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Resolution of cosmological singularities is an important problem in any full theory of quantum gravity. 
The Milne orbifold is a cosmology with a big-bang/big-crunch singularity, but being a quotient of flat 
space it holds potential for resolution in string theory. It is known, however, that some perturbative 
string amplitudes diverge in the Milne geometry. Here we show that flat space higher spin theories can 
effect a simple resolution of the Milne singularity when one embeds the latter in 2 + 1 dimensions. We 
explain how to reconcile this with the expectation that non-perturbative string effects are required for 
resolving Milne. Along the way, we introduce a Grassmann realization of the İnönü–Wigner contraction 
to export much of the AdS technology to our flat space computation.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction and conclusion

General Relativity is expected to require modifications at short 
distances. The oft-stated reason for this expectation is the exis-
tence of an infinite number of perturbative UV divergent cou-
plings when one quantizes metric fluctuations. String theory solves 
this problem because it has an enormous gauge symmetry, called 
worldsheet conformal invariance. This gauge symmetry of string 
theory essentially uniquely fixes the infinite number of couplings 
arising in perturbative gravity.

Apart from the quantum problem of divergences, there is also 
a purely classical reason why we expect that gravity might re-
quire modifications at short distances. This is because in gravity, 
spacetime singularities are ubiquitous [1]. Since string theory is ex-
pected to be perturbatively finite in the UV, it is natural to wonder 
whether it can also resolve spacetime singularities. Some progress 
along this direction, and answers in the affirmative of various de-
grees of strength, can be found in [2–4].

Singularities in cosmological (a.k.a. time-dependent) spacetimes 
are especially tricky in string theory because typically we only 
understand how to quantize string theory in supersymmetric back-
grounds, and supersymmetric backgrounds are automatically time 
independent. One way forward is to consider cosmological quo-
tients of flat space as simple examples of time dependent singu-
lar backgrounds. The idea is that since the covering space is flat, 
we should be able to use some of the standard tools from flat 
space string theory to explore these singular geometries. A simple 
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context where a lot of papers on this topic1 have been written is 
the case of the Milne orbifold, which is a time dependent orbifold 
of flat space (see [5–12] for related work). It turns out that some 
tree level string scattering amplitudes are singular on the Milne 
orbifold [13–15], indicating that perturbative string theory breaks 
down. Also, because it is an exact CFT, there are no α′-effects that 
can result in a resolution of the Milne singularity.2 Together, if we 
take these two statements at face value, we come to the conclu-
sion that only non-perturbative gs-effects can come to the rescue 
of Milne, perhaps in a context like the AdS/CFT duality.3

In this paper, we will study the Milne orbifold from another 
perspective. We will consider it in the context of Chern–Simons 
higher spin theories in 2 + 1 dimensional flat space [16,17]. Our 
motivation is as follows. It is expected [18,19] that higher spin 
theories capture features of string theory in the tensionless limit,4

which corresponds to α′ → ∞. Therefore heuristically, the gauge 
symmetries of (classical) higher spin theory can be thought of as 
a target space realization of the worldsheet gauge symmetries of 
tree-level string theory in the α′ → ∞ limit. So in this limit it is 
possible to ask whether spacetime singularities are artifacts of a 
singular gauge, and if so, whether one can get rid of them by go-
ing to a different gauge. We will indeed see that by doing a flat 
space higher spin gauge transformation, we are able to remove the 
singularity in the Milne Universe in a very simple and natural way. 

1 There is a whole slew of papers written on this topic in the context of singular-
ity resolution in string theory, so our citation list is necessarily incomplete.

2 However, for a proposal that winding tachyon condensation can resolve singu-
larities, see e.g. [3].

3 We thank Ben Craps and Boris Pioline for correspondence on related questions.
4 See [20] for a connection between tensionless strings and flat space.
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This is our main result. To accomplish this, we use a Grassmann 
trick to rewrite the flat space Chern–Simons HS theory in a form 
that closely resembles the AdS case. This trick in itself is pretty 
powerful, but seems to have gone unnoticed before.

