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SUMMARY

The restriction factor BST-2/tetherin contains two
membrane anchors employed to retain some envel-
oped viruses, including HIV-1 tethered to the plasma
membrane in the absence of virus-encoded antago-
nists. The 2.77 Å crystal structure of the BST-2/
tetherin extracellular core presented here reveals a
parallel 90 Å long disulfide-linked coiled-coil domain,
while the complete extracellular domain forms an
extended 170 Å long rod-like structure based on
small-angle X-ray scattering data. Mutagenesis
analyses indicate that both the coiled coil and the
N-terminal region are required for retention of HIV-1,
suggesting that the elongated structure can function
as a molecular ruler to bridge long distances. The
structure reveals substantial irregularities and insta-
bilities throughout the coiled coil, which contribute
to its low stability in the absence of disulfide bonds.
We propose that the irregular coiled coil provides
conformational flexibility, ensuring that BST-2/teth-
erin anchoring both in the plasma membrane and
in the newly formed virus membrane is maintained
during virus budding.

INTRODUCTION

Enveloped viruses rely on host cell factors to complete their life

cycle. These factors act as positive or negative regulators, such

as restriction factors, that often limit replication to a narrow range

of hosts and cell types (Malim and Emerman, 2008). While

restriction factors are inducible by IFN and thus constitute a first

line of innate immune defense, viral proteins that render cells

permissive for infection can counteract this mechanism. Certain

cell types, such as HeLa cells, require the expression of the

HIV-1 cofactor Vpu for particle release (Göttlinger et al., 1993;

Klimkait et al., 1990; Strebel et al., 1989; Terwilliger et al.,

1989), although replication occurs independently of Vpu in other

cells (Gramberg et al., 2009; Strebel et al., 2009). This restriction
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was attributed to the presence or absence of BST-2, also known

as tetherin (or CD317 and HM1.24) (Neil et al., 2008; Van Damme

et al., 2008). BST-2/tetherin was originally linked to B cell devel-

opment and shown to be a marker of multiple myeloma cells

(Goto et al., 1994; Masuyama et al., 2009; Ohtomo et al.,

1999). Its expression is induced by IFN-a (Kawai et al., 2008),

and IFN-a activation leads to HIV-1 retention at the plasma

membrane in the absence of Vpu (Neil et al., 2007).

BST-2/tetherin is a type II transmembrane protein composed

of a small cytosolic domain, an N-terminal transmembrane

region (TMR), and an extracellular domain modified by a second

membrane anchor, a C-terminal glycosyl-phosphatidylinositol

(GPI) (Kupzig et al., 2003). BST-2/tetherin resides in lipid rafts

at the cell surface and membranes of the trans Golgi network

(TGN) (Kupzig et al., 2003). In HIV-1-infected cells, tetherin is

retained in the TGN by Vpu (Neil et al., 2008; Van Damme et al.,

2008) and targeted for endocytosis and degradation (Douglas

et al., 2009; Goffinet et al., 2009; Harila et al., 2007; Mangeat

et al., 2009; Mitchell et al., 2009), although it should be noted

that enhancement of virus release by Vpu does not depend on

downregulation or degradation of tetherin in some specific cell

lines (Miyagi et al., 2009).

Inhibition of tetherin by Vpu is species specific and suggests

that Vpu’s activity evolved to specifically counteract human teth-

erin (Goffinet et al., 2009; Gupta et al., 2009; Jia et al., 2009;

Sauter et al., 2009). Vpu-mediated tetherin retention requires

the TMR of tetherin (McNatt et al., 2009; Rong et al., 2009) or

all structural domains (Goffinet et al., 2009) and the TMR and

cytosolic domain of Vpu (Van Damme et al., 2008).

The antiviral function of tetherin is not limited to HIV-1 or

other retroviruses (Jouvenet et al., 2009; Zhang et al., 2009)

as it also restricts release of filoviruses (Jouvenet et al., 2009;

Kaletsky et al., 2009), arena viruses (Sakuma et al., 2009a),

and KSHV (Bartee et al., 2006) in the absence of their respective

antagonists.

Tetherin has been suggested to span both the cellular and viral

membranes (Neil et al., 2008) based on its double-membrane-

anchored topology (Kupzig et al., 2003), its ability to form

disulfide-linked dimers (Ohtomo et al., 1999), and the presence

of a predicted coiled-coil sequence in the extracellular domain.

Tetherin is present in the viral membrane as a homodimer,

and either TMR or the GPI anchor must be inserted into virion
c.
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Figure 1. Biochemical Characterization of the Extracellular Domain

of Tetherin
(A) SEC analysis of tetherin(47-159) and tetherin(80-147).

(B) SDS-PAGE of tetherin(47-159) (lanes 1 and 3) and tetherin(80-147) under

reducing (lanes 1 and 2) and nonreducing conditions (lanes 3 and 4).

