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a b s t r a c t

Let Σ be a polyhedral surface in R3 with n edges. Let L be the length of the longest edge in
Σ , δ be the minimum value of the geodesic distance from a vertex to an edge that is not
incident to the vertex, and θ be the measure of the smallest face angle in Σ . We prove that
Σ can be triangulated into at most CLn/(δθ) planar and rectilinear acute triangles, where
C is an absolute constant.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A triangulation of a polygon (or a surface) is a dissection of the polygon (or the surface) into triangles in which any
two triangles are either disjoint, have a single vertex in common, or have one entire edge in common. An acute (or non-
obtuse) triangulation is a triangulation into all acute (or non-obtuse) triangles. It is known that any polygon has an acute
triangulation [2]. Many authors are interested in the minimum number of triangles in an acute triangulation of an n-gon.
Let us state some results concerning the number of triangles:

- An obtuse triangle can be triangulated into seven acute triangles, but not into fewer ones [13].
- A square can be triangulated into eight acute triangles, but not into fewer ones [3].
- Every quadrilateral can be triangulated into atmost ten acute triangles, and there is a (concave) quadrilateral that requires
ten acute triangles for acute triangulation [11].

- Every trapezoid other than a rectangle can be triangulated into at most seven acute triangles [16].
- Every n-gon can be triangulated into O(n) acute triangles [12,17].

Acute triangulation of a two-dimensional surfacemeans a triangulation into geodesic acute triangles. It follows fromColin
de Verdiére andMarin [4] that every compact Riemannian surface X in R3 admits an acute triangulation. More precisely, if X
is homeomorphic to a sphere, then X admits a triangulation with all angles in [3π/10− ε, 2π/5+ ε], if X is homeomorphic
to a torus, then it admits a triangulation with all angles in [π/3 − ε, π/3 + ε], and if X has genus ≥ 2, then X admits
a triangulation with all angles in [2π/7 − ε, 5π/14 + ε]. Some results on the minimum numbers of triangles in acute
triangulations of surfaces are as follows.

- A sphere can be triangulated into 20 geodesic acute triangles, but not into fewer ones [6].
- The surface of a cube can be triangulated into 24 geodesic acute triangles, but not into fewer ones [5].
- The surface of a regular icosahedron can be triangulated into 12 geodesic acute triangles, but not into fewer ones [9].
- The surface of a regular dodecahedron canbe triangulated into 14 geodesic acute triangles, but not into fewer than12 [10].
- Every flat torus can be triangulated into at most 16 geodesic acute triangles [8].

See also [18], for a short survey on acute triangulations.
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By a polyhedral surface, we mean a two-dimensional manifold in R3, with or without boundary, consisting of a finite
number of polygons attached along their edges in such away that no vertex comes to the interior of an edge. For example, the
surface of a cube is a (closed) polyhedral surface. Each polygon of a polyhedral surface is called a face of the polyhedral surface
and the edges of the polygons are called (original) edgesof thepolyhedral surface. It is known [2] that every polyhedral surface
can be triangulated into geodesic acute triangles (with ignoring original edges). However, in a polyhedral surface, it would
be natural to consider a triangulation in which all original edges of the polyhedral surface are used, possibly in subdivided
forms. Let us call such a triangulation of a polyhedral surface Σ a proper triangulation of Σ . Thus, in a proper triangulation
of Σ , no triangle can lie across an original edge of Σ , and every triangle lies in a face of Σ . Hence, a proper triangulation has
only planar and rectilinear triangles. A proper acute triangulation of a polyhedral surface is a proper triangulation consisting
of all acute triangles. To get a proper acute triangulation of a polyhedral surface, we have to triangulate all polygonal faces
into acute triangles in such a way that they fit with each other on original edges. So, it is not obvious if every polyhedral
surface admits a proper acute triangulation.