Note that in this picture the string coupling gs ∼ 1/N never 
showed up. There is superficially some tension between this and 
the general belief from string theory that non-perturbative effects 
are necessary for resolving Milne.5

Perhaps the best way to understand our result is to note that 
the limit α′ → ∞ is precisely the opposite of the limit where the 
usual Einstein gravity emerges in string theory (α′ → 0). That is, 
higher spin theories are a different classical limit of string theory. 
In this limit, the stringy gauge invariances have a simple target 
space realization in terms of higher spin gauge symmetries. So 
what we do here amounts more precisely to a de-singularization 
via a gauge transformation, and not to a resolution6: the latter is 
usually accomplished via the addition of new degrees of freedom, 
and that is the situation that is envisaged in the usual discussions 
of the Milne orbifold. We emphasize, however, that it is not that 
the gauge transformation here is singular, it is that the solution 
(in the metric language) has interpretation as a spacetime singu-
larity [12]. The Chern–Simons gauge field is in fact regular before 
and after the resolution, even though the metric is non-singular 
only after.7

Some recent papers dealing with cosmologies and singularities 
in a higher spin set up can be found in [22–24]. In [23] a cosmo-
logical singularity resolution was done, but in the context of dS3

(higher spin) gravity. The reason why Milne is of much more inter-
est than the dS quotients that we considered in the previous paper 
is because the geometry is locally flat here, so one can potentially 
consider string propagation on it. Indeed, Milne has been studied 
rather extensively in a stringy context as already mentioned. By 
contrast, the singularity we resolved in dS is an obscure and essen-
tially unknown one, and was merely interesting as a proof of prin-
ciple. We could not resolve Milne at the time, because flat space 
higher spin theories were constructed only afterwards [16,17].

Indeed, after the first version of this paper appeared, we have 
revisited the 2-to-2 string scattering amplitude on the Milne orb-
ifold, and exhaustively scanned for divergences [25]. The result 
is that all the singularity-related divergences arise when the α′
(made dimensionless by multiplication with appropriate momenta) 
is less than some numerical value. The remaining divergences all 
arise when the tower of intermediate string states go on-shell, and 
are physical IR divergences. Since higher spin theories are morally 
the α′ → ∞ limit of string theory, we believe the fact that we are 
able to resolve the geometry at infinite α′ and the fact that string 
amplitudes are UV finite when α′ is large enough, is at the very 
least, suggestive.

5 The connection between string theory and higher spin theory (in particular C–S 
higher spin theory in flat 2 + 1 D space) has not been made precise, and is mostly 
heuristic at present. So it is not entirely clear that our result is a bona-fide challenge 
to the string theory expectations.

6 Loosely, we will use the two terms interchangeably.
7 It is perhaps also worth emphasizing that the Chern–Simons formulation of 

gravity and higher spin gravity that we are using is best suited for classical ques-
tions. Note that in the spin-2 theory (the usual C–S gravity) it is currently believed 
that the quantization of the gravity is not the same as the quantization of the C–S 
theory [21]. It is best thought of as only a classical equivalence. This is because 
invertibility of the vielbeins is required for the CS interpretation, so in the path 
integral one is integrating over different field configurations. Another relevant ob-
servation is that the existence of black holes (at least in the AdS3 context) indicates 
a huge degeneracy of states which is surprising in a Chern–Simons theory. We will 
be using the holonomies to distinguish classical solutions, not define observables in 
the quantum theory.
2. Flat 2 + 1 D (higher spin) gravity

We will work with the spin-3 theory in this paper. In 2 + 1
dimensions, working with higher spin theories is easily accom-
plished via the Chern–Simons formulation of gravity [26], but with 
a higher rank version of I S O (2, 1) as discussed in [16,17].

A lot of work on higher spin theories has been done in the 
context of AdS3 theories, and we will make an observation that 
enables us to translate a lot of this AdS machinery to the flat space 
theory. This observation is that if one makes the replacement

1

�
→ ε (1)

where � is the AdS3 radius and ε is a Grassmann parameter de-
fined by the condition that ε2 = 0, then the AdS Chern–Simons 
action8 written in terms of the triad and the spin connection (and 
their higher spin cousins) reduces to the flat space Einstein–Hilbert 
action (and its higher spin cousin) times ε , provided one takes the 
Newton constant to be

1

16G
= k. (2)

Since we are only concerned about classical equations and their 
solutions, the overall Grassmann factor in the action will not af-
fect our discussions. The basic reason why this trick works is be-
cause of the fact that I S O (2, 1) is the İnönü–Wigner contraction 
of S L(2, R) × S L(2, R) (and similarly, for the higher spin general-
izations). This approach and some of its applications are further 
explored in [32].

