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Abstract

A necessary and sufficient condition is obtained for two Toeplitz operators to be commuting on the Hardy
space of the bidisk. The main tool is the Berezin transform and the harmonic extension.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let D denote the open unit disk in the complex plane C. Its boundary is the unit circle T. The
bidisk D2 and the torus T2 are the subsets of C2 which are Cartesian products of two copies D
and T, respectively. Let dσ(z) be the normalized Haar measure on T2. The Hardy space H 2(D2)

is the closure of the analytic polynomials in L2(T2, dσ ) (or L2(T2)). Let P be the orthogonal
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projection from L2(T2) onto H 2(D2). The Toeplitz operator with symbol f in L∞(T2) is defined
by

Tf h = P(f h),

for all h ∈ H 2(D2).
On the Hardy space of the unit disk, Brown and Halmos [2] first showed that two Toeplitz

operators are commuting if and only if either both symbols of these operators are analytic, or
both symbols of these operators are co-analytic, or a nontrivial linear combination of the symbols
of these operators is constant. Axler and Cuckvoic obtained the analogous result for Toeplitz
operators with bounded harmonic symbols on the Bergman space of the unit disk [1]. A natural
question is to characterize commuting Toeplitz operators on the Hardy space of bidisk.

Question. For which functions f and g,

Tf Tg = TgTf ?

The above question is equivalent to the question that the commutator Tf Tg − TgTf equals
zero. On the other hand, the commutator Tf Tg − TgTf equals the difference of two semi-
commutators Tf Tg − Tfg and TgTf − Tgf . In [7], Gu and the third author showed that the
semi-commutator Tf Tg − Tfg equals zero if and only if for each i = 1,2, either f̄ (z1, z2) or
g(z1, z2) is analytic in zi . Recently, in [9], Lee had made the progress on the above question for
the special case when one symbol of two Toeplitz operators Tf and Tg is in the form

h(z1)z
α
2 + k(z1)z̄

β

2 .

Later, in [10], Lee obtained some results to address the above question on the Hardy space of the
polydisk. The first author worked on the question in [4,3,5]. In this paper, we answer the above
question by completely characterizing commuting Toeplitz operators on the Hardy space of the
bidisk. The main idea is to use the Berezin transform and the harmonic extension. Even on the
unit disk, the idea is new.

To state our results and to reformulate the Brown–Halmos theorem [2] in a different form, we
need some notation. Let Kz1(w1) denote the reproducing kernel

1

1 − z̄1w1

of Hardy space H 2(D) at the point z1 ∈ D and kz1(w1) the normalized reproducing kernel

(1−|z1|)
1
2

1−z̄1w1
of H 2(D) at the point z1 ∈ D. Clearly, the reproducing kernel of H 2(D2) at the point z

with coordinates (z1, z2) in D2 is given by

Kz(w) =
2∏

Kzi
(wi).
i=1
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Thus the normalized reproducing kernel kz(w) of H 2(D2) is in the form

kz(w) =
2∏

i=1

kzi
(wi).

Given f ∈ L1(T2), the harmonic extension of f is given by

f̂ (z) =
∫
T2

f (ζ )

2∏
j=1

1 − |zj |2
|1 − zj ζj |2

dσ(ζ )

=
∫
T2

f (ζ )
∣∣kz(ζ )

∣∣2
dσ(ζ )

= 〈f kz, kz〉.

Let ∂i denote ∂
∂zi

and ∂̄i denote ∂
∂izi

. The operator �j is defined by

�j = ∂j ∂̄j

for j = 1,2. Clearly, f̂ (z) is 2-harmonic function on D2. That is

�j f̂ (z) = 0

for j = 1,2.

For a bounded operator S on H 2(D2), the Berezin transform of S is the function S̃ on D2

defined by

S̃(z) = 〈Skz, kz〉
=

∫
T2

Skz(ξ)kz(ξ) dσ (ξ).

Thus the harmonic extension f̂ (z) of f is the Berezin transform T̃f of the Toeplitz operator Tf

with symbol f . First we state the Brown and Halmos theorem in [2] as follows.

Theorem 1.1. (See Brown and Halmos [2].) Let f,g ∈ L∞(T). Then Tf Tg = TgTf if and only if

(a) both f and g are analytic; or
(b) both f and g are co-analytic; or
(c) there are constants a and b with |a| + |b| �= 0 such that af + bg is constant.

On the unit disk, for f in L1(T), we still use f̂ (z) to denote the harmonic extension of f at
a point z in the unit disk D. The result of Brown and Halmos is reformulated in the following
form.
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Theorem 1.2. Let f,g ∈ L∞(T). Then Tf Tg = TgTf if and only if

∂f̂ (z)∂̄ĝ(z) = ∂ĝ(z)∂̄f̂ (z)

on D.

The form in the above theorem not only combines three conditions in the original form of the
Brown and Halmos theorem [2] into one condition, but also makes sense on the bidisk. A proof
of Theorem 1.2 will be given in Section 2.

To motivate readers to the first version of our main result, we reformulate the result in [7]
in the similar way as the above theorem. To simplify notation we use f (z1, z2) to denote the
harmonic extension f̂ (z1, z2).

Theorem 1.3. (See [7].) Let f and g be two functions in L∞(T2). The semi-commutator Tf Tg −
Tfg equals zero on the Hardy space H 2(D2) of the bidisk D2 if and only if

(a) for almost all ς2 in T,

∂1f (z1, ς2)∂̄1g(z1, ς2) = 0

for z1 in D, and
(b) for almost all ς1 in T,

∂2f (ς1, z2)∂̄2g(ς1, z2) = 0

for z2 in D,
(c) for all z1, z2 ∈ D,

∂1∂2f (z1, z2)∂̄1∂̄2g(z1, z2) = 0.

Inspired by the above results, we obtain the following version of our main result, whose proof
will be given in Section 4.

Theorem 1.4 (First version). Let f,g ∈ L∞(T2). The Toeplitz operator Tf commutes with the
Toeplitz operator Tg on the Hardy space of the bidisk if and only if the following conditions hold.

(a) For almost all ς2 in T,

∂1f (z1, ς2)∂̄1g(z1, ς2) = ∂1g(z1, ς2)∂̄1f (z1, ς2)

for z1 in D, and
(b) for almost all ς1 in T,

∂2f (ς1, z2)∂̄2g(ς1, z2) = ∂2g(ς1, z2)∂̄2f (ς1, z2)

for z2 in D, and



X. Ding et al. / Journal of Functional Analysis 263 (2012) 3333–3357 3337
(c) for all z1, z2 ∈D,

∂1∂2f (z1, z2)∂̄1∂̄2g(z1, z2) = ∂1∂2g(z1, z2)∂̄1∂̄2f (z1, z2).