The surface of a cube has a proper acute triangulation into 56 triangles, 56 is theminimumnumber and such proper acute
triangulation is combinatorially unique [7]. Saraf [15] presented a clever way to give a proper triangulation of a polyhedral
surface into all non-obtuse triangles. It seems, however, that no proof on the existence of a proper acute triangulation for a
general polyhedral surface is given so far. The purpose of this paper is to prove the existence of a proper acute triangulation
for a general polyhedral surface, and to present a bound on the number of acute triangles in terms of some parameters of
the polyhedral surface.

For a polyhedral surface Σ , the symbols n, L, δ, θ are used in the following sense throughout this paper:

n: the number of edges in Σ .
L: the length of the longest edge in Σ .
δ: the minimum value of the geodesic distance from a vertex to an edge that is not incident to the vertex.
θ : the smallest face angle of Σ .

Theorem 1. A polyhedral surface Σ has a proper acute triangulation with at most C( L
δθ

)n triangles, where C is an absolute
constant.

Proof is done by combining the disk-packing method of Bern et al. [1] with the idea of Saraf [15] and Maehara [12]. The
factor L

δθ
in the upper bound is necessary in our proof. However, I do not know whether this factor is essential or not.

Problem. Is there a bound B > 0 such that every tetrahedral surface has a proper triangulation with at most B acute
triangles?

2. Saraf-type triangulations

Let Σ be a polyhedral surface. Since each face of Σ is a polygon, each face can be triangulated using only non-obtuse
triangles, but it is not obvious if Σ admits a proper non-obtuse triangulation. Saraf proved in [15] the following theorem.

Theorem 2 (Saraf 2009). Every polyhedral surface Σ has a proper non-obtuse triangulation.

Let us roughly outline Saraf’s proof. For a point P of a polyhedral surface Σ , a disk of radius ρ centered at P means a set of
points on Σ within geodesic distance ρ from P .

Suppose that each face of Σ is a triangle, and the length of minimum edge is 10. Let θ be the minimum of interior angles
of the triangles, and let t = sin θ

2 . At each vertex of Σ , put a disk of radius 1, and cover the remaining part of edges by disks
of radii approximately t as in Fig. 1 in such a way that the distances of the centers of the mutually overlapping disks of radii
≈ t lie between t and

√
2t . For each face σ (triangle) of Σ , let Qσ denote the uncovered part of σ . Then, it is possible to take

a set V of points on the boundary of Qσ with including black dots • shown in Fig. 1 so that (1) the polygon PV obtained by
connecting the vertices in V consecutively along the boundary of Qσ has a non-obtuse triangulation with no other vertices
on the boundary of PV , and (2) σ \ int(PV ) has an acute triangulation with using only the centers ◦ and V as the vertex
set. (To prove (1), Saraf used a sufficiently fine rectangular grid imposed on Qσ , see [15] for details.) Thus, all faces of Σ

have non-obtuse triangulations, which fit with each other on original edges of Σ , and constitute a non-obtuse triangulation
of Σ . �

Saraf’s proof shows further that Σ has a proper non-obtuse triangulation satisfying the following condition:

∗ Every triangle that has at least one vertex on the boundary of a face of Σ is an acute triangle.

Let us call a proper non-obtuse triangulation of Σ that satisfies this condition a Saraf-type triangulation of Σ .

Proposition 1. If Σ has a Saraf-type triangulation with ν non-obtuse triangles, then Σ has a proper acute triangulation with at
most 12ν triangles.

Corollary 1. Every polyhedral surface admits a proper acute triangulation. �
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Fig. 1. Cover edges by circles of radii 1 and t .

Fig. 2. A part of T (and T1) on a face of Σ .

Proof of Proposition 1. Let T be a Saraf-type triangulation of Σ with ν triangles. Every vertex of T that lies inside a face
of Σ is called a black vertex and denoted by •, while every vertex lying on the boundary of a face is denoted by ◦, see Figure
2-left, which shows a part of T on a face ofΣ . Then, by the above condition ∗, every right triangle in T has three black vertices.

For each edge of T , take its midpoint (denoted by �), and then divide each triangle of T in the following way:

For a non-obtuse triangle ABC of T , let L,M,N be the midpoints of the edges opposite to A, B, C , respectively. If ABC is
an acute triangle, then divide ABC by adding edges LM,MN,NL. If ABC is a right triangle with ̸ A = π/2, then divide ABC
by adding edges AL, LM, LN .