There are two basic reasons why this trick is useful.

• We can adopt the notations and the S L(3) generator matrices 
of [27] without modifications as long as we make sure that 
1/� → ε squares to zero. Without the Grassmann approach, 
we would be faced with the task of constructing an explicit 
set of matrices for the generators in [16,17], such that they 
have a non-degenerate trace form.

• The non-degenerate trace form of the AdS Chern–Simons the-
ory descends to give us a non-degenerate trace form for the 
flat space theory with this trick.

The upshot is that we can work with flat space (higher spin) 
gravity in 2 +1 dimensions by starting with the AdS Chern–Simons 
theory, writing the gauge field in terms of the vielbein and spin 
connection, and setting 1/� → ε with ε2 = 0.

3. Milne: metric and connection

We will take the Milne metric in 2 + 1 dimensions in the form 
[28,29]

ds2 = −dT 2 + r2
C dX2 + α2T 2dϕ2, (3)

where for comparison with [30] we define the metric parameters 
α, rC in terms of the “mass”, M , and “spin”, J , by

α = √
M, rC =

√
J 2

4M
. (4)

(We are following the convention, where 8G = 1.) X, ϕ directions 
are compact and closed, both with period 2π . The spacetime looks 
like a double cone. There is a causal structure singularity at T = 0
which is where the ϕ-circle crunches before re-expanding in a 

8 See for example Section 2 and Appendix A of [27].
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big-bang. The geometry can be understood in terms of an orb-
ifold of flat Minkowski space and that is what makes it tractable in 
string theory, but we will not elaborate it here. We have taken the 
X-direction to be compact to match with some of the flat space 
holography literature, our results are essentially unchanged even if 
we drop this assumption.

The corresponding expressions for the triads and spin-connec-
tion (dualized using εabc ) are

e0 = dT , e1 = rC dX, e2 = αT dϕ, (5)

ω0 = 0, ω1 = αdϕ, ω2 = 0. (6)

So in the Chern–Simons language the S L(2) Grassmann valued 
connection is9

A± = (
ωa ± εea)Ta

= ±(εdT )T0 + (αdϕ ± εrC dX)T1 ± (εαT dϕ)T2. (7)

The ϕ-circle holonomy is

W ±
ϕ ≡ P exp

(∮
dϕ A±

ϕ

)
= exp

[
2πα(T1 ± εT T2)

]
.

The eigenvalue spectrum of the holonomy matrix, w±
φ ≡ 2πα(T1 ±

εT T2) is (0, ±2πα). Similarly we can compute the X-circle 
holonomy, W ±

X = P exp(
∮

dX A±
X ) = exp w±

X , w±
X = ±ε2πrC T1. Its 

eigenvalues are 0, ±2πrCε . For future reference we also note the 
characteristic polynomial coefficients [27] of these holonomy ma-
trices (these are identical for both ± sectors, so we drop the 
superscripts).

Θ0
ϕ ≡ det(wϕ) = 0, Θ0

X ≡ det(w X ) = 0, (8)

Θ1
ϕ = tr

(
w2

ϕ

) = 8π2α2, Θ1
X = 0. (9)

4. Adding higher spins

To avoid clutter we work exclusively with the “holomorphic” 
gauge field (A+) and drop the superscript. The “antiholomorphic” 
(A−) sector works out exactly parallel. With that understood, to 
resolve/remove the singularity, now we turn on the higher spin 
sector:

A′ = A +
2∑

a=−2

(
Ca + εDa)Wa.

We demand that Ca, Da = Ca(T ), Da(T ) for simplicity. If we in-
clude φ, X dependence as well, then the path-ordered exponentials 
for the holonomies become hard to evaluate. Besides, we hope to 
be able to resolve Milne without breaking the symmetries of the 
geometry. Fortunately, we are able to find a resolution while satis-
fying these restrictions.

The metric component resulting from inclusion of the higher 
spin generators is then [31]

g′
μν = gμν + 1

2
Da

(μDb
ν)T r(Wa Wb)

= gμν + 4

3
D0

μD0
ν − 2D1

μD−1
ν − 2D−1

μ D1
ν

+ 8D2
μD−2

ν + 8D−2
μ D2

ν . (10)

Here, gμν are the components of the Milne metric (3).