In order to state the second version of our main result, which is analogous to the Brown and
Halmos theorem [2], we introduce some decompositions of functions in L2(T2). As in [7], for
each f in

⋂
1<q<∞ L

q
(T2), we write the power series expansion of the harmonic extension f̂ (z)

of f as follows:

f =
∑

m∈Z2

fmzm = f++ + f+− + f−+ + f−−,

where

f++(z) :=
∑

m∈Z+×Z+
fmzm,

f+−(z) :=
∑

m∈Z+×Z−
fmzm,

f−+(z) :=
∑

m∈Z−×Z+
fmzm,

f−−(z) :=
∑

m∈Z−×Z−
fmzm

and z(m1,m2) = z
m1
1 z

m2
2 . Moreover z

m1
1 is the m1th power of z1 if m1 is nonnegative and z

m1
1 is

the |m1|th power of z̄1 if m1 is negative.
The following is the second version of our main result. It is analogous to the Brown and

Halmos theorem [2]. Its proof will be given in Section 5.

Theorem 1.5 (Second version). Let f and g be in L∞(T2). The Toeplitz operator Tf commutes
with the Toeplitz operator Tg on the Hardy space of the bidisk if and only if the following three
conditions hold:

(a) For almost all ς2 ∈ T,
(a1) f (z1, ς2) and g(z1, ς2) are both analytic in variable z1 on D, or
(a2) f (z1, ς2) and g(z1, ς2) are both co-analytic in variable z1 on D, or
(a3) there are a1(ς2) and b1(ς2), not both zero, such that

a1(ς2)f (z1, ς2) + b1(ς2)g(z1, ς2)

is a constant in variable z1 on D.
(b) For almost all ς1 ∈ T,

(b1) f (ς1, z2) and g(ς1, z2) are both analytic in variable z2 on D, or
(b2) f (ς1, z2) and g(ς1, z2) are both co-analytic in variable z2 on D, or
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(b3) there are a2(ς1) and b2(ς1), not both zero, such that

a2(ς1)f (ς1, z2) + b2(ς1)g(ς1, z2)

is a constant in variable z2 on D.
(c) One of the following conditions holds:

(c1)

f++(z1, z2) = f1(z1) + f2(z2),

g++(z1, z2) = g1(z1) + g2(z2),

where f1, f2, g1 and g2 are in Hq(D) for every q > 1.

(c2)

f−−(z1, z2) = f1(z1) + f2(z2),

g−−(z1, z2) = g1(z1) + g2(z2),

where f1, f2, g1 and g2 are in Hq(D) for every q > 1.
(c3) There exist constants a, b, not both zero, such that

af++(z1, z2) + bg++(z1, z2) = h1(z1) + h2(z2),

af−−(z1, z2) + bg−−(z1, z2) = r1(z1) + r2(z2),

where h1, h2, r1 and r2 are in Hq(D) for every q > 1.

2. The Brown–Halmos theorem via the Berezin transform

The harmonic extension will play an important role in this section. For f ∈ L
1
(T), f̂ (z) is

harmonic on D and

lim
r→1

f̂ (rς) = f (ς)

for almost everywhere ς ∈ T. Conversely, if f (z) is a harmonic function in the unit disk D,
one asks when f has boundary values, and how f is determined by its boundary values. The
following theorem [8, p. 38, Corollary 2] gives a nice answer.

Theorem 2.1. (See [8].) Let f be a complex-valued harmonic function in the unit disk and
suppose that the integrals

∫
T

∣∣f (rς)
∣∣p dσ(ς)

are bounded as r → 1 for some p, 1 � p < ∞. Then for almost every ς the radial limit
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f ∗(ς) = lim
r→1

f (rς)

exists and defines a function f ∗ in Lp of the circle T. If p > 1, then f (z) is the harmonic
extension of f ∗.

For f ∈ L1(T2) and fixed zi ∈ D, we defined

Pif |ξi=zi
=

∫
T

f (ξ)kzi
(ξi) dσ (ξi), 1 � i � 2,

L
q
ai

(
T2) = {

f ∈ Lq
(
T2): f is analytic in variable zi

}
.

Using the boundedness of Pi on Lq for q > 1, one can easily verify the following facts:

• P1 commutes with P2, and P = P1P2 is a bounded linear operator from Lq(T2) to L
q
a(T2)

for every q > 1.
• ⋂

1<q<∞ Lq is an algebra, i.e., both fg and f + g are in
⋂

1<q<∞ Lq if f and g are in⋂
1<q<∞ Lq . In addition, f+ and f− are in

⋂
1<q<∞ Lq if f ∈ ⋂

1<q<∞ Lq .

• If f and g belong to
⋂

1<q<∞ Lq(T), then Tf Tg is an operator densely defined on H 2(D).

Although our main concern is with bounded Toeplitz operators, we will need to make use of
densely defined unbounded Toeplitz operators. Given two operators S1 and S2 densely defined
on H 2(D), we say that S1 = S2 if

S1p = S2p

for each p in the set P of analytic polynomials.
In 1998, Stroethoff obtained a characterization of f,g,u, v ∈ L∞(T) for which Tf Tg + TuTv

is a Toeplitz operator in [11]. Although the proof of the following theorem may be known, we
will include a proof for completeness since ideas in the proof will play an important role on the
bidisk later. In fact, the proof gives another proof of the Brown–Halmos theorem via the Berezin
transform. Let P be the orthogonal projection from L2(T) onto H 2(D). For each function f in
L2(T), let

f+ = P(f ),

f− = (1 − P)(f ).

Then we write

f = f+ + f−.

Theorem 2.2. Let functions f,g,u, v be in
⋂

1<q<∞ Lq(T). Then

Tf Tg = TuTv

holds on H 2(D) if and only if
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f+(z)g−(z) − u+(z)v−(z)

is harmonic and

f (ς)g(ς) = u(ς)v(ς)

for almost all ς on the unit circle T.