Then we get a subdivision T1 of T , see Fig. 2-right. Note that concerning T1, the following holds:

(1) T1 is a Saraf-type triangulation of Σ with 4ν triangles.
(2) Triangles in T1 that have no black vertex are acute triangles.
(3) Each triangle in T1 has at most one black vertex.
(4) If a triangle in T1 has a black vertex, then its interior angle at the black vertex is less than π/2.

Now, take a black vertex P in T1 and let k be its degree, PMi (i = 1, 2, . . . , k) be the edges emanating from P . Take
a small circle centered at P , and circumscribe a k-gon A1A2 . . . Ak to this circle in such a way that k edges of the k-gon
perpendicularly cut the k edges emanating from P , see Fig. 3. And then, replace each edge emanating from P in T1 (the
dashed lines in Fig. 2) with as shown in Fig. 3. Then, since PA1 bisects ̸ M1PM2 and PA2 bisects ̸ M2PM3, it
follows that ̸ A1PA2 = (̸ M1PM2 + ̸ M2PM3)/2 < π/2 by (4). Hence the triangle A1PA2 is an acute triangle. Similarly k
triangles around P are all acute triangles. It will be obvious from (1) (3) (4) that if the circle centered at P is very small (and
hence the circumscribed k-gon is very small), then the triangles that surround the k-gon A1A2 . . . Ak become acute triangles
by such replacement. Since no two black vertices are adjacent, we can apply such replacement operation independently to
every black vertex, and then get a new triangulationT2 ofΣ . It follows now from (2) that all triangles inT2 are acute triangles.
Note that since no black vertex lies on the boundary of a face of Σ , all original edges of Σ still remain in T2 in subdivided
forms. Thus T2 is a proper acute triangulation of Σ . Clearly the number of triangles in T2 is at most 3(4ν) = 12ν. �

Unfortunately, Saraf’s non-obtuse triangulation in [15] is not suitable to estimate the number of triangles in the
triangulation. So, we modify the disk-packing method in [1] to get an appropriate Saraf-type triangulation in Section 4.
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Fig. 3. Replacement around a black vertex P .

Fig. 4. Four disks.

3. A cycle of disks

A cyclic sequence of k disks D0,D1, . . . ,Dk−1 (k ≥ 3) in a plane is called a cycle of k disks if the k disks are mutually
non-overlapping, and each Di is tangent to only Di−1 and Di+1 (where the subscripts are taken modulo k). For a cycle of k
disks, a k-gon is obtained by connecting the centers of mutually tangent disks, which is called the k-gon determined by the
cycle of k disks. Each edge of such k-gon contains the contact point of two disks with centers at the endpoints of the edge.
All edges of such k-gon are covered by the k disks, and the uncovered part inside the k-gon (the remainder in the k-gon) is
called a k-side arc polygon.

Let us bound the number of triangles in a non-obtuse triangulation of a k-gon determined by a cycle of k disks.

Lemma 1. Every triangle determined by a cycle of three disks has an acute triangulationwith atmost 10 triangles, in which newly
introduced vertices on the boundary of the triangle are only the three contact points on the edges and all other newly introduced
vertices lie inside the triangle.

Proof. LetD1,D2,D3 be a cycle of three disks with centers A1, A2, A3. Inscribe a diskD0 in the 3-side arc polygon determined
by D1,D2,D3 as shown in Fig. 4, and let A0 be the center of D0. Let Pij (0 ≤ i < j ≤ 3) be the contact point of Di and Dj. We
show that the following 10 triangles are all acute triangles:

△P01P02P03, △P12P01P02, △P23P02P03, △P13P01P03,
△A1P01P12, △A1P01P13, △A2P02P12, △A2P02P23, △A3P03P23, △A3P03P13.