9 Note that the 1/� in the AdS case [27] has been replaced with the Grassmann 
parameter ε .
For this connection to describe the same gauge configuration, 
the new holonomy matrices must be in the same conjugacy class. 
The new holonomies are

w ′
ϕ = 2π

(
αT1 ± εαT T2 + Ca

ϕ Wa + εDa
ϕ Wa

)
,

w ′
X = 2π

(
εrC T1 + Ca

X Wa + εDa
X Wa

)
.

The eigenvalues are hard to evaluate directly, so we work with 
the characteristic polynomial coefficients instead, i.e., Θ ′ 0

ϕ,X ≡
det(w ′

ϕ,X ), Θ ′ 1
ϕ,X ≡ tr(w ′

ϕ,X
2). These must be identical to (8)–(9), 

for the new connection to describe the same gauge configuration.
For general C ’s and D ’s, these relations are complicated (but 

computable) algebraic expressions, so we will not present them in 
the general case. Our goal is merely to see whether we can come 
up with some resolution of the Milne singularity for some choice 
of C ’s and D ’s.

Of course, one needs the new connection to be flat so that it 
will be a solution to the equations of motion.

F ′ = dA′ + A′ ∧ A′ = 0. (11)

Expanding A′ = A + C + εD , and noting that A is already flat, the 
flatness of A′ gives (in terms of components)

[Cμ, Cν ] = 0,

∂μCν − ∂νCμ + [Cμ,ων ] + [ωμ, Cν ] = 0,

∂μDν − ∂ν Dμ + [Dμ,ων ] + [ωμ, Dν ] + [Cμ, eν ] + [eμ, Cν ] = 0,

[Cμ, Dν ] + [Dμ, Cν ] = 0.

5. The Milne resolution

We look at the simple ansatz,

Ca
μ = 0. (12)

This generates a holonomy condition from preserving Θ0
ϕ ,

D0
ϕ = 3

(
D2

ϕ + D−2
ϕ

)
, (13)

while the rest of the holonomy conditions are automatically satis-
fied by this ansatz.

Also, this ansatz automatically satisfies 3 of the 4 flatness con-
ditions and leads to the following equation of motion for D ’s,

∂μDν − ∂ν Dμ + [Dμ,ων ] + [ωμ, Dν ] = 0.

This further leads to

• ∂T D X = 0, i.e. Da
X ’s are constant.

• [D X , ωϕ ] = 0, which sets, D±1
X = 0, D±2

X = − 1
2 D0

X .
• ∂T Dϕ + [DT , ωϕ ] = 0.

This system of equations is simply solved by D X , DT = 0 and Dϕ =
const.

In particular, D0
ϕ = 3D2

ϕ while D±1
ϕ , D−2

ϕ = 0 is a solution to the 
equations of motion with the same holonomy as that of the Milne 
orbifold. The reason we picked the ansatz (12) is that the resultant 
metric gets modified only in its ϕϕ-component,

g′
ϕϕ = gϕϕ + 12

(
D2

ϕ

)2
. (14)

The curvature scalars are well-defined everywhere. We quote the 
resultant Ricci scalar,

R = 24(D2
ϕ)2α2

(12(D2
ϕ)2 + T 2α2)2

(15)

which is finite and continuous at T = 0.
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So the resolution that we have done here effectively ensures 
that the shrinking Milne circle has a minimum finite radius at the 
erstwhile singularity. Remarkably and satisfyingly, we are able to 
preserve all the symmetries of the original geometry in doing this 
resolution, and the metric now looks like a smooth bounce, instead 
of the Milne cone with a crunch/bang.

The original geometry did not have any higher spin fields, but 
after the gauge transformation, we need also to check that the 
resultant spin-3 field is regular as well. The spin-3 fields can be 
computed via [31] Φμνρ = 1

9 tr(E(μEν Eρ)). For the resolved Milne 
orbifold the nonvanishing components are

Φϕϕϕ = −16

3

(
D2

ϕ

)3 + 4

3
D2

ϕ T 2α2,

ΦT Tϕ = 4

9
D2

ϕ,

ΦT Xϕ = −2

9
D2

ϕrC

which is manifestly regular everywhere. We can think of these 
higher spin fields as the matter supporting the resolved Milne ge-
ometry.
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