Proof. In the case that the four functions f,g,u, v are in L∞(T), if

Tf Tg = TuTv,

using the symbol mapping [6] from the C∗-algebra generated by bounded Toeplitz operators
to L∞(T) we have that operators in both sides of the above equality have the same symbol
immediately to get

f (ς)g(ς) = u(ς)v(ς)

for almost all ς on the unit circle T.
We will use the Berezin transform to settle the general case. Noting that for analytic function

h in H 2(D),

Thkz = hkz

and

T ∗
h kz = h̄(z)kz,

taking the Berezin transform of the operator Tf Tg − TuTv we obtain that for every z ∈ D,

〈[Tf Tg − TuTv]kz, kz

〉 = 〈[T(f++f−)T(g++g−) − T(u++u−)T(v++v−)]kz, kz

〉
= 〈[

(Tf+Tg+ + Tf−Tg−) + (Tf−Tg+ + Tf+Tg−)
]
kz, kz

〉
− 〈[

(Tu+Tv+ + Tu−Tv−) + (Tu−Tv+ + Tu+Tv−)
]
kz, kz

〉
= 〈[

(Tf+g+ + Tf−g−) + Tf−g+
]
kz, kz

〉 + 〈
Tg−kz, T

∗
f+kz

〉
− [〈[

(Tu+v+ + Tu−v−) + Tu−v+
]
kz, kz

〉 + 〈
Tv−kz, T

∗
u+kz

〉]
= [

f+(z)g+(z) + f−(z)g−(z)
] + f̂−g+(z) + f+(z)g−(z)

− [
u+(z)v+(z) + u−(z)v−(z)

] − û−v+(z) − u+(z)v−(z).

If Tf Tg = TuTv , the above equalities give

u+(z)v−(z) − f+(z)g−(z)

= [
f+(z)g+(z) + f−(z)g−(z)

] + f̂−g+(z) − [
u+(z)v+(z) + u−(z)v−(z)

] − û−v+(z).
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Each term in the right hand side of the above equation is harmonic. Thus f+(z)g−(z) −
u+(z)v−(z) is harmonic as desired. Writing z in the polar coordinates rς and taking limit as
r goes to 1−, since each terms are the products of harmonic extensions of some functions in⋂

q>1 Lq(T), we obtain that for almost all ς on T,

u+(ς)v−(ς) − f+(ς)g−(ς) = [
f+(ς)g+(ς) + f−(ς)g−(ς)

] + f−(ς)g+(ς)

− [
u+(ς)v+(ς) + u−(ς)v−(ς)

] − u−(ς)v+(ς).

This gives

f (ς)g(ς) = u(ς)v(ς)

for almost all ς on T.
Conversely, suppose

f (ς)g(ς) = u(ς)v(ς)

for almost all ς on T and

f+(z)g−(z) − u+(z)v−(z)

is harmonic. Let

V (z) = f+(z)g−(z) − u+(z)v−(z).

First we need to verify the conditions in Theorem 2.1 for the function V . Since f+, g−, u+, v−
are in Lq(T) for every 1 < q < ∞, f+g− −u+v− is in

⋂
1<q<∞ Lq(T) because

⋂
1<q<∞ Lq(T)

is an algebra. On the other hand, the Cauchy–Schwarz inequality gives∫
T

∣∣V (rς)
∣∣2 �

∫
T

∣∣f+(rς)g−(rς)
∣∣2 +

∫
T

∣∣u+(rς)v−(rς)
∣∣2

�
{∫

T

∣∣f+(ς)
∣∣4

dσ(ς)

} 1
2
{∫

T

∣∣g−(ς)
∣∣4

dσ(ς)

} 1
2

+
{∫

T

∣∣u+(ς)
∣∣4

dσ(ς)

} 1
2
{∫

T

∣∣v−(ς)
∣∣4

dσ(ς)

} 1
2

.

Thus Theorem 2.1 gives

lim
r→1

V (rς) = lim
r→1

f+(rς)g−(rς) − u+(rς)v−(rς)

= f+(ς)g−(ς) − u+(ς)v−(ς) = V (ς).

By Theorem 2.1 again, we have
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f+(z)g−(z) − u+(z)v−(z) = V (z)

= V̂ (z)

= ̂[f+g− − u+v−](z).

An easy calculation gives that the harmonic extension of fg − uv equals

̂(fg − uv)(z) = 〈[
(f+g+ + f−g−) − (u+v+ + u−v−)

+ (f+g− + f−g+) − (u+v− + u−v+)
]
kz, kz

〉
= (

f+(z)g+(z) + f−(z)g−(z)
) − (

u+(z)v+(z) + u−(z)v−(z)
)

+ ̂(f+g− − u+v−)(z) + ̂(f−g+ − u−v+)(z)

= (
f+(z)g+(z) + f−(z)g−(z)

) − (
u+(z)v+(z) + u−(z)v−(z)

)
+ f+(z)g−(z) − u+(z)v−(z) + ̂(f−g+ − u−v+)(z).

Thus we have

〈[Tf Tg − TuTv]kz, kz

〉 = ̂(fg − uv)(z).

So the Berezin transform of the operator Tf Tg − TuTv equals zero on the unit disk. We conclude

Tf Tg = TuTv

as Berezin transform is one-to-one. This completes the proof. �
Proof of Theorem 1.2. By Theorem 2.2, Tf commutes with Tg if and only if f+(z)g−(z) −
g+(z)f−(z) is harmonic on the unit disk. Applying the Laplace operator to the harmonic function
implies that this is equivalent to

f ′+(z)g′−(z) = g′+(z)f ′−(z).

Thus this is also equivalent to

∂f̂ (z)∂̄ĝ(z) = ∂ĝ(z)∂̄f̂ (z)

on D as

∂f̂ (z) = f ′+(z),

∂̄ĝ(z) = g′−(z),

∂ĝ(z) = g′+(z), and

∂̄ f̂ (z) = f ′−(z).

This completes the proof of Theorem 1.2. �
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3. Reduction to one variable case

In this section, freezing one variable we reduce two variables problem to one variable condi-
tions.

If we directly follow the idea in the previous section, as in [7], for each f in
⋂

1<q<∞ L
q
(T2),

we write f as

f = f++ + f+− + f−+ + f−−,

where f++ = Pf , f+− = P1(1 − P2)f , f−+ = (1 − P1)P2f and f−− = (1 − P1)(1 − P2)f.

