O-00) then c3 is the cube (----00). It can
be shown that for all i E Fix(c), c $ ci. If c is not a maximal subcube of T
we define set F(c) to be the set F(c) := {i E Fix(c) (ci C T}. The cube
f%f = (f,) . . . , fn) is the subcube of B” where

if j E (Fix(c) - F(c)),

otherwise.

It is assumed that c” = c. Examples of sets F(c) and cFcc) are given in the
Appendix.

Let C = (cl, . . . , c,) and D = (d, , . . . d,,) be k- and r-subcubes of B”,
respectively, with ci, di E (0, 1, -}. The name of the intersection of the ith
coordinate of cubes C and D is defined as

Ci if Ci = di or di = -,

Ci = di if Ci = -,

4 if - # ci # di f -.

The intersection of cubes C and D is defined in terms of the names of their
coordinate intersections as

4 if ci n di = 4, for some i,
cno=

((Cl n dJ, . * . 9 cc, n 48 otherwise.

If T G Bn and x is a point in T, Horn(x) is the set defined as Horn(x) : = { y E

48 TADEUSZ STRZEMECKI

T) {x, y} E RX fl Ry}. Ifp E P, we define C(p) to be the set C(p) =
14 I Ti E PI*

For example, if for some function T over B6, TI = (oOOO), RI =
(-O--00), T7 = (lOlOOO), and R7 = (----0-), then T7 E Hom(TJ (and also
Tl E Hom(T7)) because T7 E RI and T, E R, . Note that RI fl R, is the cube
(-O--00).

In the previous section it has been shown that neighborhood cubes that
contain only points of T are essential maximal subcubes of T. The next
theorem demonstrates that maximal subcubes of a Boolean formula can
be obtained from neighborhood cubes of the formula.

PROPOSITION 7. A cube p C T c B” is a maximal subcube of T, ifand
only zf, for every coordinate i E Fix(p), cube pi is not a subset of T.

Proof. Follows immediately from definition of a maximal subcube. n

THEOREM 8. A cube p is a maximal subcube of T ifand only ifit is an
intersection of neighborhood cubes in C(p).

Proof. Let P denote the set of all maximal subcubes of T and let p E
P. We shall first show that p is a subset of fl C(p). By Proposition 2, if
Ti E p, then p C Ri. Therefore, since Ti is arbitrary, p C n C(p). TO
complete the proof we need only show that n C(p) c p. Suppose, for the
sake of contradiction, that n C(p) e p. It follows from Proposition 2 that,
without the loss of generality, it must be the case that p = (-, . . . , -, pi ,
. . ., pk, (Y) and n C(p) = (-, . . . , -, a), where pj E (0, I} for allj E [kl.
Hence, we conclude that n C(p) rJ T for otherwise p would not be
maximal. Since p is a maximal subcube of T, p’ g T for any r E [k] by
Proposition7.Letx=(xl,. . . ,xSrpl,. . . ,I -pr,. . .,pk,ck)bean
arbitrary point in p’ rl (B” - T), for some r E [k]. Then y = (x1, . . . , xs,
PI,. . *7 pk,(Y)EpCnC(p).SincexEB”-TandyETCp,bythe
definition of the neighborhood cube it is clear that r E Fix(R,), a contra-
diction, because y E C(p) and the rth coordinate of n C(p) is “-.” n

A family C of neighborhood cubes of a formula is maximal if q E n C
implies Rj II (fl C) = fl C. Theorem 8 above states that if a maximal
family of neighborhood cubes is found, the intersection of neighborhood
cubes in such family is a maximal subcube of a formula. Theorem 14
presented below implies an algorithm for the generation of maximal sub-
cubes of a Boolean formula based on the results of Theorem 8, in the
sense that an algorithm for determining a maximal family of neighborhood
cubes of the formula follows from Theorem 14.

PROPOSITION 9. Let c c T be a subcube of B” that is not a maximal
subcube of T and let x be a point in c. Zf y E (cFcc) - c) then cube(x, y) C
CF’C’.

POLYNOMIAL-TIME ALGORITHMS 49

Proof. Both x and y belong to CF cc). Hence cube@, y), the smallest
cube containing x and y, is a subcube of &) by the definition of the
smallest cube. n

PROPOSITION 10. Zf c G T is a subcube of B” that is not a maximal
subcube ofT and x is a point in c, then for every i E F(c), ify E (c’ - c),
then y E T and cube(x, y) c T.

Proof. Since c is not maximal, it follows from definition that F(c) # 4,
and if i E F(c), then ci E T. Thus, if y is a point in ci - c, for i E F(c), then
y is a point in T. Consider an arbitrary point x in c. Then x E ci because
c G ci for all i E F(c). If y = x Free(c’), then cube(x, y) = ci. It is clear that if
y # xFreetc9, then, since x and y are points in ci, cube(x, y) c cube(x,
xFree@j) C ci. Therefore, since i E F(c), if follows that cube(x, y) C ci C
T. n

Proposition 11. Let c C T be a subcube of B” that is not a maximal
subcube of T. Then, for every point x in c there exists pointy E (~9 - c)
n Horn(x) such that for no point z E (cFCC) - c) n Horn(x), d(x, z) <
4x, Y).