(C) Reduced tetherin(47-159) and tetherin(80-147) still dimerize; tetherin

(47-159) (lanes 1, 3, 4) and tetherin(80-147) (lanes 2, 5, 6) were treated with

iodoacetamide and separated under nonreducing conditions (lanes 1 and 2),

under reducing conditions (lanes 3 and 5), and after crosslinking with 5 mM

EGS (lanes 4 and 6). Dimers are indicated by *.
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envelopes for successful retention (Perez-Caballero et al., 2009).

Furthermore, disulfide crosslinking via any of the three cysteines

and the spacer function of the coiled coil are necessary for anti-

viral activity (Andrew et al., 2009; Perez-Caballero et al., 2009).

Here, we present the crystal structure of a core fragment of

human tetherin, which forms a 90 Å long parallel coiled coil. The

complete extracellular region adopts a �170 Å long bent rod-

like structure based on small-angle X-ray scattering analysis,

defining the extracellular domain as a molecular ruler that

keeps both membrane anchors at a certain distance. The coiled

coil contains a number of destabilizing residues at central

heptad positions, which are conserved among all known tetherin

sequences. Consequently, both the core of tetherin and the

complete extracellular domain show a dramatic loss in thermosta-

bility upon disulfide bond reduction in vitro. Mutagenesis analyses

reveal that the coiled coil must be intact for function and identify

an N-terminal conserved region that is required for HIV-1 restric-

tion. The structure of tetherin explains how it can bridge long

distances using a labile parallel coiled coil. Thus, tetherin has

enough flexibility to insert one membrane anchor into a budding

virion while the other anchor remains in the plasma membrane

and excluded from the site directly involved in budding.

RESULTS

Recombinant Tetherin Forms Dimers
Recombinant tetherin(47-159) elutes from a SEC column at

�10.0 ml (Figure 1A); it migrates at �13 kDa under reducing

and at �26 kDa under nonreducing conditions on SDS-PAGE,

indicating disulfide-linked dimerization (Figure 1B). Since crys-

tals produced from tetherin(47-159) did not diffract beyond

10 Å resolution, we applied limited trypsin proteolysis to define

a smaller fragment containing residues 80–147. Tetherin(80-147)

elutes from a SEC column at �11.3 ml (Figure 1A) and reveals

disulfide-linked dimerization based on SDS-PAGE analysis

under reducing and nonreducing conditions (Figure 1B). In order

to test whether dimerization depends mainly on disulfide-medi-

ated crosslinking, both tetherin(47-159) and tetherin(80-147)

were reduced with DTT, and cysteines were subsequently

blocked with iodoacetamide; this treatment produces mostly

monomeric tetherin under nonreducing SDS-PAGE conditions

(Figure 1C, lanes 1 and 2). Chemical crosslinking reveals that

both constructs still dimerize, as indicated by the appearance

of new bands migrating at �27 kDa (tetherin[47-159]) and

between 15 and 20 kDa (tetherin[80-147]) (Figure 1C, lanes 4

and 6). Circular dichroism analyses show a high helical content

(�90% helical) for both constructs (Figure 2A). Although the

helical content does not change for tetherin(47-159) in the pre-

sence of DTT, tetherin(80-147) displays a reduced helical con-

tent (�70%) (Figure 2A). The effect of the reducing agent was

more dramatic when thermostability was tested. While teth-

erin(47-159) and tetherin(80-147) show melting temperatures

(Tm) of�61�C and�57�C, respectively, disulfide bond reduction

drops the Tm to �35�C and �30�C, respectively (Figure 2B). The

influence of disulfide bond linkage on the structure is further

corroborated by the increased sensitivity of both constructs

to complete degradation by trypsin treatment under reducing

conditions (Figure S1). These results indicate that dimer stability

greatly depends on intermolecular disulfide bonds.
Cell
Crystal Structure of Tetherin(80-147)
The crystal structure of tetherin(80-147) was determined from

a selenomethionine-containing crystal using the single anoma-

lous dispersion (SAD) method and diffraction data to 2.77 Å

resolution, which produced a readily interpretable electron

density map (Figure 3A). The asymmetric crystal unit contained

11 monomers that, together with crystallographic symmetry,

formed six identical dimers. The best-defined dimer contains

residues 89–147 and folds into a disulfide-linked 90 Å long

parallel coiled coil (Figures 3B). The N-terminal residues 80–88

are disordered, and the coiled coil starts with Cys91 occupying

the heptad d position followed by Val95 (a), Leu98 (d), and

Leu102 (a). Glu105 (d) and the stutter at Gly109 splay the coiled

coil apart, documented by the increase in coiled-coil radius and

pitch (Figure S2) beyond the regular coiled-coil features (Phillips,

1992). The heptad positions Val113 (a) and Leu116 (d) still show
Host & Microbe 7, 314–323, April 22, 2010 ª2010 Elsevier Inc. 315



Figure 2. Disulfide Bond Reduction Decreases the Thermostability
of Tetherin

(A) Circular dichroism analyses of tetherin under native and reducing condi-

tions (DTT). Disulfide bond reduction of tetherin(80-147) reduces the overall

helical content, while tetherin(47-159) is less affected.