(1) Since P0i lies on A0Ai, i = 1, 2, 3, the line segment P0iP0j lies in △AiA0Aj, and hence A0 lies inside △P01P02P03. Thus, the
circumcenter of △P01P02P03 lies inside △P01P02P03, and hence it is an acute triangle.
(2) Let x = ̸ A0P02P03, y = ̸ A2P23P02, z = ̸ A3P03P23. Then, in △A0A2A3,

π = ̸ A0 + ̸ A2 + ̸ A3 = π − 2x + π − 2y + π − 2z = 3π − 2(x + y + z).

Therefore x + y + z = π , and in △P02P23P03,

̸ P02 = π − (x + y) = z, ̸ P23 = π − (y + z) = x, ̸ P03 = π − (x + z) = y.
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Since x, y, z < π/2, the triangle △P02P23P03 is an acute triangle. Similarly, △P01P12P02, △P03P13P01 are acute triangles.
(3) Let ri be the radius of Di (i = 0, 1, 2, 3). Then r0 < min{r1, r2, r3}. Since |AiAj| = ri + rj, the edge AiAj is the longest edge
in △A0AiAj, which implies that ̸ AiA0Aj is the largest angle in △A0AiAj. This implies that ̸ A0AiAj < π/2 and ̸ A0AjAi < π/2.
Hence

△A1P01P12, △A1P01P13, △A2P02P12, △A2P02P23, △A3P03P23, △A3P03P13

are acute triangles. �

The next lemma is a consequence of Lemmas 4, 5, and 7 in [1].

Lemma 2. Every quadrilateral determined by a cycle of four disks has a non-obtuse triangulation with at most 56(= 28 + 28)
triangles, in which newly added vertices on the boundary of the quadrilateral are only the four contact points on the edges, and
all other new vertices lie inside the quadrilateral. �

The next lemma is also proved in [1, Lemma 1].

Lemma 3. In every k-side arc polygon, k > 4, it is possible to pack at most k − 4 disks so that the remaining part in the k-side
arc polygon splits into at most 2k − 7 arc polygons each having three or four sides. �

From Lemmas 1–3, we have the following.

Corollary 2. A k-gon (k ≥ 4) determined by a cycle of k disks has a non-obtuse triangulation with at most 56 × (2k − 7)
triangles, in which newly introduced vertices on the edges of the k-gon are only the k contact points. �

4. Saraf-type triangulation induced by disk packing

Let Σ be a polyhedral surface, and V , E, F denote the set of vertices, the set of edges, and the set of faces of Σ ,
respectively. Then, |V | − |E| + |F | = χ , the Euler characteristic of Σ . For a vertex v ∈ V , let Θ(v) denote the sum of
the face angles at v. For example, if Σ is the surface of a cube, then Θ(v) = 3π/2 for every v ∈ V . Recall that a disk on Σ

centered at a vertex v, with radius ρ means a set of points on Σ within geodesic distance ρ from v. Thus, the perimeter of
a disk of radius ρ < δ centered at a vertex v ∈ V is equal to ρ · Θ(v).

Define K(v) in the following way:

K(v) =


π − Θ(v) if v lies on the boundary ∂Σ of Σ
2π − Θ(v) otherwise.

Then the following Polyhedral Gauss–Bonnet Theorem holds. For a proof, see e.g. [14].

Lemma 4.
∑

v∈V K(v) = 2πχ . �

Corollary 3.
∑

v∈V Θ(v) ≤ 2π(|E| − |F |) < 2π |E|. �

Lemma 5. Let Γ and γ be externally tangent circles; Γ has center O and radius R; γ has center P radius r. Let OA,OB be two
tangent lines of γ , tangent to γ at A, B, respectively, and let ϕ = ̸ AOB. Then 2r

R+r < ϕ < 2r
R .

Proof. Since sin(ϕ/2) < ϕ/2 < tan(ϕ/2), we have r
R+r < ϕ/2 < r

|OA|
< r

R . Multiplying by 2, we have the lemma. �

Now, Theorem 1 follows from Proposition 1 and the following.

Proposition 2. Every polyhedral surfaceΣ has a Saraf-type triangulationwith atmost CLn/(δθ) triangles, where C is a constant.