Proof. Since c is not maximal it follows by Proposition 7 that F(c) #
4. Let x be an arbitrary point in c and choose any i E F(c). Consider point
y E N(x, Bfl) such that coord(x, y) = i. Since d(x, y) = 1 and i E F(c), it
follows by Proposition 10 that y is a point in ci C T. Thus, by definition of
a neighborhood cube i E Free(R,) and i E Free(R,). Since i = coord(x, y),
it is clear that {x, y} c R, rl R,, and thus y belongs to Horn(x). Since the
distance d(x, y) between x and y is 1 the proof follows. n

LEMMA 12. Let c C T be a subcube of B” that is not a maximal
subcube of T and let x be a point in c. Then there exists point y not in c
such that y E Horn(x).

Proof. Since c is not maximal it follows by Proposition 7 that F(c) #
4. Let i E F(c) and let y be a point in ci C T. Then, by Proposition 10 and
from the definition of ci it follows that y is a point in T. Let y’ be the point
in c such that coord(y, y’) = i. Thus, y’ E T because c C T and i e Fix(R,)
by definition of a neighborhood cube. Since c $ ci, and y E c, then y E
ci c T. Thus, by Proposition 2, ci G R, . But since x E c c ci. Therefore x E
R, . By the similar argument, i G Fix(R,), and ci C R, . Therefore y E R, .
Thus y E Horn(x) by definition. n

LEMMA 13. Let c C T be a subcube of B” that is not a maximal
subcube of T and let x be a point in c. Zf y is a point in (S(C) - c) n Horn(x)
and cube& y) g T, then there exists point z E (+I - c) such that z E
Horn(x), and d(x, z) < d(x, y).

Proof. From Proposition 11 it is clear that since c is not maximal,

50 TADEUSZ STRZEMECKI

pointy, as specified in Lemma 13, exists. Since cube& y) g T, then there
exists a point, say u, in cube(x, y) n (B” - T - c). Assume that u is a point
such that if w E cube@, y) tl (P - T - c), then d(x, u) 5 d(x, w). We shall
demonstrate that every point z E N(u, T) such that d(x, z) I d(x, u) is in
Horn(x) and d(x, z) is strictly smaller than d(x, y). We shall also show that
there exists at least one index, say i, such that i E Fix(R,) (7 F(c) and i E
Free(cube(x,y)). Let u,,, be a point in c such that d(u,, u) is minimal. By
the choice of urn it is clear that Free(cube(u,, u)) C F(c) G Fix(c). The
point with properties as those of point u, exists in c for an arbitrary point
in cube(x, y) n (R” - T - c), because c c T. Consider a shortest sequence
of points in cube(x, y) from urn to u. Let u, = uI , . . . , uk = u be such a
sequence. It is clear that for all i E [k], ui are points in cF@) because, by
Proposition 9, they are points in cube@, y) G cFcc). Therefore, for all 1 <
i 5 k, if Ui-1 = w and Ui = w’, coord(w, w’) E Free(cube(u,, u)) c F(c),
and &urn, w) + 1 = d(u,, w’). Thus, since d(u,, w) + 1 = d(um, w’), then
for some j E F(c) it holds that xj = cj = wj # wj’. Consider point z = uk-1.
It is clear that z E T because z lies on a shortest path from u, E c c T to
u E (B” - T) tl cube(x, y), d(x, z) + 1 = d(x, u), and d(x, u) is minimal. It is
clear from the considerations above that for some coord(z, u) = j E F(c),
Zj = cj = Xj # uj. Since u E N(z, B” - T), and zj # uj, then j E Fix(R,),
because u & T. It is also clear that j E Fix(R,) n F(c) because of the
choice of point u, as the point in c with the smallest distance to u. Con-
sider N(z, B” - T). By the same argument for which coord(z, u) E Fix(R,),
it follows that for any w E N(z, B” - T) such that d(x, w) = d(x, u) = d(x,
Z) + 1, j = coord(z, w) E Fix(R,) and zj = xj. If w E N(z, B” - T) and d(x,
w) + 1 = d(x, z), then it is clear that w E cube(x, y) and d(x, w) < d(x, z) <
d(x, u), a contradiction, because d(x, u) is minimal. Thus, if j E Fix(R,),
then zj = xi. Hence, x E R, . We shall now show that cube(x, y) c R, . It
follows from the fact that for all i E F(c), ci c T. Therefore i E F(c)
implies that i 4 Fix(R,). Also, if i E Free(c) then i 4 Fix(R,), because c C
T. It follows from the considerations above that if j E Fix(R,), then j E
Fix(c”c)) becausej E Fix(R,) implies j 62 F(c). Hence, cube(x, y) C cFfc) C
R,. Thus, z E cube(x, y) C Rx. Therefore, since x E R, it follows that {x,
z} c R, fl R,. Hence, z E Horn(x). We shall now show that z 4 c. It is
clear because d(u, , u) > 1. If d(u,, u) = 1, since u E N(u, , B” - T), then
u E ci, for some i E F(c) C Fix(c), and ci g T, a contradiction to the
definition of F(c). Since d(x, z) + 1 = d(x, u), and d(x, u) < d(x, y), it is
clear that d(x, z) < d(x, y). n

THEOREM 14. Let c c T be a subcube of B” that is not a maximal
subcube of T and let x be a point in c. Zfy is a point in (cFcc) - c) fl Horn(x)
such that ifw E Horn(x) n (cFcc) - c) then d(x, y) 5 d(x, w), then cube(x, y)
c T.