Thus we have

Tf Tg = [Tf++ + Tf+− + Tf−+ + Tf−−][Tg++ + Tg+− + Tg−+ + Tg−−].
So we face the difficulty that

Tf Tg = TgTf

is an equation containing 32 terms of products of two Toeplitz operators. Hence we need to
introduce a simpler decomposition of symbols. To do so, for each function f in

⋂
1<q<∞ Lq(T2),

we write f as

f = f1+(z1, z2) + f1−(z1, z2) =
+∞∑
i=0

a
i
(z2)z

i
1 +

+∞∑
i=1

a−i (z2)z̄
i

1
,

where

f1+(z1, z2) = P1f =
+∞∑
i=0

a
i
(z2)z

i
1

is analytic in variable z1 and

f1−(z1, z2) = (I − P1)f =
+∞∑
i=1

a−i (z2)z̄
i

1

is co-analytic in variable z1. Similarly, we decompose f (z1, z2) with respect to the second vari-
able z2 as follows

f = f2+(z1, z2) + f2−(z1, z2) =
+∞∑
i=0

bi(z1)z
i
2 +

+∞∑
i=1

b−i (z1)z̄
i
2.

Since the operators Pi are bounded on each Lq(T2), we obtain that fi+ and fi− belong to⋂
1<q<∞ Lq(T2).

For each function f in
⋂

1<q<∞ Lq(T2) and for fixed z1 ∈ D, let Tf (z1,·) denote the Toeplitz

operator on H 2(D) given by
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Tf (z1,·)u = P
[
f (z1, ·)u

]
for u ∈ H 2(D) and for fixed z2 ∈D, let Tf (·,z2) denote the Toeplitz operator on H 2(D) given by

Tf (·,z2)u = P
[
f (·, z2)u

]
for u ∈ H 2(D).

The following is the reduction procedure.

Theorem 3.1. Let f,g ∈ L∞(T2). Then Tf Tg = TgTf if and only if the following two conditions
hold:

(1) For z1, z2 ∈ D

˜[Tf1+(z1,·)Tg1−(z1,·) − Tg1+(z1,·)Tf1−(z1,·)](z2)

is harmonic in variable z1.
(2) For z1, z2 ∈ D

˜[Tf2+(·,z2)Tg2−(·,z2) − Tg1+(·,z2)Tf1−(·,z2)](z1)

is harmonic in variable z2.

Proof. Assuming that Tf Tg = TgTf , we need to show that Conditions (1) and (2) hold.
Clearly, it is sufficient to prove that Condition (1) holds. To do so, write f = f1+ + f1− and
g = g1+ + g1−. Using the same idea to calculate the Berezin transform as one in the proof of
Theorem 2.2, we calculate the Berezin transform of the operator Tf Tg − TgTf to get

〈
(Tf Tg − TgTf )kz, kz

〉
= 〈[Tf1++f1−Tg1++g1− − Tg1++g1−Tf1++f1−]kz, kz

〉
=

〈[∫
T

((
f1−(ς1, ς2)P2g1+(ς1, ς2)

− (
g1−(ς1, ς2)P2f1+(ς1, ς2)

))
kz2(ς2)

)
kz2(ς2) dσ (ς2)

]
kz1, kz1

〉

+ 〈[Tf1+(z1,·)Tg1+(z1,·) − Tg1+(z1,·)Tf1+(z1,·)]kz2, kz2

〉
+ 〈[Tf1−(z1,ς2)Tg1−(z1,ς2) − Tg1−(z1,·)Tf1−(z1,·)]kz2 , kz2

〉
+ 〈[Tf1+(z1,·)Tg1−(z1,·) − Tg1+(z1,·)Tf1−(z1,·)]kz2, kz2

〉
.

Since Tf commutes with Tg , the above equalities give



X. Ding et al. / Journal of Functional Analysis 263 (2012) 3333–3357 3345
−〈[Tf1+(z1,ς2)Tg1−(z1,ς2) − Tg1+(z1,ς2)Tf1−(z1,ς2)]kz2 , kz2

〉
=

〈[∫
T

((
f1−(ς1, ς2)P2g1+(ς1, ς2)

− (
g1−(ς1, ς2)P2f1+(ς1, ς2)

))
kz2(ς2)

)
kz2(ς2) dσ (ς2)

]
kz1 , kz1

〉
+ 〈[Tf1+(z1,·)Tg1+(z1,·) − Tg1+(z1,·)Tf1+(z1,·)]kz2, kz2

〉
+ 〈[Tf1−(z1,·)Tg1−(z1,·) − Tg1−(z1,·)Tf1−(z1,·)]kz2, kz2

〉
.

Noting that each term in the right hand side of the above equation is harmonic with respect to z1,
we obtain the function

〈[Tf1+(z1,·)Tg1−(z1,·) − Tg1+(z1,·)Tf1−(z1,·)]kz2 , kz2

〉
= ˜[Tf1+(z1,·)Tg1−(z1,·) − Tg1+(z1,·)Tf1−(z1,·)](z2)

is harmonic in variable z1 as desired.
Conversely assuming that Conditions (1) and (2) hold, we will show that Tf commutes

with Tg . To do so it is sufficient to show that the Berezin transform of the commutator
Tf Tg − TgTf vanishes on the bidisk since the Berezin transform is injective.

First we verify that conditions hold in Theorem 2.1. Since
⋂

1<q<∞ Lq(T) is an algebra and

fj+, fj− and gj+, gj− belong to
⋂

1<q<∞ Hq(D), we have

∫
T

∣∣〈Tf1+(rς1,ς2)Tg1−(rς1,ς2)kz2, kz2〉
∣∣2

dσ(ς1)

�
∫
T

∥∥f1+(rς1, ·)P2g1−(rς1, ·)kz2

∥∥2
dσ(ς1)

=
∫
T

∫
T

∣∣f1+(rς1, ς2)P2g1−(rς1, ς2)kz2(ς2)
∣∣2

dσ(ς2)dσ (ς1)

� C(z2)

{∫
T2

∣∣f1+(ς)
∣∣4

dσ(ς)

} 1
2
{∫
T2

∣∣g1−(ς)
∣∣4

dσ(ς)

} 1
2

,

where C(z2) is a constant for fixed z2. Thus

lim
r→1−

∫
T

∣∣〈Tf1+(rς1,ς2)Tg1−(rς1,ς2)kz2 , kz2〉
∣∣2

dσ(ς1) < ∞.