(B) Thermostability measurements of tetherin were performed at 222 nm under

native and reducing conditions (DTT), revealing a dramatic change in Tm after

disulfide bond reduction.
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an increased coiled-coil radius and pitch (Figure S2). More

regular values are adopted along the heptad positions Ile120

(a), Leu123 (d), and Leu127 (a) (Figure 3C). The irregularities

that follow are produced by a stutter at Ala130, which tightens

the coiled-coil radius to 4.3 Å (Figure S2), and Asn141 (d), which

splays the coiled coil apart (Figures 3C and S2). Despite these

irregularities, the coiled coil also contains stabilizing interactions,

such as salt bridges (Glu105-Lys106, Glu133-Arg138) and an

interhelical hydrogen bond (Asn141) (Figure 3C). All heptad posi-

tions are conserved among the known tetherin sequences.

Modifications in some sequences include an extra helical turn

before Gly100 and/or a deletion of two helical turns determined

by Ala130 (a position) and Val134 (d position) (Figure S3).

The N-Terminal Extracellular Region of Tetherin
Extends the Rod-like Structure
SEC analysis of tetherin(47-159) shows a larger hydrodynamic

radius compared to tetherin(80-149) (Figure 1A). This is further

confirmed by small-angle X-ray scattering analysis (Figure 4A).

Guinier evaluation reveals radii of gyration (Rg) of 47.5 Å for teth-
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erin(47-159) and 31.9 Å for tetherin(80-149). Maximal protein

dimensions (Dmax) of 170 Å (tetherin[47-159]) and 110 Å (teth-

erin[80-147]) were calculated by the distance distribution func-

tion p(r) (Figure S4). The shapes of the tetherin dimers were

determined ab initio, and the reconstructed models fit the exper-

imental data with the discrepancy c of 1.1 and 1.5, respectively

(Figure 4A). The solution structure of tetherin(80-147) shows an

elongated rod with dimensions of 110 3 45 3 30 Å, consistent

with the 90 Å length of the rod seen in the crystal (Figure 4B). Teth-

erin(47-159) is more elongated and produces a rod with dimen-

sions of 150 3 60 3 45 Å, confirming that the N-terminal region

extends the coiled-coil part (Figure 4C). Part of the N terminus

in the rod is slightly bent, and its orientation might be determined

by the flexible linkage of the N terminus to the coiled-coil domain,

as indicated by the protease sensitivity of this region (Figure S1).

The Coiled Coil and the N-Terminal Region of Tetherin
Are Required for HIV-1 Retention
We next analyzed whether disruption of coiled-coil residues

influences tetherin function during HIV-1 retention. Two sets of

coiled-coil mutations were designed based on the crystal struc-

ture; set1 (Cys91Gly, Val95Tyr, Leu98Lys, Leu102His) disrupts

the N-terminal part of the coiled coil and set2 (Leu127Lys,

Ala130Tyr, Val134Glu, Leu137Glu) disrupts the C-terminal

region. Recombinant forms of both mutants, tetherin(47-159)_

set1 and tetherin(47-159)_set2, are soluble and elute from a

SEC column in peaks overlapping with that of wild-type teth-

erin(47-159), indicating that the mutations change the hydrody-

namic radius of the proteins (Figure S5A). The mutant proteins

migrate slightly more slowly on SDS-PAGE than wild-type and

reveal reduced disulfide-linked dimerization as determined

under nonreducing SDS-PAGE conditions (Figure S5B). Chemi-

cal crosslinking corroborates further that the mutations interfere

with dimerization; the set1 mutant shows slightly reduced

dimer formation, while set2 mutant shows a more dramatic

reduction in dimerization as judged by the ratio of monomer

dimer bands on SDS-PAGE in comparison to wild-type teth-

erin(47-159) (Figure S5B). This indicates that disruption of the

C-terminal coiled coil leads to a reduced detection of disulfide-

linked dimers in vitro, which is most likely due to a defect in

dimerization as detected by chemical crosslinking. In contrast,

the set1 mutant shows only dramatically reduced disulfide-

linked dimerization, although Cys53 and Cys63 are intact and

could suffice to form disulfide-linked dimers (Andrew et al.,

2009; Perez-Caballero et al., 2009).

Both sets of mutations were introduced into full-length tetherin

containing an internal extracellular HA-tag (tetherin[iHA]) for

expression in 293T cells. This indicates that tetherin(iHA)_set1

and set2 mutants are expressed on the surface of 293T cells

(Figures 5C and 5D); they show membrane staining similar to

that of wild-type tetherin (Neil et al., 2008) and tetherin(iHA),

which appears to concentrate in patches on the plasma mem-

brane (Figure 5B). However, expression of the full-length tetherin

set1 and set2 mutants (C-terminal HA-tag) in cells infected with

Vpu-deficient HIV-1 demonstrates that both mutants are no

longer able to prevent HIV-1 release, as indicated by the detec-

tion of capsid (CA) in the cell culture supernatant at levels similar

to the vector control. In contrast, expression of wild-type tetherin

completely blocks HIV-1 release, as expected (Figure 6A, left
c.