POLYNOMIAL-TIME ALGORITHMS 51

PVOO~. Since c is not maximal, it follows from Proposition 7 that F(c)
is not empty. Hence, it follows by Proposition 11 that there exists a point
y E Horn(x) n (c F(C) - c), such that for any w E Horn(x) n (PCc) - c), d(x,
y) 5 d(x, w). Suppose that cube(x, y) g T. Then, by Lemma 13 there
exists point z E Hom(x)(8(‘) fl T - c) such that d(x, z) < d(x, y), a
contradiction. Therefore, cube(x, y) C T. n

The results of Lemma 13 and Theorem 14 imply the correctness of the
following algorithm for the generation of a maximal subcube containing a
specific point of T.

ALGORITHM 2. Generation of a maximal subcube of T containing
point x E T

Input. Set {x = yi, . . . , yq} C T C B” (yi E Horn(x) for all i E [q],
and d(x, yi-1) 5 d(x, y;) for all 1 < i 5 9)

Output. A maximal subcube p of T containing point x
Procedure.

Initialize u1 := I; 7Ji := 0, for i > 1
p:=y1=x
while p is not maximal do

i := the next smallest index such that ui = 0, and yi E pF(p)
p := cube(x, yi)
Uj:= 1,fOrdlyjEp

end while
output p

Proof of the Correctness. It is clear that initially p C T. Furthermore,
since at every repetition of the loop yi with the smallest distance to x
chosen in pF(P), the conditions for y = yi, as stated in Theorem 14, are
satisfied. Therefore, by Theorem 14, p C T is the loop invariant. It is
clear, from Proposition 1 I, that the procedure does not terminate unless p
is maximal. Setting uj = 1 in each iteration of the loop, for the appropriate
j, is justified by Proposition 11 and the by the fact that the next point
chosen by the procedure is not in c. I

Complexity Analysis. It is clear that determining each element of set
F(p) can be performed in at most mn coordinate comparisons. Thus, set
F(p) can be obtained in at most mn2 coordinate comparisons. The choice
of the next point in p F(p) requires at most mn coordinate comparisons.
The choice of a point in p F(p) must be repeated at most m times, because a
maximal subcube of T can contain at most m points. Hence it is clear that
the time complexity of the algorithm is determined by at most m(mn +
mn2) coordinate comparisons, and therefore is O(m2n2).

For an example of Algorithm 2 see the Appendix.

52 TADEUSZ STRZEMECKI

Since it is usually the case that m > rz, and m is quite large, the question
arises whether it is possible to reduce the time complexity of the algo-
rithm by reducing the power of m. This can be achieved by means of
expandable cubes as described later in this section. Additional definitions
and results pertinent to justification of the necessary modifications of
Algorithm 2 are now presented.

Let c 5 T be a subcube of B” that is not a maximal subcube of T and let x
be a point in c. A point y in cFtc) - c is called c-expandable, if y E Horn(x)
and Fix(R,) n F(c) # r#~, A cube c is called expandable if and only if @cc)
contains c-expandable point. For example, if c C T is the cube (--O-100)
that is not maximal, x is the point (0000100) and F(c) is the set {3,6), then
if y is the point in Horn(x) and R, is the cube (--O-10-) the cube c is
expandable because y is the c-expandable point. (Note that Fix(R,) n
F(c) = (31.)

PROPOSITION 15. Let c C T be a subcube of Bn that is not a maximal
subcube of T and let x be a point in c. Zf y is a point in (cFcc) - c) rl
Horn(x) and cube(x, y) p T, then there exists a c-expandable point z in
(cFCc) - c) f~ Horn(x) such that d(x, z) < d(x, y).

Proof. Consider the point z E cube(x, y) in the proof of Lemma 13.
Then z is contained in @cc) by Proposition 9, because z is in cube(x, y).
Since, by the argument presented in the proof of Lemma 13, there exists
j E F(c) such that j E Fix(R,) rl F(c), z E Horn(x) and d(x, z) < d(x, y).
Thus z is a c-expandable point by definition. w

PROPOSITION 16. Let c C T be a subcube ofB”. Zf cFCc) B T then c is
expandable.

Proof. Immediate from Lemma 13 and Proposition 15. w

THEOREM 17. Let c c T be a subcube of B”. Then cFcc) is a maximal
subcube of T if and only if c is not expandable.

Proof. If cFcc) is a maximal subcube of T, then cFcc) does not contain a
point in B” - T. Thus, it is clear that for any cube d C or, d is not
expandable, because for any point y E cFcc), Fix(R,) n F(c)) = 4. There-
fore, cube c C @cc) is not expandable. Conversely, if c is not expandable
and c is maximal, then F(c) = 9, cFcc) = c@’ = c, and hence cF(d is
maximal. Suppose that c is not expandable and c is not maximal. Then,
for every point y E c F(c), Fix(R,) rl F(c) = 4. Since c is not maximal,
F(c) # 4. Fix(R,) fl Free(c) # r#~ implies that cF@) e T, and thus c is
expandable by Proposition 16, a contradiction. Thus, cF@) C T. Hence,
since cFcc) C T, it follows by definition of F(c) and by the definition of a -
maximal subcube that cFcc) is a maximal subcube of T. n

POLYNOMIAL-TIME ALGORITHMS 53

PROPOSITION 18. Let c G T be a subcube ofB” that is not a maximal
subcube of T and let x be a point in c. Let y be a c-expandable point such
that d(x, y) 5 d(x, w), whenever w is a c-expandable point. Then cube(x,
Y) C T.