If we write

g1−(z1, ς2) =
+∞∑

ĝ1−(n, ς2)z̄
n
1

n=1



3346 X. Ding et al. / Journal of Functional Analysis 263 (2012) 3333–3357
and

f1+(z1, ς2) =
+∞∑
m=0

f̂1+(m,ς2)z
m
1 ,

we have

〈
f1+(z1, ς2)P2g1−(z1, ς2)kz2 , kz2

〉 = +∞∑
n=1

+∞∑
m=0

〈
f̂1+(m,ς2)P2ĝ1−(n, ς2)kz2 , kz2

〉
zm

1 z̄n
1 .

Using the polar coordinates for z1 = rς1 and taking the limit as r tends to 1 give

lim
r→1

〈
f1+(rς1, ·)P2g1−(rς1, ·)kz2 , kz2

〉

= lim
r→1

+∞∑
n=1

+∞∑
m=0

〈
f̂1+(m, ·)P2ĝ1−(n, ·)kz2 , kz2

〉
(rς1)

m( ¯rς1)
n

=
+∞∑
n=1

+∞∑
m=0

〈
f̂1+(m, ·)P2ĝ1−(n, ·)kz2, kz2

〉
(ς1)

m(ς̄1)
n

= 〈
f1+(ς1, ·)P2g1−(ς1, ·)kz2, kz2

〉
.

Thus we obtain

lim
r→1

〈Tf1+(rς1,·)Tg1−(rς1,·)kz2, kz2〉 = 〈Tf1+(ς1,·)Tg1−(ς1,·)kz2 , kz2〉.

Letting

F(ς1) = 〈[Tf1+(ς1,·)Tg1−(ς1,·) − Tg1+(ς1,·)Tf1−(ς1,·)]kz2, kz2

〉
,

by Theorem 2.1, we have that the harmonic extension of F(ς1) is given by

F̂ (z1) = 〈[Tf1+(z1,·)Tg1−(z1,·) − Tg1+(z1,·)Tf1−(z1,·)]kz2 , kz2

〉
.

An easy calculation gives that the Berezin transform of the commutator Tf Tg − TgTf is equal
to

〈[Tf Tg − TgTf ]kz, kz

〉
=

∫
T

〈[Tf1−(ς)Tg1+(ς) − Tg1−(ς)Tf1+(ς)]kz2, kz2

〉∣∣kz1(ς1)
∣∣2

dσ(ς1)

+ 〈[Tf1+(z1,·)Tg1+(z1,·) − Tg1+(z1,·)Tf1+(z1,·)]kz2 , kz2

〉∣∣
H 2(D)

+ 〈[Tf1−(z1,·)Tg1−(z1,·) − Tg1−(z1,·)Tf1−(z1,·)]kz2 , kz2

〉∣∣
H 2(D)

+ 〈[Tf (z ,·)Tg (z ,·) − Tg (z ,·)Tf (z ,·)]kz , kz

〉∣∣
2
1+ 1 1− 1 1+ 1 1− 1 2 2 H (D)
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=
∫
T

〈[Tf (ς1,·)Tg(ς1,·) − Tg(ς1,·)Tf (ς1,·)]kz2, kz2

〉|kz1 |2 dσ(ς1) (∗)

=
∫
T

[
f2+(ς1, z2)g2−(ς1, z2) − g2+(ς1, z2)f2−(ς1, z2)

]|kz1 |2 dσ(ς1)

+
∫
T2

[
f2−(ς)g2+(ς) − g2−(ς)f2+(ς)

]|kz|2 dσ(ς).

The last two equalities follow from calculating the action of the commutator of two Toeplitz
operators on reproducing kernels on the Hardy space of the unit circle. By the same argument,
we have

〈[Tf Tg − TgTf ]kz, kz

〉 = ∫
T

〈[Tf (·,ς2)Tg(·,ς2) − Tg(·,ς2)Tf (·,ς2)]kz1, kz1

〉∣∣kz2(ς2)
∣∣2

dσ(ς2)

is harmonic in variable z2. Thus we have that∫
T

[
f2+(ς1, z2)g2−(ς1, z2) − g2+(ς1, z2)f2−(ς1, z2)

]|kz1 |2 dσ(ς1)

is also harmonic in variable z2. Differentiating under the integral sign, we obtain∫
T

{�2
[
f2+(ς1, z2)g2−(ς1, z2) − g2+(ς1, z2)f2−(ς1, z2)

]}|kz1 |2 dσ(ς1) = 0.

Since the Berezin transform is one-to-one, it follows

�2
[
f2+(ς1, z2)g2−(ς1, z2) − g2+(ς1, z2)f2−(ς1, z2)

] = 0.

This implies that f (ς1, z2)2+g(ς1, z2)2− − g(ς1, z2)2+f (ς1, z2)2− is harmonic in variable z2.
By Theorem 2.2,

Tf (ς1,·)Tg(ς1,·) = Tg(ς1,·)Tf (ς1,·).

By Eq. (∗), we have

〈[Tf Tg − TgTf ]kz, kz

〉 = ∫
T

〈[Tf (ς1,·)Tg(ς1,·) − Tg(ς1,·)Tf (ς1,·)]kz2 , kz2

〉|kz1 |2 dσ(ς1) = 0.

Since the Berezin transform is one-to-one, it follows that

Tf Tg = TgTf .

This completes the proof. �
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4. Proof of the first version of the main result

Theorem 3.1 gives a necessary and sufficient condition for two Toeplitz operators to be com-
muting on the Hardy space of the bidisk in terms of the Berezin transform by reducing it to the
disk. In this section, using Theorem 3.1 we will give the proof of Theorem 1.4.

Proof of Theorem 1.4. First we assume that the Toeplitz operator Tf commutes with the
Toeplitz operator Tg on the Hardy space of the bidisk. By Theorem 3.1, we obtain

〈[Tf1+(z1,·)Tg1−(z1,·) − Tg1+(z1,·)Tf1−(z1,·)]kz2 , kz2

〉
is harmonic in variable z1. Taking differentiation under the integral gives

0 = �1
〈[Tf1+(z1,·)Tg1−(z1,·) − Tg1+(z1,·)Tf1−(z1,·)]kz2 , kz2

〉
= 〈[T∂1f1+(z1,·)T∂̄1g1−(z1,·) − T∂1g1+(z1,·)T∂̄1f1−(z1,·)]kz2, kz2

〉
.