Figure 3. The Crystal Structure of Teth-

erin(80-147)

(A) Stereo image of the experimental electron

density map obtained after SAD phasing and non-

crystallographic symmetry averaging; the heptad

d position occupied by Cys91 forming a disulfide

bond is shown.

(B) Ribbon representation shows a 90 Å parallel

coiled coil.

(C) Close-up of the heptad motifs and polar dimer-

ization contacts.
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panel). This thus implies that proper coiled-coil formation is

required for tetherin function. Both mutants do not affect intra-

cellular processing of Gag and were expressed at similar levels

(Figure 6B, middle and right panels).

Since the extracellular region comprising residues 48–71 is

highly conserved between different species (Figure S3), we

tested two more sets of mutations by replacing conserved

charged and polar side chains. Set3 contains changes within resi-

dues 47–58 (Lys47Ala, Asn49Gly, Glu51Ala, Arg54Ser, Asp55Ala,
Cell Host & Microbe 7, 314–3
Arg58Ser) and set4 within residues 62–73

(Glu62Ala, Arg64Ser, Asn65Ala, His59Ser,

Gln71Ala,Gln72Ala,Glu73Ser) (FigureS3).

Both mutants are soluble when expressed

as tetherin(47-159) and elute from a SEC

column at the same position as wild-type

tetherin(47-159) (Figure S6A). Further-

more, they form disulfide-linked dimers

that can be efficiently crosslinked (Fig-

ure S6B). Both mutations were then intro-

duced into full-length tetherin(iHA) and

expressed in 293T cells. This demon-

strates that both sets (3 and 4) of tetheri-

n(iHA) mutants are expressed at the

plasma membrane (Figures 5E and 5F).

Although expression of the full-length

set3 mutant reveals its activity in HIV-1

retention at a level comparable to wild-

type (Figure 6B, left panel, lanes 2 and 3),

expression of the set4 mutant shows no

retention activity (Figure 6B, left panel,

lane 4). Cells from all experiments

reveal similar patterns of intracellular Gag

processing (Figure 6B, middle panel).

However, the extensive posttranslational

modification observed for wild-type teth-

erin expression in 293T cells, which

generates a high molecular weight smear,

is less characteristic in the case of the set4

mutant (Figure 6B, right panel, lane 4).

Since the set4 mutant includes muta-

genesis of the glycosylation site at Asn65,

we constructed a single mutant of the

glycosylation site at Asn65, Asn65Gln, to

test whether the loss of retention activity

is due to reduced glycosylation. Although

the Asn65Gln mutant shows a less com-
plex expression pattern (Figure 6C, right panel, lane 3), similar

to tetherin_set4, the retention of HIV-1 was only slightly affected.

A small amount of virus could escape, since CA was detected

in the supernatant (Figure 6C, left panel, lane 3). This indicates

that the complete loss of retention observed for the set4

mutant is most likely not due to the changes in posttranslational

modification. Together, our data indicate that a conserved

N-terminal region of the extracellular domain is important for

tetherin function.
23, April 22, 2010 ª2010 Elsevier Inc. 317



Figure 4. Small-Angle X-Ray Scattering Analysis of Tetherin

(A) Experimental scattering intensities obtained for tetherin(47-159) (upper

curve) and tetherin(80-147) (lower curve) are shown as a function of resolution

and after averaging and subtraction of solvent scattering. The scattering inten-

sities calculated from representative models (presented in Figures 4B and 4C)

with the lowest c values are shown as red lines. The absolute values of the

intensities of the upper curve are shifted by 2 logarithmic units.

(B and C) Ab initio models of tetherin(80-147) (B) and of tetherin(47-159) (C)

reveal elongated rod-like structures; the calculated bead model as well as

the molecular envelopes with the docked coiled-coil structure are shown.

Figure 5. Cellular Localization of Wild-Type Tetherin and Mutant

Forms of Tetherin

(A–F) Immunofluorescence of mock-transfected 293T cells showing DAPI

staining (A); tetherin(iHA), with the inset showing a close-up of a section of

the plasma membrane, revealing patches of tetherin staining (B); tetheri-

n(iHA-set1) (C); tetherin(iHA-set2) (D); tetherin(iHA-set3) (E); and tetherin

(iHA-set4) (F). All constructs reveal a similar plasma membrane staining

pattern, indicating that the mutations do not affect their localization.
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Since the HA-tag of tetherin(iHA) was inserted into a flexible

region (Figure S3) that is disordered in the crystal structure and

sensitive toproteolysis (Figure S1),we tested the effectof the inser-

tion on tetherin function. Expression of tetherin(iHA) reveals
318 Cell Host & Microbe 7, 314–323, April 22, 2010 ª2010 Elsevier In
a slightly reduced HIV-1 retention activity in comparison to wild-

type tetherin, as judged by the detection of CA in the supernatant

(Figure 6D, left panel, lanes 2 and 3). Both wild-type and tetheri-

n(iHA) show similar expression patterns (Figure 6D, right panel)

and accumulation of intracellular Gag as compared to the vector

control (Figure 6D, middle panel). This indicates that the conforma-

tional flexibility within residues 80–88 tolerates the insertion of the

HA-tag but slightly reduces the efficacy of HIV-1 retention.