Proof. Since c is not maximal, it follows from Proposition 7 that F(c)
is not empty. Hence, it follows by Proposition 11 that there exists a point
y E Horn(x) (l (Cc) - c), such that for any point w E Horn(x) fl (Cc) -
c), d(x, y) 5 d(x, w). Suppose that y is a c-expandable point and
cube(x, y) c T. A c-expandable point y exists, for otherwise cFCc) is a
maximal subcube of T by Theorem 17, a contradiction. Then, by Proposi-
tion 15, there exists a point z E (c F(c) - c) n Horn(x) such that z is a
c-expandable point and d(x, z) < d(x, y), a contradiction. Therefore,
cube(x, y) G T. w

ALGORITHM 3. Generation of a maximal subcube of T containing
point x E T

Input. Set {x = yr, . . . , ys} C T c B” (yi E Horn(x) for all i E [q],
and d(x, yi-1) 5 d(x, yi) for all 1 < i 5 4)

output. A maximal subcube p of T such that x E p
Procedure.

Initialize v1 := 1; Vj := 0, forj > 1
p := x
while pF(P) e T do

i := the next smallest index such that vi = 0, and yi E pF(p), yi is
p-expandable

Vj := 1, for allj < i
p := cube(x, yi)

end while
output pF’p)

Proof of the Correctness. Since initially p = {x}, p c T. Furthermore,
since at every repetition of the loop a p-expandable point yi with the
smallest distance to x is chosen in p F(p), the conditions for y = yi, as
stated in Proposition 18, are satisfied. Therefore, p c T is the loop invari-
ant. By Proposition 16, a p-expandable point exists in pF(P) as long as
P F(p) p T. It is clear, from Theorem 17, that the procedure does not
terminate unless pF(p) is maximal. Setting Vj = 1 in each iteration of the
loop is justified by Propositions 11 and 15. l

Complexity Analysis. It is clear that determining each element of set
F(p) can be performed in at most mn coordinate comparisons. Thus, set
F(p) can be obtained in at most mn2 coordinate comparisons. The choice
of the next point in pF(p) requires at most mn coordinate comparisons.

54 TADEUSZ STRZEMECKI

The choice of a point in p F(p) must be repeated at most n times, because
every time a new point is chosen, at least one new fixed coordinate is
added to Fix(p). Hence the time complexity of the algorithm is bounded
by n(mn + mn2), and thus it is O(mn3).

For an example of Algorithm 3 see the Appendix.
The problem of generating a maximal subcube of T containing point x

can be generalized to the problem of generating a maximal subcube con-
taining a subset of points of T, say S c T. Algorithm 4 presented below
can be used for that purpose.

THEOREM 19. Let T C B” and let S be any subset of T. Then there
exists a prime subcube of T containing all points in S, if an only if cube(S)
c T.

Proof. If S C p C T then cube(S) c p c T. Conversely, if cube(S) C T
and cube(S) is not maximal, expand cube(S) until it is a maximal subcube
ofT. n

ALGORITHM 4. Generation of a maximal subcube of T containing
points in S C T

Input. Set S C T containing point x, set {x = yl, . . . , y,} L T c B”
(yi E Horn(x) for all i E [q], and d(x, yi-1) 5 d(x, yi) for all 1 < i 5 4)

Output. A maximal subcube p of T such that S c p
Procedure.

p := cube(S)
ifp C Tthen

i : = index of the point yi = x Free(p)
Initialize Uj : = 1, for all j 5 i; Uj : = 0, for all j > i
while pF(p) p T do

i := the next smallest index such that u; = 0, and yi E pF(+‘), yi is
p-expandable

Uj := 1, for allj 5 i
p : = cube(x, yi)

end while
p := pF(P)

else

p := 4
end if
output p

Proof of the Correctness. Since initially p = cube(S) C T, p C T.
Furthermore, since except for the initial step the algorithm is the same as
Algorithm 3, the proof follows. n

POLYNOMIAL-TIME ALGORITHMS 55

Complexity Analysis. The same as that of Algorithm 3.

For an example of Algorithm 4 see the Appendix.

All Maximal Subcubes

In many practical applications all maximal subcubes of a formula are
required. The results below provide a basis for a polynomial-time algo-
rithm for the generation of all maximal subcubes.

LEMMA 20. Let T C_ B” and let x be a point in T. Let {p, , . . . , pk} be
the set of prime subcubes of T containing x. Then, for all i E [k], there
exists a pointy contained in pi that is not contained in any other maximal
subcube of T containing point x.