Since the Berezin transform is injective, this implies that for a fixed z1 in the unit disk,

T∂1f1+(z1,·)T∂̄1g1−(z1,·) − T∂1g1+(z1,·)T∂̄1f1−(z1,·) = 0

on H 2(D). Theorem 2.2 gives that for almost all ς2 ∈ T,

∂1f (z1, ς2)∂̄1g(z1, ς2) = ∂1g(z1, ς2)∂̄1f (z1, ς2)

holds for z1 ∈ D, and

(
∂1f1+(z1, z2)

)
2+

(
∂̄1g1−(z1, z2)

)
2− − (

∂1g1+(z1, z2)
)

2+
(
∂̄1f1−(z1, z2)

)
2−

is harmonic in variable z2. Thus Condition (a) holds. Applying the Laplacian operator with re-
spect to the variable z2 to the above function gives

∂2
(
∂1f1+(z1, z2)

)
2+∂̄2

(
∂̄1g1−(z1, z2)

)
2− − ∂2

(
∂1g1+(z1, z2)

)
2+∂̄2

(
∂̄1f1−(z1, z2)

)
2− = 0.

Since f1+ = f++ +f+−, f1− = f−− +f−+, g1+ = g++ +g+− and g1− = g−− +g−+, we have

∂2
(
∂1f1+(z1, z2)

)
2+ = ∂1∂2f++(z1, z2),

∂̄2
(
∂̄1g1−(z1, z2)

)
2− = ∂̄1∂̄2g−−(z1, z2),

∂2
(
∂1g1+(z1, z2)

)
2+ = ∂1∂2g++(z1, z2),

∂̄2
(
∂̄1f1−(z1, z2)

)
2− = ∂̄1∂̄2f−−(z1, z2),

so from the equation we get

∂1∂2f++(z1, z2)∂̄1∂̄2g−−(z1, z2) = ∂1∂2g++(z1, z2)∂̄1∂̄2f−−(z1, z2).
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This implies Condition (c):

∂1∂2f (z1, z2)∂̄1∂̄2g(z1, z2) = ∂1∂2g(z1, z2)∂̄1∂̄2f (z1, z2)

since

∂1∂2f++(z1, z2) = ∂1∂2f (z1, z2),

∂̄1∂̄2f−−(z1, z2) = ∂̄1∂̄2f (z1, z2),

∂̄1∂̄2g−−(z1, z2) = ∂̄1∂̄2g(z1, z2),

∂1∂2g++(z1, z2) = ∂1∂2g(z1, z2).

Using the second condition in Theorem 3.1 that

〈[Tf2+(·,z2)Tg2−(·,z2) − Tg1+(·,z2)Tf1−(·,z2)]kz1 , kz1

〉
is harmonic in variable z2, as we did as above, we derive that for almost all ς1 ∈ T ,

∂2f (ς1, z2)∂̄2g(ς1, z2) = ∂2g(ς1, z2)∂̄2f (ς2, z2)

holds for z2 ∈D. Thus Condition (b) holds.
Conversely, suppose Conditions (a), (b) and (c) hold. For z1 in D, and ς2 in T,

∂1f (z1, ς2)∂̄1g(z1, ς2) = ∂1g(z1, ς2)∂̄1f (z1, ς2)

and for z2 in D, ς1 in T,

∂2f (ς1, z2)∂̄2g(ς1, z2) = ∂2g(ς1, z2)∂̄2f (ς1, z2).

For z1, z2 in D,

∂1∂2f (z1, z2)∂̄1∂̄2g(z1, z2) = ∂1∂2g(z1, z2)∂̄1∂̄2f (z1, z2).

This gives

(
∂1f1+(z1, z2)

)
2+

(
∂̄1g1−(z1, z2)

)
2− − (

∂1g1+(z1, z2)
)

2+
(
∂̄1f1−(z1, z2)

)
2−

is harmonic in variable z2 and

∂1f1+(z1, ς2)∂̄1g1−(z1, ς2) = ∂1g1+(z1, ς2)∂̄1f1−(z1, ς2).

By Theorem 2.2, we obtain

T∂1f1+(z1,·)T∂̄1g1−(z1,·) − T∂1g1+(z1,·)T∂̄1f1−(z1,·) = 0.

This implies that
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〈[Tf1+(z1,·)Tg1−(z1,·) − Tg1+(z1,·)Tf1−(z1,·)]kz2 , kz2

〉
is harmonic in variable z1.

On the other hand,

∂1∂2f++(z1, z2)∂̄1∂̄2g−−(z1, z2) = ∂1∂2g++(z1, z2)∂̄1∂̄2f−−(z1, z2)

implies that

(
∂2f2+(z1, z2)

)
1+

(
∂̄2g2−(z1, z2)

)
1− − (

∂2g2+(z1, z2)
)

1+
(
∂̄2f2−(z1, z2)

)
1−

is harmonic in variable z1 and

∂2f2+(ς1, z2)∂̄2g2−(ς1, z2) = ∂2g2+(ς1, z2)∂̄2f2−(ς1, z2).

By Theorem 2.2 again, we have

T∂2f2+(·,z2)T∂̄2g2−(·,z2)
− T∂2g2+(·,z2)T∂̄2f2−(·,z2)

= 0

to get that

〈[Tf2+(·,z2)Tg2−(·,z2) − Tg2+(·,z2)Tf2−(·,z2)]kz1 , kz1

〉
is harmonic in variable z2. Theorem 3.1 gives that Tf commutes with Tg . This completes the
proof. �
5. Proof of the second version of the main result

In this section we will prove the second version of the main result by using Theorem 1.4. At
the end of the section we will obtain a characterization of normal Toeplitz operators.

Proof of Theorem 1.5. First we observe that if Condition (a) holds, then for z1 in D and almost
all ς2 in T,

∂1f (z1, ς2)∂̄1g(z1, ς2) = ∂1g(z1, ς2)∂̄1f (z1, ς2);

if Condition (b) holds, then for z2 in D and almost all ς1 in T,

∂2f (ς1, z2)∂̄2g(ς1, z2) = ∂2g(ς1, z2)∂̄2f (ς1, z2);

and if Condition (c) holds, then for all z1, z2 ∈D,

∂1∂2f (z1, z2)∂̄1∂̄2g(z1, z2) = ∂1∂2g(z1, z2)∂̄1∂̄2f (z1, z2).