Although we lack high-resolution structural information of the N

terminus, the flexible region accommodating the HA-tag might

correspond to the bent conformation of tetherin(47-159) observed

in the model calculated based on SAXS data (Figure 4C).

DISCUSSION

Tetherin inhibits the release of some enveloped viruses,

including HIV-1, in the absence of Vpu (Neil et al., 2008) by
c.



Figure 6. Mutations within the Coiled Coil and the N-Terminal

Region Affect Tetherin Function during HIV-1 Retention

(A) Expression of tetherin_set1 and tetherin_set2 abolishes the retention func-

tion of tetherin. Release of virions (left panel, lanes 3 and 4) is the same as in

case of the vector control (lane 1), whereas wild-type tetherin prevents virion

release (left panel, lane 2). The middle panel shows that intracellular Gag

and its processing are not affected by the expression of mutant tetherin (lanes

3 and 4). The right panel shows the expression levels of mutant (lanes 3 and 4)

and wild-type tetherin (lane 2).

(B) Expression of tetherin_set3 (left panel) has no effect on tetherin function

(lane 3) while tetherin_set4 abolishes the retention function of tetherin (lane

4), as indicated by the extracellular detection of CA. The middle panel shows

that intracellular Gag and its processing are not affected by the expression of

mutant tetherin (lanes 3 and 4). The right panel shows the expression levels of

mutant and wild-type tetherin. Note that the extensive posttranslational modi-

fication observed for wild-type tetherin is absent in case of the set4 mutant.

(C) Expression of the tetherin mutant Asn65Gln (N65Q) (left panel) has little

effect on tetherin function (lane 3) compared to wild-type tetherin (lane 2). Intra-

cellular Gag processing is not affected by the expression of the N65Q mutant

(middle panel, lanes 2 and 3). The right panel shows that the expression pattern

of N65Q (lane 3) is less complex than that of wild-type tetherin (lane 2).

(D) Expression of tetherin(iHA) (left panel) has little effect on tetherin function

(lane 2) when compared to wild-type tetherin (lane 3). The middle panel shows

that intracellular Gag and its processing are not affected. The right panel

shows the expression levels of tetherin(iHA) and wild-type tetherin.
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Cell
bridging cellular and viral membranes (Perez-Caballero et al.,

2009) (Fitzpatrick et al., 2010). Our structural analyses

demonstrate that the complete extracellular domain of tetherin

adopts an extended conformation that spans a maximal

distance of 170 Å. More than half of this is provided by a 90 Å

long parallel coiled coil. The low-resolution model based on

X-ray scattering data indicates a slightly bent orientation of the

N-terminal domain with respect to the coiled coil. This might

be due to flexibility within the region (residues 79–89) connecting

the N-terminal and coiled-coil domains, as documented by

the sensitivity to proteolysis and the absence of an ordered

structure for residues 80–88. In addition, this region permits

the insertion of a HA-tag epitope without substantial loss of teth-

erin function.

The extracellular rod-like structure must be connected to the

TMR via three N-terminal residues and to the GPI anchor via

one C-terminal residue. Consequently, it is unlikely that tetherin

is positioned parallel between cellular and viral membranes,

which would tether virions quite close to the plasma membrane.

The distance between both membranes would be less than

3–5 nm. Thin-section electron microscopy images support a

larger distance between virions and the plasma membrane

(Neil et al., 2008; Perez-Caballero et al., 2009). Thus, upon virion

tethering, the dimeric tetherin rod has most likely one end

anchored in the plasma membrane and the other one in the virus

membrane, as hypothesized (Perez-Caballero et al., 2009).

The length of the rod and its rather rigid structure in solution

suggest that it functions as a molecular ruler that connects two

entities via a 170 Å distance. The importance of the spacer func-

tion is documented by our mutagenesis studies of the coiled-coil

region and by the deletion of the coiled coil (Perez-Caballero

et al., 2009), both of which lead to a loss of the HIV-1 retention

function. Such a molecular ruler function might be also required

to connect adjacent lipid rafts within the plasma membrane

(Kupzig et al., 2003).
Host & Microbe 7, 314–323, April 22, 2010 ª2010 Elsevier Inc. 319
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Single cysteine mutations do not affect tetherin function

dramatically, but mutagenesis of all three cysteines led to

a complete loss of function during HIV-1 release (Andrew et al.,

2009; Perez-Caballero et al., 2009), although the mutant is still

active during Lassa and Marburg virus VLP release (Sakuma

et al., 2009b). We show that the presence of disulfide bonds is

crucial for the stability of the extracellular domain, since the Tm

drops to 35�C (tetherin[47-159]) under reducing conditions.