Proof. We may consider the case θ ≤ 1. Let R = δ/3 and r = Rθ/5. Denote the length of an edge e of Σ by l(e). First, we
cover all edges of Σ by mutually non-overlapping disks of radii R and approximately r in the following way.

(1) For each vertex of Σ , place a disk of radius R with center at the vertex.
(2) For every edge e, cover its uncovered part by placing ⌊(l(e)/2 − R)/r⌋ disks of radius l(e)/2−R

⌊(l(e)/2−R)/r⌋ (≈ r) with centers on
the edge e.

These disks are called edge-cover disks. Denote the set of edge-cover disks by E , see Fig. 5. The sizes R and r are chosen so
that the edge-cover disks never overlap with each other.

Then the uncovered part of each face of Σ becomes an arc polygon. Next, in each arc polygon, pack disks (disks of types
a, b, c , denoted by Dabc) in the following way:

(a) First, for every pair of adjacent arcs of the same radius ≈ r , place a disk of the same radius tangent to both arcs. This
type of disks are called type a, see Fig. 6.
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Fig. 5. E = {edge-cover disks}.

Fig. 6. Dabc = {disks of types a, b, c}.

(b) Next, for every pair of adjacent arcs of radius R and radius ≈ r , place a disk that is tangent to both arcs, and also tangent
to a disk of type a. This kind of disks are called type b, see Fig. 6. The diameter of a disk of type b is obviously greater than
r , and it is less than 1.221 r (if r = R/5, then the diameter is approximately 1.2207 r). Since r = Rθ/5, any two disks of
type b are disjoint by Lemma 5.

(c) Finally, pack disks (disks of type c) of radii at most r tangent to the arcs of radius R so that all disks of types a, b, c make
a cycle of disks. (Make the number of disks of type c as fewer as possible. Then the radii of the disks of type c tangent to
an arc of R are all r except the last one whose radius is adjusted to be inscribed in the remaining small gap.)

It is clearly possible to pack disks in each arc polygon in the above way. Let us estimate here |Dabc |, the number of disks
of types a, b, c . The number of disks of type a is at most 2 ×

L−2R−2r
2r × n. Tangent to a disk of radius R centered at v ∈ V ,

there are at most Θ(v) ×
R+r
2r disks of radius ≈ r by Lemma 5 (among them, deg(v) disks are edge-cover disks), at most

2 deg(v) disks of type b, and at most deg(v) disks of type c packed in small gaps. Thus, around a disk of radius R centered at
v, there are at most 2 deg(v) + Θ(v) ×

R+r
2r disks of types b and c. Therefore, |Dabc | is at most

(L − 2R − 2r)n
r

+ 2
−
v∈V

deg(v) +

−
v∈V

Θ(v) ×
R + r
2r

.

Since
∑

Θ(v) < 2πn by Corollary 3, and
∑

deg(v) = 2n, we have

|Dabc | <
Ln
r

+
(π − 2)Rn

r
+ (π + 2)n < 26


L
δθ


n.

Now, each cycle of disks of types a, b, c determines a polygon. Letm = |F |, the number of faces of Σ , and let k1, . . . , km
be the numbers of sides of m polygons determined by m cycles of disks of types a, b, c. Then, the line segments connecting
the centers of mutually tangent disks in E ∪ Dabc divide Σ into planar triangles and ki-gon, i = 1, 2, . . . ,m. By Lemma 1,
each triangle has an acute triangulation with at most 10 acute triangles, in which newly added vertices on the boundary of
the triangle are only contact points. And by Corollary 2, each ki-gon (k ≥ 4) has a non-obtuse triangulation with at most
56(2ki − 7) triangles, in which newly added vertices on the edges of the ki-gon are only contact points. Thus, noting that∑

(2ki − 7) < 2|Dabc |, there is a proper Saraf-type triangulation of Σ with at most

10 × 4|Dabc | + 56 × 2|Dabc | < 152 × 26


L
δθ


n

triangles. �
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