in the review illustrate the problems that may be encountered in comparing cost-effectiveness estimates of different vaccine programs against themselves as well as with other prevention or treatment interventions.

PODIUM SESSION II: RESEARCH ON METHODS - DATABASE ANALYSIS

DS1 INTEGRATING DATA SOURCES TO CONDUCT COMPREHENSIVE ONCOLOGY BASED OUTCOMES RESEARCH

Albright FT, Bullo V, Kuo RL, Raimundos K, Barney R, Stenhejmen D, Bruzner D.1
1University of Utah College of Pharmacy, Salt Lake City, UT, USA

OBJECTIVES: Individual data sources contain non-integrated data components needed to assess outcomes, resource use, and care in cancer patients. This work describes methodology to integrate disparate electronic data sources in chronic myelogenous leukemia (CML) patients with a common identifier (CI). METHODS: A CML Patient cohort from the Huntsman Cancer Institute was created by extracting information across the Utah Cancer Registry, the Utah Population Database (UPDB), and the Enterprise Data Warehouse, including Cerner inpatient and Epic ambulatory care clinic data. Medication use was from inpatient medication orders. A unique patient index identifier linked disparate records. RESULTS: A total of 602 patients were identified by ICD-9 diagnosis code for CML (250.1, 205.10-12) from 1995 through 2009, median age = 51, 42.6% female. Of these 598 (99.3%) were linked to the UPDB and 245 had a state death certificate. Charlson Comorbidity Index (CCI) was calculated for patients with a score of zero, 199 (33.3%) had CCI = 0, 199 (33.3%) had CCI = 1, and 199 (33.3%) had CCI = 2. A total of 267 CML related disorders. Procedures were observed for 531 (88.2%) patients. Lab results were available for 564 (93.7%) subjects. Of those, BCR/ABL biomarker results were available for 210 (37.2%) of all lab results. Patients: CONCLUSIONS: Integrating data across different data sources in an academic health care center with a National Comprehensive Cancer Network hospital can provide comprehensive health care data. This methodology may influence the evolution of electronic health records, as a data resource tool for outcome research.

DS2 A VALIDATION STUDY OF ALGORITHMS FOR IDENTIFYING METASTATIC BREAST, LUNG, OR COLORECTAL CANCER IN ADMINISTRATIVE CLAIMS DATA

White TL,1 Engel-Aguilera, A.2,3,4,5,6,7,8,9 Amini, M.2,3,4,5,6,7,8,9,10,11,12,13
1Amgen, Inc., Thousand Oaks, CA, USA, 2Novartis Pharmaceuticals, East Hanover, NJ, USA, 3University of Utah, Salt Lake City, UT, USA

OBJECTIVES: To describe the frequency of available laboratory results data in claims databases, as well as with other prevention or treatment interventions.

RESULTS: A total of 602 patients were identified by ICD-9 diagnosis code for CML (250.1, 205.10-12) from 1995 through 2009, median age = 51, 42.6% female. Of these 598 (99.3%) were linked to the UPDB and 245 had a state death certificate. Charlson Comorbidity Index (CCI) was calculated for patients with a score of zero, 199 (33.3%) had CCI = 0, 199 (33.3%) had CCI = 1, and 199 (33.3%) had CCI = 2. A total of 267 CML related disorders. Procedures were observed for 531 (88.2%) patients. Lab results were available for 564 (93.7%) subjects. Of those, BCR/ABL biomarker results were available for 210 (37.2%) of all lab results. Patients: CONCLUSIONS: Integrating data across different data sources in an academic health care center with a National Comprehensive Cancer Network hospital can provide comprehensive health care data. This methodology may influence the evolution of electronic health records, as a data resource tool for outcome research.

DS3 ASSESSMENT OF LABORATORY RESULTS DATA IN A CLAIMS DATABASE IN THE UNITED STATES

Horne LN, Ming EE, Doyle C.1
1Global Health Economics & Outcomes Research Inc., Summit, NJ, USA

OBJECTIVES: To describe the frequency of available laboratory results data in a commercial healthcare database, among patients who are being treated for diabetes (HbA1c) or lipid test (lipid test) laboratory. RESULTS: Data were considered available if LOINC codes or free text identified a result recorded within +/- 3 days of the index date. The final study cohort included only patients with at least one result available. We calculated the 1-year person-level percent of the number of tests ordered in 2009 that had results available. Results for each test were stratified by whether the patient received an antidepressant or antipsychotropic drug during the same year. RESULTS: Overall, a result was available for 41% of HbA1c tests and 42% of lipid tests. Persons with at least one prescription claim for an antidepressant or antipsychotropic drug had more frequent tests recorded during the study period (HbA1c: mean 4.5 with drug, 2.0 without drug; Lipid: mean 3.9 with drug, 2.0 without drug). However, results were less likely to be consistently available among treatment groups: 44% of those treated (among whom 70% of tests had results), and 39% of those not treated (among whom 83% of tests had results) had any results available. CONCLUSIONS: While laboratory data may enhance studies conducted in administrative claims databases, results may be inconsistently available. In this study, 56% of all treated patients, 44% had any laboratory results recorded, for whom results were missing approximately 30% of the time. An evaluation of the completeness of laboratory data prior to any study is feasible and may help understand any potential bias.

DS4 BURDEN OF PROOF...

REFERENCES

A6 V A L U E I N H E A L T H 1 4 (2 0 1 1) A 1 - A 2 1 4