The low stability of tetherin under reducing conditions is most

likely due to instability of the coiled coil, which shows an even

lower Tm under reducing conditions. The coiled coil contains

a number of coiled-coil-destabilizing residues occupying central

heptad positions. These positions do not follow classical knobs-

into-holes packing but instead loosen the coiled-coil pitch and

induce an expansion of its radius. Although the coiled-coil region

contains two interhelical salt bridges and one interhelical

hydrogen bond, which are employed to stabilize coiled coils

(Burkhard et al., 2002), the solvent exposure of the apolar heptad

positions (Li et al., 2003) might contribute to the dramatic insta-

bility of the coiled coil in the absence of the disulfide bond.

Together, these structural features explain the low Tm in the

absence of stabilizing disulfide bonds.

This mode of labile coiled-coil interactions might serve two

functions. First, tetherin’s cellular function might involve the

formation of heterodimers with a yet unknown ligand employing

its coiled coil to form more stable dimers. Second, the weak

coiled-coil interactions together with the stabilizing disulfide

bonds generate a dynamic structure, which permits disassembly

and reassembly of the coiled coil during dynamic processes. The

latter function is in agreement with the presence of similar

dynamic or destabilizing coiled-coil features in myosin (Blanken-

feldt et al., 2006; Li et al., 2003), tropomyosin (Brown et al., 2001),

and the streptococcus M1 protein (McNamara et al., 2008) that

have been suggested to be important for their mode of action.

Despite its instability in vitro, we demonstrate the importance

of the coiled coil in vivo. Mutagenesis of N- and C-terminal sets

of highly conserved heptad positions eliminates the tethering

function, although the mutant proteins are still expressed on

the plasma membrane. This indicates that the spacer function

provided by proper coiled-coil formation is essential for tethering.

We also identified a third set of residues within the highly

conserved N-terminal extracellular region that are functionally

required. Mutations within the stretch of residues 48–59 have

no effect on tethering, whereas changes within residues 62–73

lead to a loss of the tethering function. Again, both mutant

proteins are expressed on the plasma membrane, and the extra-

cellular domains form dimers in vitro. Since the set4 mutant elim-

inates the glycosylation site at Asn65 and shows a less complex

expression pattern than wild-type tetherin, we tested whether

changes in posttranslational modification are responsible for

loss of tetherin function. Although the expression pattern of

Asn65Gln resembles that of the set4 mutant, it shows only slightly

reduced HIV-1 retention activity, consistent with previous find-

ings reporting no effect on HIV-1 retention of single and double

glycosylation mutants of tetherin (Andrew et al., 2009). This indi-

cates that mutagenesis of this N-terminal region (set4) either

affects its spacer function or eliminates an important docking

site, possibly for self-assembly. Although Perez-Caballero et al.

reported that the N terminus can be replaced by a similar region
320 Cell Host & Microbe 7, 314–323, April 22, 2010 ª2010 Elsevier In
derived from the transferrin receptor and the coiled coil can be

replaced by the dystrophia myotonica protein kinase coiled coil,

it is important to note that the activity of art-tetherin is �10-fold

lower (Perez-Caballero et al., 2009). In contrast, our data clearly

demonstrate that the N-terminal domain and the dynamic fea-

tures of the coiled coil of tetherin are essential for HIV-1 retention.

Based on our structural analysis, we propose the following

interplay between the elongated shape and the conformational

flexibility of tetherin. Although we do not know at which stage

of assembly tetherin enters the virion membrane, it is likely that

it is present from the beginning of assembly starting from lipid

rafts. Since virus assembly and budding is a dynamic process,

tetherin cannot remain too rigid. The coiled-coil instabilities

thus permit a certain degree of flexibility for the tetherin dimers

to diffuse laterally into the budding site with four membrane

anchors while maintaining the strict distance between the

membrane anchors. The conformational flexibility, which entails

most likely opening and reassembly of the coiled coil, is facili-

tated by the presence of the disulfide bonds. Consequently,

dimer dissociation and restabilization do not interfere with the

dynamic process of virus assembly and budding, and tetherin

remains anchored in the newly formed viral membrane, main-

taining its spacer function. Furthermore, the elongated rod-like

structure might be involved in self-assembly, as supported by

the punctate appearance of tetherin in the plasma membrane.

Such clustering might require an intact N-terminal region, which

could cluster tetherin around the membrane neck of a budding

virion, consistent with the accumulation of tetherin at HIV-1

budding sites (Habermann et al., 2010). This would ensure that

at least one or several tetherin dimers can efficiently insert into

the viral membrane to render the system efficient. Finally, the

structural basis, which controls tetherin incorporation into virions

even in the presence of Vpu in some cells without restriction of

HIV-1 release (Fitzpatrick et al., 2010), may depend on its surface

density (Habermann et al., 2010) but remains to be determined.

EXPERIMENTAL PROCEDURES

Bacterial Protein Expression and Purification

cDNA encoding human tetherin/BST-2 residues 47–159 and 80–147 was

cloned into expression vector pETM11. Site-directed mutagenesis of tetherin

(47-159) was carried out using standard protocols and verified by sequencing.