By Theorem 1.4, we have that Tf commutes with Tg .
Conversely, assuming that Tf commutes with Tg , we will derive three conditions.
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We will show that Condition (c) holds. By Theorem 1.4, we have that for (z1, z2) in D2,

∂1∂2f++(z1, z2)∂̄1∂̄2g−−(z1, z2) = ∂1∂2g++(z1, z2)∂̄1∂̄2f−−(z1, z2). (5.1)

Now we consider two cases.
First if one of ∂1∂2f++(z1, z2), ∂̄1∂̄2g−−(z1, z2), ∂1∂2g++(z1, z2) and ∂̄1∂̄2f−−(z1, z2) iden-

tically equals zero on the bidisk D2, for simplicity, we may assume

∂1∂2f++(z1, z2) ≡ 0

on D2, then

f++(z1, z2) = f1(z1) + f2(z2)

on D2 for two functions f1 and f2 in Hq for every q > 1. Moreover Eq. (5.1) gives that either

∂1∂2g++(z1, z2) = 0

or

∂̄1∂̄2f−−(z1, z2) = 0

on D2. Thus this implies that

g++(z1, z2) = g1(z1) + g2(z2)

or

f−−(z1, z2) = h1(z1) + h2(z2)

where g1, g2, h1 and h2 are in Hq for every q > 1. So Condition (c1) holds or Condition (c3)
holds.

Next if none of ∂1∂2f++(z1, z2), ∂̄1∂̄2g−−(z1, z2), ∂1∂2g++(z1, z2) and ∂̄1∂̄2f−−(z1, z2) iden-
tically equals zero on the bidisk D2, then

∂1∂2f++(z1, z2)

∂1∂2g++(z1, z2)
= ∂̄1∂̄2f−−(z1, z2)

∂̄1∂̄2g−−(z1, z2)
.

The right hand side of the above equation is analytic in both z1 and z2 in the bidisk and the left
hand side of the equation is co-analytic in both z1 and z2 in the bidisk except for a zero set of an
analytic function of z1 and z2. Thus it must be a constant C. So this implies that

f++ − Cg++ = h1(z1) + h2(z2)

and

f−− − Cg−− = r1(z1) + r2(z2)



3352 X. Ding et al. / Journal of Functional Analysis 263 (2012) 3333–3357
where hi, ri ∈ Hq(D) for every q > 1. Thus Condition (c3) holds. So we have proved that Con-
dition (c) holds.

Now we turn to the proof of that Conditions (a) and (b) hold if Tf commutes with Tg and
Condition (c) holds. We need only prove that Condition (a) holds. The same argument will derive
Condition (b). We consider three cases.

First assume Condition (c1) holds:

f++(z1, z2) = f1(z1) + f2(z2)

and

g++(z1, z2) = g1(z1) + g2(z2),

where f1, f2, g1, g2 ∈ Hq(D) for every q > 1. Thus we have

∂1f (z1, ς2) = ∂1
[
f++(z1, ς2) + f+−(z1, ς2) + f−+(z1, ς2) + f−−(z1, ς2)

]
= ∂1

[
f++(z1, ς2) + f+−(z1, ς2)

]
= ∂1

[
f1(z1) + f2(ς2) + f+−(z1, ς2)

]
= ∂1

[
f1(z1) + f+−(z1, ς2)

]
.

So ∂1f (z1, ς2) is in H 2(D) for the second variable ς2. Similarly, we also have that

∂1g(z1, ς2) = ∂1
[
g1(z1) + g+−(z1, ς2)

]
is in H 2(D) for the second variable ς2.

If there is a positive measure set E ⊂ T such that for ς2 ∈ E,

∂1f (z1, ς2) = 0

for z1 ∈ D, we have

∂1f (z1, ς2) = 0

for z1 in D and for almost all ς2 ∈ T since ∂1f (z1, ς2) is in H 2(D) for the second variable ς2.
By Theorem 1.4, we have

∂1f (z1, ς2)∂̄1g(z1, ς2) = ∂1g(z1, ς2)∂̄1f (z1, ς2). (5.2)

This implies

∂1g(z1, ς2) ≡ 0

for z1 in D and for almost all ς2 in T or

∂̄1f (z1, ς2) ≡ 0
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for z1 in D and for almost all ς2 in T since ∂1g(z1, ς2) is in H 2(D) for the second variable ς2.
Thus f (z1, ς2) and g(z1, ς2) are both co-analytic in variable z1, which gives Condition (a2), or
f (z1, ς2) is a constant in variable z1. The later case implies that 1 · f (z1, ς2) + 0 · g(z1, ς2) is
constant in variable z1, which gives Condition (a3).

By the same argument, if ∂1g(z1, ς2) identically equals zero for z1 in D and for ς2 on a
positive measure subset of T, then Condition (a) holds.

Next assume that none of ∂1f (z1, ς2) and ∂1g(z1, ς2) identically equals zero for z1 in D and
for ς2 on a positive measure subset of T. Let

Eg = {
ς2 ∈ T: ∂̄1g(z1, ς2) ≡ 0 for z1 in D

}
.

If σ(Eg) = σ(T), then for almost all ς2 in T,

∂̄1g(z1, ς2) ≡ 0

for z1 in D. Thus (5.2) gives that for almost ς2 in T,

∂̄1f (z1, ς2) ≡ 0

for z1 in D. This implies that for almost all ς2 in T, both g(z1, ς2) and f (z1, ς2) are analytic
in z1. Thus we obtain Condition (a1).

If σ(Eg) < σ(T), (5.2) gives that for almost all ς2 in the complement Ec
g of Eg ,

∂1f (z1, ς2)

∂1g(z1, ς2)
= ∂̄1f (z1, ς2)

∂̄1g(z1, ς2)

on D. The left hand side of the above equation is analytic in variable z1 and the right hand side of
the equation is co-analytic in variable z1. Thus it must be constant with respect to the variable z1.
So for almost all ς2 ∈ Ec

g , there is a function a(ς2) of ς2 such that

∂1f (z1, ς2)

∂1g(z1, ς2)
= ∂̄1f (z1, ς2)

∂̄1g(z1, ς2)
= a(ς2).

This gives that for almost all ς in T,

χEc
g
(ς2)f (z1, ς2) − a(ς2)χEc

g
(ς2)g(z1, ς2)

is a constant in variable z1 and the function a(ς2) is defined to be equal to zero on Eg . Hence
Condition (a3) holds.

Next assume Condition (c2) holds. By the same argument as in the previous case, we obtain
that Condition (a) holds.