Proof. If k = 1 then the claim is vacuously true. Suppose k > 1. Then
every prime subcube of T contains at least two points of T. Write x = (x1 ,
. . .) x,) and, without the loss of generality, write pi = (-, . . . , -,
xk+l,. . . , xn), for k > 0. We shall show that pi contains a point that is
not contained in any other pi, forj # i. Consider the point y = xFree@J in
pi. We show that y is not contained in any other pj, j # i. Ifj # i then pi #
pi, and thus at least one of the first k coordinates Of pj must be fixed, since
otherwise pi would not be a prime subcube of T. Furthermore, any of the
fixed coordinates of pj must agree with coordinates of x, because other-
wise pj would not contain x. Hence, y E (pi - pj), because none of the
first k coordinates of y agrees with x. Since the choice of i and j is arbi-
trary, the assertion of the lemma is true. n

COROLLARY 21. Let y E (pi - pj), j f i, and let y be the point as
chosen in the proof of Lemma 20. Then y is not contained in any subcube
contained in pj, and is not contained in any subcube of pi that is not
prime.

LEMMA 22. Let x be a point in T and let p be a maximal subcube of T
containing x. Then there exists point y E T such that p = cube(x, y).

Proof. Letx=(xi,..., x,) and let p be a prime subcube of T
containing x. Let y be the point in p such that y = xFree(p). Then, p =
cube(x, y). n

ALGORITHM 5. Generation of all maximal subcubes of T containing
point x E T

Input. Set {x = yi, . . . , y,} c T c B” (yi E Horn(x) for all i E [q],
and d(x, yi) 2 d(x, y;-1) for all 1 < i I q). V = (~1, . . . , uq) is the
characteristic vector of { yl, . . , , y,}

Output. All maximal subcubes of T containing point x

56 TADEUSZ STRZEMECKI

Procedure.

Initialize V to all O’s
i:= 1
while uyi = 0 do

if cube(x, yi) c T then
output cube@, yi)
UY, := 1, for all yj E cube(x, yi)

end if
i := the next smallest index such that u,, = 0, if possible

end while

Proofofrhe Correctness. It is clear that the output of the procedure is
a set of subcubes of T. Thus, it suffices to show that the procedure

(1) generates all prime subcubes containing x,
(2) does not generate subcubes that are not prime.

To show that (1) is true, consider any prime subcube p containing point x.
Let y be the point in p such that y = x Free(~). Hence, by Lemma 20, y is not
contained in any other prime subcube of T containing x. Thus, by Corol-
lary 21, uY , a bit corresponding to point y in V, is not set to 1 as a result of
the generation of any subcube containing x, but p. Therefore, p is gener-
ated because u, = 0 and it must be considered by the procedure. To show
that (2) is true, suppose, for the sake of contradiction, that cube(x, y), for
some y E T, is generated by the procedure, but it is not a prime subcube of
T. Note that cube(x, y) G T. Then, let cube(x, z) be a prime subcube of T
containing cube(x, y), such that z is the point with maximum distance to x
in cube(x, z). Because of the ordering of { yr , . . . , y,}, z(= yj for some j)
would be selected previously by the procedure due to (1). As a result of
the generation of cube(x, z), uY would be set to 1 after outputing cube(x, z).
Hence, cube(x, y) would not be generated by the procedure, a contradic-
tion. n

Complexity Analysis. Choosing a new point yi as required in the con-
dition of the loop can be done in at most mn coordinate comparisons.
Determining cube&, yi) and testing whether cube(x, yi) c T requires at
most mn steps, It is clear by Lemma 22 that there are at most m-l maxi-
mal subcubes of T that contain point x. Thus, all maximal subcubes con-
taining point x can be generated using at most (m - I)(mn + mn) coordi-
nate comparisons. Since the algorithm must be applied to each of the m
points of T, all maximal subcubes of T can be obtained in at most m(m -
l)(mn + mn) coordinate comparisons. Hence, the time complexity of the
algorithm for the generation of all maximal subcubes of a Boolean formula
is O(m’n).

For an example of Algorithm 5 see the Appendix.

POLYNOMIAL-TIME ALGORITHMS 51

IV. CONCLUSIONS

A notion of neighborhood cubes of terms in the canonical disjunctive
normal form representation of a Boolean function has been introduced. It
has been shown that neighborhood cubes are useful in the development of
algorithms for generation of prime implicants that are polynomial in the
number of terms in the assumed representation of a Boolean function.
Such algorithms for various aspects of the problem of prime implicants
generation have been developed and their complexity analyzed. Among
the results described in this work, one that is of special interest is the fact
that the presented approach to the problem is the first approach that offers
a polynomial-time solution to the problem. This result is significant be-
cause the problem of generation of prime implicants is considered to be
inherently exponential, regardless of the representation of a Boolean
function. It should be added that the canonical disjunctive normal form of
a Boolean function may be exponentially sized with respect to the dis-
junctive normal form of the same function.

The proposed approach also makes it possible to efficiently generate all
essential prime implicants of a Boolean function before obtaining other
prime implicants first. Another innovative aspect of the paper is that it
provides algorithms for “directed” generation of a prime implicant, that
is a prime implicant that is to contain a predefined set of terms of a
Boolean function. The method presented can directly be applied to gener-
ation of prime implicants of Boolean functions in a canonical, either dis-
junctive or conjunctive, normal form. Another aspect of the proposed
method, that is important from the complexity point of view, is that it
allows the expression of the complexity of algorithms, and also the bound
on the number of prime implicants, in terms of the number of terms in the
assumed representation of a Boolean function. This gives a possiblity of
the correct estimation of the input size, which in turn results in the po-
lynomiality of presented algorithms.