Protein expression was performed in E. coli Rosetta2 cells induced with

isopropyl b-D-1-thiogalactopyranoside (IPTG) at 20�C for 4 hr. Cells were lysed

in buffer A (20 mM Tris [pH 8.0], 0.1 M NaCl, 10 mM imidazole), and proteins

were purified by Ni2+ chromatography. The His-tag was removed by tobacco

etch virus (TEV) protease cleavage, and both TEV and uncleaved protein

were removed by Ni2+ chromatography. Final purification steps included

anion-exchange chromatography (mono Q; GE Healthcare; Waukesha, WI) in

buffer B (20 mM bicine [pH 9.3], 0.1 M NaCl, 5 mM EDTA) and size-exclusion

chromatography (Superdex 75; GE Healthcare) in buffer C (20 mM HEPES

[pH 8.0], 0.1 M NaCl, 5 mM EDTA). Selenomethionine-substituted teth-

erin(80-147) and mutant tetherin proteins were purified as described above.

Mutant tetherin constructs contain the following mutations: tetherin_set1,

Cys91Gly, Val95Tyr, Leu98Lys, Leu102His; tetherin_set2, Leu127Lys, Ala130-

Tyr, Val134Glu, Leu137Glu; tetherin_set3, Lys47Ala, Asn49Gly, Glu51Ala,

Arg54Ser, Asp55Ala, Arg58Ser; tetherin_set4, Glu62Ala, Arg64Ser, Asn65Ala,

His59Ser, Gln71Ala, Gln72Ala, Glu73Ser.

Crystallization, Data Collection, and Structure Solution

Tetherin(80-147) was crystallized at a concentration of 5 mg/ml by mixing 1 ml

protein and 1 ml reservoir solution (0.02 M MgCl2, 0.1 M bis tris [pH 5.0], 20%
c.



Table 1. Crystallographic Statistics

Data Collection Statistics

Space group C2

Cell dimensions a, b, c; b 169.89 Å, 85.93 Å, 123.31 Å; 126.94�

Wavelength (Å) 0.979

Resolution (Å) 45.00–2.77 (2.92–2.77)

Rmerge 0.086 (0.479)

Completeness (%) 98.1 (97.7)

I/s(I) 13.8 (3.8)

Redundancy 7.6 (7.7)

Refinement Statistics

Resolution range (Å) 44.8–2.77

No. reflections 35,361

Rwork/Rfree 0.2407/0.2737

No. protein atoms 4596

No. of ligands/ion 21

No. of waters 126

B factors protein/ligand/water 88.56/62.65/66.31

Rmsd (bonds) (Å) 0.014

Rmsd (angles) (�) 1.305

Values in parentheses are for highest-resolution shell.
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polyacrylic acid) at 20�C. Crystals were cryoprotected in reservoir solution

supplemented by 26% glycerol and flash-frozen in liquid nitrogen. A SAD

data set was collected at ESRF (Grenoble, France), beamline ID14-4. Data

were indexed and processed with XDS (Kabsch, 1993) and scaled with SCALA

(CCP4, 1994; Evans, 2006). The crystals belong to space group C2 with unit

cell dimensions of a = 169.89Å, b = 85.93Å, c = 123.31Å, and b = 126.94�

and contain 11 monomers per asymmetric unit.

Heavy-atom positions were located with SHELXD (Schneider and Sheldrick,

2002), and the correct hand was verified using SHELXE (Sheldrick, 2002). The

experimental phases were calculated using SHARP (Bricogne et al., 2003) and

resulted in an overall figure of merit (FOM) of 0.38/0.10 for the acentric and

centric reflections, respectively. These phases were improved using a 70%

solvent content in SOLOMON (Abrahams and Leslie, 1996). An initial model

was built using RESOLVE (Terwilliger and Berendzen, 1999), which allowed

the determination of the noncrystallographic symmetry operators. The elec-

tron density map was further improved using 11-fold averaging, and the final

model was built manually using the program COOT (Emsley and Cowtan,

2004). The structure was refined to a resolution of 2.77 Å with the program

PHENIX (Adams et al., 2002), with an Rfactor of 0.24 and Rfree of 0.27 with

good stereochemistry (Table 1). Most (96.88%) of the residues are within the

preferred and allowed regions of a Ramachandran plot (CCP4, 1994). Chains

A, F, I, and J contain amino acids (aa) 89–147; chain B, aa 89–145; chain C,

aa 89–137; chain D, aa 87–142; chain E, aa 88–146; chain G, aa 88–141;

chain H, aa 89–142; and chain K, aa 89–127. Molecular graphics figures

were generated with PyMOL (http://www.pymol.org). The helical parameters

of the coiled coil were calculated using the program TWISTER (Strelkov and

Burkhard, 2002).