Finally assume Condition (c3) holds. In this case, there exist constants a, b, not both zero,
such that

af++(z1, z2) + bg++(z1, z2) = h1(z1) + h2(z2)

and
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af−−(z1, z2) + bg−−(z1, z2) = r1(z1) + r2(z2),

where h1, h2, r1, r2 ∈ Hq(D) for every q > 1.
If one of a and b equals zero, then we can use the same method as in the first case to obtain

that Condition (a) holds.
Now we assume that a �= 0 and b �= 0. We have

f++(z1, z2) = −b

a
g++(z1, z2) + H1(z1) + H2(z2)

and

f−−(z1, z2) = −b

a
g−−(z1, z2) + R̄1(z1) + R̄2(z2),

where Hi = − b
a
hi and Ri = − b

a
ri . Let

F(z1, z2) = f (z1, z2) + b

a
g(z1, z2).

Since Tf commutes with Tg , we obtain

TF Tg = TgTF .

Also we have

F++(z1, z2) = f++(z1, z2) + b

a
g++(z1, z2) = H1(z1) + H2(z2)

and

F−−(z1, z2) = f−−(z1, z2) + b

a
g−−(z1, z2) = R̄1(z1) + R̄2(z2)

to get

∂1F(z1, ς2) = ∂1
[
H1(z1) + F+−(z1, ς2)

]
is analytic in z1 and co-analytic in ς2, and

∂̄1F(z1, ς2) = ∂̄1
[
R̄1(z1) + F−+(z1, ς2)

]
is co-analytic in z1 and analytic in ς2. We observe that for almost each ς2 in T, the zero set of
∂1F(z1, ς2) or ∂̄1F(z1, ς2) is discrete or equal to the unit disk. Let

E1 = {
ς2 ∈ T: ∂1F(z1, ς2) = 0 for countable many z1 ∈D

}
and
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E2 = {
ς2 ∈ T: ∂̄1F(z1, ς2) = 0 for countable many z1 ∈ D

}
.

Theorem 1.4 gives that for almost all ς2 in T,

∂1g(z1, ς2)∂̄1F(z1, ς2) = ∂̄1g(z1, ς2)∂1F(z1, ς2) (5.3)

holds on D. Thus for ς2 in E1 ∩ E2, we have that

∂1g(z1, ς2)

∂1F(z1, ς2)
= ∂̄1g(z1, ς2)

∂̄1F(z1, ς2)

holds for all except for countable many z1 in D. The left hand side of the above equality is
analytic in z1 and the right hand side of the above equality is co-analytic in z1. Thus it must
be a constant function of z1 and so it depends only on ς2 and is denoted by A(ς2). The above
equation gives that on E1 ∩ E2

g(z1, ς2) − A(ς2)F (z1, ς2)

is a function of ς2. If the Lebesgue measure of E1 ∩ E2 equals the measure of T, this implies
Condition (a3).

If the Lebesgue measure of E1 ∩ E2 is less than the measure of T, then one of the measures
of E1 and E2 is less than the measure of T. We may assume that the measure of E1 is less than
the measure of T. For ς2 in the complement Ec

1 of E1, we have

∂1F(z1, ς2) ≡ 0

for z1 in the unit disk D. Since ∂1F(z1, ς2) is analytic in z1, for a fixed z1, ∂1F(z1, ς2) is H 2(D)

in variable ς2 and Ec
1 has positive measure, we have that for almost all ς2 in T, we have

∂1F(z1, ς2) ≡ 0

for z1 in the unit disk D. Thus by (5.3), we have that for almost all ς2 in T,

∂1g(z1, ς2)∂̄1F(z1, ς2) ≡ 0

for z1 in the unit disk. This implies that for almost all ς2 in T,

∂1g(z1, ς2) ≡ 0

for z1 in D or for almost all ς2 in T,

∂̄1F(z1, ς2) ≡ 0

for z1 in the unit disk D since ∂̄1F(z1, ς2) is co-analytic in z1 and for a fixed z1, ∂̄1F(z1, ς2) is
H 2(D) in variable ς2. That means that for almost all ς2 in T, either both F(z1, ς2) and g(z1, ς2)

are co-analytic in z1 or F(z1, ς2) is constant in z1. The first case gives Condition (a2) since
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F(z1, ς2) = f (z1, ς2) + b

a
g(z1, ς2).

The later case gives that for almost all ς2 in T,

F(z1, ς2) = f (z1, ς2) + b

a
g(z1, ς2)

is a function ς2. This is Condition (a3). This completes the proof. �
We immediately get the following corollary to characterize normal Toeplitz operators Tf .

That is,

Tf T ∗
f = T ∗

f Tf .

Corollary 5.1. Let f ∈ L∞(T2). Then Tf is normal operator if and only if the following hold:

(a) For almost all ς2 ∈ T, there are a1(ς2) and b1(ς2), not both zero, such that

a1(ς2)f (z1, ς2) + b1(ς2)f (z1, ς2)

is a constant in variable z1.
(b) For almost all ς2 ∈ T, there are a2(ς1) and b2(ς1), not both zero, such that

a2(ς1)f (ς1, z2) + b2(ς1)f (ς1, z2)

is a constant in variable z2.
(c) There are constants a and b, not both zero, such that

af++(z1, z2) + bf−−(z1, z2) = h1(z1) + h2(z2)

and

af−−(z1, z2) + bf++(z1, z2) = r̄1(z1) + r̄2(z2),

where hi, ri ∈ H 2(D).

The following example gives that even if Tf commutes with Tg , but for any constants a, b,
not both zero, af (z1, z2) + bg(z1, z2) is not a constant in variable z1.

Example. For h(ς1) ∈ L∞(T) and a(ς2) ∈ L∞(T), let

f (ς1, ς2) = h(ς1),

g(ς1, ς2) = h(ς1)a(ς2).

Then
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(a) for z1 ∈D and ς2 ∈ T,

a(ς2)f (z1, ς2) − g(z1, ς2) = 0,

(b) for z1 ∈D and ς2 ∈ T,

1 · f (ς1, z2) + 0 · g(ς1, z2)

is a constant in variable z2,

(c3)

1 · f++(z1, z2) + 0 · g++(z1, z2) = h+(z1)

and

1 · f−−(z1, z2) + 0 · g−−(z1, z2) = h−(z1).

Thus Theorem 1.5 gives that

Tf Tg = TgTf .

But there are no constants a, b, not both zero, such that af (z1, z2) + bg(z1, z2) is a constant in
variable z1.
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