Based on the studies of the properties of neighborhood cubes it can be
concluded that improvement in the running time of the proposed algo-
rithms seems feasible. It could take the form of either further modification
of the procedures or elimination of the multiple generation of the same
prime implicant, and possibly a combination of both.

Additional aspects of the problem, motivated by the problem of finding
a minimum cover of a Boolean function, could also be considered. Among
one of the most important and interesting ones would be the development
of a version of the algorithm that does not generate absolutely redundant
prime implicants, that is those prime implicants that never occur in any
minimal representation of a Boolean function. This aspect of the prob-
lem has not been considered so far in any of the known literature on the
subject.

58 TADEUSZ STRZEMECKI

Another issue that is of interest is the issue of the number of prime
implicants of a Boolean function. Although the polynomial running time
implies that the number of prime implicants can not be exponential on the
assumed input size, it would be of some interest to provide results that
address the problem of the number of prime implicants in a more direct
way.

V. APPENDIX

Examples of algorithms are presented here. In all presented examples
the Boolean function specified in Table I is used. Neighborhood cubes of
the terms of the Boolean function are also shown.

TABLE I

T, 0 0 0 0
TZ 0 0 0 1
T3 0010
T4 0011
T5 0 1 0 0
T6 0 1 0 I

T7 0 1 1 1
TS 1 0 0 1
T9 1 0 1 1
TIO 1100
T,I 1 1 0 1
Tl2 1 1 1 0
T13 1 1 1 1

RI 0 - - -
R2 ____

R3 oo--
& -_--
R5 --O-
R6 -_--

R, ---I
R8 ---1
R9 ---I
RIO - I--

R,, - - - -
RI2 1 l--
RI3 - - - -

The neighborhood cubes were obtained according to Definition 1. For
example, neighborhood cube R7 is the cube (---I) because N(T,, T) =
{(I 11 I), (001 I), (0101)).

Algorithm 1

According to Algorithm 1, the set E of essential prime implicants of a
Boolean function T is the set of those neighborhood cubes of T that

TABLE II

Loop repetition Chosen point V P F(P) pF’P’

0 YI = T5 1ooooO 0100 11, 2, 41 --O-
1 Y2 = T6 110000 OlO- 11, 21 --O-
2 ~3 = TI lllooo O-00 I41 o-o-
3 YS = Tz 111010 o-o- 4 o-o-

POLYNOMIAL-TIME ALGORITHMS 59

TABLE III

Loop repetition Chosen point V P F(P) PF’P)

0 YI = Ts 1OOOOO 0100 0, 2, 41 --()-
1 YS = TI lllooo O-00 (41 o-o-

contain points of a Boolean function only. Thus, it can be easily verified
that E = {R3, R,, RI*}, i.e., E = {(00--), (---l), (ll--)}.

Algorithm 2

The process of generating a prime implicant containing point TS is sum-
marized in Table II. Set { yI , . . . ,ydistheset{T5, T6, Ti, Tlo, T2, Tld.
The justification of halting the execution of the procedure is implied by
Proposition 7. It can be shown that Proposition 7 amounts to asserting
that F(p) = C#J.

Algorithm 3

The process of generating a prime implicant containing point TS is ex-
plained in Table III. Set {yi , . . . ,Ydistheset{Tg, 7’6, T1, Tlo, T2, TId.
The condition for halting the execution of the procedure is the same as
that used in Algorithm 2. The advantage of using Algorithm 3 instead of
Algorithm 2 is apparent when the number of loop repetitions are com-
pared. The reason for the improvement in the running time of Algorithm 3
as compared to that of Algorithm 2 is caused by the requirement of choos-
ing a p-expandable point in each step of the procedure. The improvement
in the running time is even more apparent when the number of variables of
a Boolean function is large.

Algorithm 4

It is essentially Algorithm 3 with the difference being at the initial step
only. For example, if set S C T were the set S = {T5, T6}, then cube(l; , T6)
is the cube (OlO-) C T. With this becoming the initial value of p, the next
repetition of the loop would result in the same step as indicated by loop
repetition 2 in Algorithm 3.

TABLE IV

Loop repetition Chosen point V cubeUs, YJ

1 YI = T!I 10110 -lO-
2 YZ = Tz 11111 o-o-

60 TADEUSZSTRZEMECKI

Algorithm 5

The process of generating of all prime implicants containing point T5 is
explained in Table IV. Set { yI , . . . , YS) is the set VII, Tz, TIO, Ts, TJ.

Note that points of T are ordered with respect to the distances to x in
descending order. Also, the characteristic vector V is initially (00000).

REFERENCES

BAHNSEN, R. J. (1981), “Essential Prime Implicants Tester,” IBM Technical Disclosure
Bulletin, Vol. 24, No. 5, p. 2344.

BING, K. (1956), On simplifying truth-functional formulas, J. Symbolic Logic 21, 253.
BISWAS, N. N. (1986), Computer-aided minimization procedure for Boolean functions,

IEEE Trans. CAD CAD-5(2), 303-304.
BLAKE, A. (1937), “Canonical Expressions in Boolean Algebra,” Ph.D. dissertation, Dept.

of Mathematics, University of Chicago, Chicago, IL.
BRAYTON, R. K., COHEN, J. D., HACHTEL, G. D., TRACER, B. M. AND YUN, D. Y. Y.