Biophysical and Biochemical Characterization of Tetherin

CD spectroscopy measurements were performed using a JASCO Inc. (Easton,

MD) spectropolarimeter equipped with a thermoelectric temperature con-

troller. Spectra of each sample were recorded at 20�C in buffer D (20 mM

phosphate [pH 7], 100 mM NaCl). For thermal denaturation experiments, the

ellipticity was recorded at 222 nm with 1�C steps from 20�C to 100�C, with

a slope of 1�C/min. Ellipticity values were converted to mean residue ellipticity.

Proteolysis of tetherin was carried out in buffer C at room temperature (RT)

with a trypsin-to-protein ratio of 1:100 (w/w). Dimerization of tetherin under

reducing conditions was tested as follows: Proteins were reduced with

10 mM DTT and subsequently incubated with 100 mM iodoacetamide at RT

for 1 hr. Unbound DTT and iodoacetamide were removed by dialysis in buffer

C, and samples were crosslinked with 5 mM ethylene glycol bis(succinimidyl

succinate) (EGS). The crosslinking reaction was quenched with 20 mM Tris

(pH 8.0).

Small-Angle X-Ray Scattering Analysis

X-ray scattering data were collected on ESRF (Grenoble) beamline ID14-EH3

at a sample-detector distance of 2.4 m covering a range of momentum transfer

of 0.1 < s < 4.5 nm�1 (s = 4p sin(q)/l, where q is the scattering angle and l =

0.15 nm is the X-ray wavelength). The scattering intensity of tetherin(47-159)

was measured at protein concentrations of 2 and 13 mg/ml and that of teth-

erin(80-147) at concentrations of 2 and 11 mg/ml in buffer C. The data were

normalized to the intensity of the incident beam; the scattering of the buffer

was subtracted and the resulting intensities were scaled for concentration.

Data processing was performed using the program package PRIMUS

(Konarev et al., 2003). The forward scattering, I(0), and the Rg were calculated

with GNOM, which also provides the distance distribution function, p(r), of the

particle (Svergun, 1992). Low-resolution models of both tetherin samples were

simulated by the program DAMMIN (Svergun, 1999) and GASBOR (Svergun

et al., 2001), which resulted in similar elongated structures. Figure 4 represents

the GASBOR model. The crystal structure of tetherin(80-147) was docked

into the low-resolution models using the program package SITUS (Wriggers

et al., 1999).

Mammalian Expression Constructs and HIV-1 Release Assay

The coding sequence for full-length human tetherin with an N-terminal HA-tag

(HA-tetherin) or an HA-tag inserted into the extracellular domain between

residues Gln82 and Asp83 (tetherin[iHA]) was cloned into the mammalian

expression vector pBJ5. To examine the effects of WT and mutant tetherin
Cell
on HIV-1 release, 293T cells (1.2 3 106) were seeded into T25 flasks and trans-

fected 24 hr later using a calcium phosphate precipitation technique. The

cultures were transfected with 1 mg Vpu-negative proviral DNA (HIV-1HXB2)

together with expression vectors for WT or mutant HA-tetherin or the empty

vector (50 ng). The total amount of transfected DNA was brought to 8 mg

with carrier DNA (pTZ18U). Twenty-four hours posttransfection, the cells

were lysed in radioimmunoprecipitation assay buffer (140 mM NaCl, 8 mM

Na2HPO4, 2 mM NaH2PO4, 1% NP-40, 0.5% sodium deoxycholate, 0.05%

SDS), and the culture supernatants were clarified by low-speed centrifugation

and passed through 0.45 mm filters. Virions released into the medium were

pelleted through 20% sucrose cushions by ultracentrifugation for 2 hr at

27,000 rpm and 4�C in a Beckman SW41 rotor. Pelletable material and the

cell lysates were analyzed by SDS-PAGE and western blotting, using the

anti-HIV CA antibody 183-H12-5C (Chesebro et al., 1992) to detect Gag

proteins. HA-tagged tetherin was detected with the anti-HA mouse mono-

clonal antibody HA.11.

Immunofluorescence Analysis

Tetherin expression vectors containing the extracellular internal HA-tag

were transfected into 293T cells using standard methods. For indirect immu-

nofluorescence (IIF), 293T cells were cultured on coverslips and fixed with

4% paraformaldehyde for 20 min at 4�C. The coverslips were incubated with

an aHA-tag antibody in PBS for 1 hr at RT. Slides were washed three times

with PBS, followed by the secondary antibody incubation at RT for 1 hr (Alexa

488- or 594-coupled anti-mouse or anti-rabbit goat antibodies in PBS). After

three washes with PBS, slides were mounted in Mowiol and analyzed by

confocal microscopy.
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Göttlinger, H.G., Dorfman, T., Cohen, E.A., and Haseltine, W.A. (1993). Vpu

protein of human immunodeficiency virus type 1 enhances the release of

capsids produced by gag gene constructs of widely divergent retroviruses.

Proc. Natl. Acad. Sci. USA 90, 7381–7385.

Gramberg, T., Sunseri, N., and Landau, N.R. (2009). Accessories to the crime:

recent advances in HIV accessory protein biology. Curr. HIV/AIDS Rep. 6,

36–42.
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