(1982a), Fast recursive Boolean function manipulation, in “Proceedings, International
Symposium on Circuit and Systems,” p. 58.

BRAYTON, R. K., et al. (1982b), Partitioned complementation and minimization with new
heuristic and tree-trimming strategies, in “Proceedings, 1982 International Symposium
on Circuits and Systems, Rome, Italy.”

BRAYTON, R. K., HACHTEL, G. D., HEMACHANDRA, L. A., NEWTON, A. R., AND SAN-
GIOVANNI-VINCENTELLI, A. L. M. (1982c), “A Comparison of Logic Minimization
Strategies Using ESPRESSO: An APL Program Package for Partitioned Logic Minimi-
zation,” IEEECH.

BRAYTON, R. K., MCMULLEN, C., HACHTEL, G. D., AND SANGIOVANNI-VINCENTELLI, A.
(1984), “Logic Minimization Algorithms for VLSI Synthesis,” Kluwer Academic Pub-
lishers, Norwell, MA.

BREDESON, J. D., AND HULINA, P. T. (1971), Generation of prime implicants by direct
multiplication, IEEE Trans. Comput. C-20, 475-476.

BREUER, M. A. (1968), Heuristic switching expression simplification, in “Proceedings,
ACM 23rd Natl. Conf.,” ACM publ. P-68, pp. 241-250.

BUBENIK, V. (1972), Weighting method for the determination of the irredundant set of prime
implicants, IEEE Trans. Comput. C-21, 1449-1451.

CARROLL, C. C. (1%8), “A Fast Algorithm for Boolean Function Minimization,” Auburn
University, Auburn, Alabama, Technical Report AU-T-3 for Army Missile Command,
Huntsville, AL.

CARUSO, G. (1984), A local selection algorithm for switching function minimization, IEEE
Trans. Comput. C-33(1), 91-97.

CHANDRA, A. C., AND MARKOWSKY, G. (1978) On the number of prime implicants, Dis-
crete Math. 24, 7-l 1.

DAGENAIS, M. R., AGARWAL, V. K., AND RUMIN, N. C. (1986), McBoole: A new procedure
for exact logic minimization, IEEE Trans. on CAD CAD-W), 229-238.

DAS, S. R., AND CHOUDHURY, A. K. (1965), Maxterm-Type Expressions of Switching
Functions and Their Prime Implicants, IEEE Trans. Electronic Comput. EC-14, 920-
923.

POLYNOMIAL-TIME ALGORITHMS 61

DAS, S. R. (1971), Comments on a new algorithm for generation prime implicants, IEEE
Trans. Comput. C-28, 1614-1615.

DAS, S. R., AND KHABRA, N. S. (1972), Clause-column table approach for generating all
prime implicants of switching functions, IEEE Trans. Electronic Comput. EC-21, 1239-
1246.

FLEISHER, H., GIRALDI, R., PHOENIX, R., AND TAVEL, M. (1989) Minimizability of random
Boolean function, IEEE Trans. Comput. C-38(4), 593-595.

FRIDSHAL, R. (1957), The Quine algorithm, in “Summaries of Talks at the Summer Inst. of
Symbolic Logic, Cornell University,” p. 211.

GAVIULOV, M. A. (1959) Boolean function minimization, Avtomat. Telemekh. U(9), 1217-
1238.

GHAZALA, M. J. (1957), Irredundant disjunctive and conjunctive forms of a Boolean func-
tion, IBM J. 1, 171-176.

GUEST, C. C., MIRSALEHI, M. M., AND GAYLORD, T. K. (1984). Residue number system
truth-table look-up processing-Moduli selection and logical Minimization, IEEE
Trans. Comput. C-33(10), 927-931.

HALL, F. B. (1%2), Boolean prime implicants by the binary sieve method, AIEE Trans.
Commun. Electron. 80,709-713.

HAYES, J. P. (1978), “Computer Architecture and Organization,” McGraw-Hill, New
York.

HONG, S. J., CAIN, R. G., AND OSTAPKO, D. L. (1974) MINI: A heuristic approach for logic
minimization, IBM J. Res. Dev. B(5).

KARNAUGH, G. (1953), The map method for synthesis of combinational logic circuits, AZEE
Trans. Commun. Electron. Pt. 1 72, 593-599.

KEAN, A., AND TSIKNIS, G. (1988), “An Increment Method for Generating Prime Implicantl
Implicates,” Technical Report 88-16, Dept. of Computer Science, University of BC.

KEISTER, W., RITCHIE, A. E., AND WASHBURN, S. (1951), “The Design of Switching
Circuits,” New York, Van Nostrand, Princeton, NJ.

Kuo, Y. S. (1987) Generating essential primes for a Boolean function with multiple-valued
inputs, IEEE Trans. Comput. C-36(3), 356-359.

LEDLEY, R. S. (1960) “Digital Computer and Control Engineering,” McGraw-Hill, New
York.

LEE, C. Y. (1954) Switching functions on an N-dimensional cube, Trans. AIEE Pt. I 73,
289-291.

MCCLUSKEY, E. J., JR. (1956) Minimization of Boolean functions, Bell Sys. Tech. .Z. 35,
1417-1444.

MCCLUSKEY, E. J. (1%5), “Introduction to the Theory of Switching Circuits,” McGraw-
Hill, New York.

MCMULLEN, C., AND SHEARER, J. (1986) Prime implicants, minimum covers, and the
complexity of logic simplification, IEEE Trans. Comput. C-35(8), 761-762.

MILLER, R. E. (1965), “Switching Theory,” Vol. I, “Combinational Circuits,” Wiley, New
York.

MORREALE, E. (1967), Partitioned list algorithms for prime implicant determination from
canonical forms, IEEE Trans. Electron. Comput. EC-16, 611-620.

MORREALE, E. (197Oa), Computational complexity of partitioned list algorithms, IEEE
Trans. Comput. C-19, 421-428.

MORREALE, E. (197Ob), Recursive operators for prime implicant and irredundant normal
form determination, IEEE Trans. Electron. Comput. C-19(6), 504-509.

62 TADEUSZ STRZEMECKI

NECULA, N. N. (1%7), A numerical procedure for determination of the prime implicants of a
Boolean function, IEEE Trans. Electron. Comput. EC-16, 687-689.

NECULA, N. N. (1968), An algorithm for the automatic approximate minimization of Bool-
ean functions, IEEE Trans. Electron. Comput. C-17, 770-782.

NELSON, R. J. (1955), Simplest normal truth functions, J. Symbolic Logic 20, 105-108.
OSTAPKO, D. L., AND HONG, S. J. (1974), Generating test examples for heuristic Boolean

function minimization, IBM J. Res. Dew. H(5).

PERKINS, S. R., AND RHYNE, T. (1988), An algorithm for identifying and selecting the prime
implicants of a multiple-output Boolean function, IEEE Trans. CAD CAD-7(11), 1215-
1218.

QUINE, W. V. (1952), The problem of simplifying truth functions, Amer. Math. Month/y 59,
521-531.

QUINE, W. V. (1955), A way to simplify truth functions, Amer. Math. Monthly 62,627-631.
QUINE, W. V. (1959), On cores and prime implicants of truth functions, Amer Math.

Monthly 66, 755-760.
REITER, R., AND DE KLEER, J. (1987), Foundations of assumption-based truth maintenance

systems: Preliminary report, in “Proceeding, AAAI-87,” pp. 183-188, Seattle, Wash-
ington.

REUSH, B. (1975), Generation of prime implicants from subfunctions and unifying approach
to the covering problem, IEEE Trans. Comput. C-24(9), 924-930.

ROTH, J. P. (1956), “Algebraic Topological Methods for the Synthesis of Switching Systems
in n-Variables,” ECP56-02, The Institute for Advanced Study, Princeton, NJ.

ROTH, J. P. (1958), Algebraic topological methods for the synthesis of switching systems,
Trans. Amer. Math. Sot. 88(2), 301-326.

ROTH, J. P. (1959), Algebraic topological methods in synthesis, in “Proceedings, Int’l symp.
on Switching Theory, April 2-5, 1957,” Vol. 39, pp. 57-73, Harvard University Com-
putation Lab.

ROTH, J. P. (1968), “A Calculus and an Algorithm for the Multiple-Output 2-Level Minimi-
zation Problem,” Research Report RC-2007, IBM Thomas J. Watson Research Center,
Yorktown Height, NY.

ROTH, J. P. (1972), “Theory of Cubical Complexes with Applications to Diagnosis and
Algorithmic Description,” Research Report RC-3675, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, NY.

SAMSON, E. W., AND MILLS, B. E. (1954), “Circuit Minimization: Algebra and Algorithms
for New Boolean Canonical Expansions,” AF Cambridge Research Center, Bedford,
MA, Tech. Rep. AFRCTC-54-21.

SASAO, T. (1983), A fast complementation algorithm for sum-of-products expressions of
multiple-valued input binary functions, in “Proceedings, 13th International Symposium
of Multiple-Valued Logic,” pp. 103-l 10.

SCHEINMAN, A. H. (1962), A method for simplifying Boolean functions, Bell System Tech.
J. 41, 1337-1346.

SLAGLE, J. R., CHANG, C. L., AND LEE, R. C. T. (1%9), Completeness theorems for
semantics resolution in consequence finding, in “Proceeding, IJCAI-69,” pp. 281-
285, Washington D.C.

SLAGLE, J. R., CHANG, C. L., AND LEE, R. C. T. (1970), A new algorithm for generating
prime implicants, IEEE Trans. Electron. Comput. C-19(4), 304-310.

STRZEMECKI, T. (1991), Construction of small-depth circuits, in “Proceedings, ICYCS’91,”
pp. 312-316, Beijing.

POLYNOMIAL-TIME ALGORITHMS 63

SURESHCHANDER, (1975), Minimization of switching functions-A fast technique, IEEE
Trans. Electron. Comput. C-24(9), 753-756.

SVOBODA, A. (1%7), Ordering of implicants, IEEE Trans. Electron. Comput. EC-16, lOO-
105.

TISON, P. (1967), Generalization of consensus theory and application to the minimization of
Boolean functions, IEEE Trans. Electron. Comput. EC-16,446-456.

URBANO, R. H., AND MUELLER, R. K. (1956), A topological method for the determination of
the minimal forms of a Boolean function, IRE Trans. Electron. Comput. EC-5(3), 126-
132.

