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Abstract

A necessary and sufficient condition is obtained for two Toeplitz operators to be commuting on the Hardy
space of the bidisk. The main tool is the Berezin transform and the harmonic extension.
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1. Introduction

Let D denote the open unit disk in the complex plane C. Its boundary is the unit circle T. The
bidisk D? and the torus T2 are the subsets of C? which are Cartesian products of two copies ID
and T, respectively. Let do (z) be the normalized Haar measure on T2. The Hardy space H>(ID?)
is the closure of the analytic polynomials in L?(T?2, do) (or L?(T?)). Let P be the orthogonal
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projection from L?(T?) onto H?(ID?). The Toeplitz operator with symbol f in L>(T?) is defined
by

Trh=P(fh),

for all h € H*>(D?).

On the Hardy space of the unit disk, Brown and Halmos [2] first showed that two Toeplitz
operators are commuting if and only if either both symbols of these operators are analytic, or
both symbols of these operators are co-analytic, or a nontrivial linear combination of the symbols
of these operators is constant. Axler and Cuckvoic obtained the analogous result for Toeplitz
operators with bounded harmonic symbols on the Bergman space of the unit disk [1]. A natural
question is to characterize commuting Toeplitz operators on the Hardy space of bidisk.

Question. For which functions f and g,
TyTy=TeTy?

The above question is equivalent to the question that the commutator TyT, — Ty Ty equals
zero. On the other hand, the commutator 7T, — T,Ts equals the difference of two semi-
commutators T¢Tg — Tge and TgTy — Tor. In [7], Gu and the third author showed that the
semi-commutator T 7T, — T, equals zero if and only if for each i = 1,2, either f(z1,z2) or
g(z1, z2) is analytic in z;. Recently, in [9], Lee had made the progress on the above question for
the special case when one symbol of two Toeplitz operators Ty and Ty is in the form

h(z1)Z§ + k(z1)Z5.

Later, in [10], Lee obtained some results to address the above question on the Hardy space of the
polydisk. The first author worked on the question in [4,3,5]. In this paper, we answer the above
question by completely characterizing commuting Toeplitz operators on the Hardy space of the
bidisk. The main idea is to use the Berezin transform and the harmonic extension. Even on the
unit disk, the idea is new.

To state our results and to reformulate the Brown—Halmos theorem [2] in a different form, we
need some notation. Let K, (w) denote the reproducing kernel

1
1 —ziw
of Hardy space H*(D) at the point z; € D and k;,(wy) the normalized reproducing kernel

1
% of H?(ID) at the point z1 € . Clearly, the reproducing kernel of H>(D?) at the point z
with coordinates (z1, z2) in D? is given by

2
K:(w) =] [ Kz (wi).

i=1
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Thus the normalized reproducing kernel k,(w) of H 2(D?) is in the form
2
k() = [ [ ke (wi).
i=1
Given f € L'(T?), the harmonic extension of f is given by

f)= /f(;)]‘[ T o)

] J|2
=/f(¢)|kz<;>|2do(;>
2

= <sz, kz)-

Let 9; denote 3"71 and 9; denote 31"—1[ The operator A is defined by

for j=1,2.
For a bounded operator S on H 2(D?), the Berezin transform of S is the function S on D?
defined by

S(z) = (Sks, k.)

_ / Sko(€)kz(€) do (£).

T2

Thus the harmonic extension f (z) of f is the Berezin transform f} of the Toeplitz operator T’y
with symbol f. First we state the Brown and Halmos theorem in [2] as follows.

Theorem 1.1. (See Brown and Halmos [2].) Let f, g € L*°(T). Then Ty T, = Ty Ty if and only if

(a) both f and g are analytic; or
(b) both f and g are co-analytic; or
(¢c) there are constants a and b with |a| + |b| # 0 such that af + bg is constant.

On the unit disk, for f in L'(T), we still use f (z) to denote the harmonic extension of f at
a point z in the unit disk D. The result of Brown and Halmos is reformulated in the following
form.
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Theorem 1.2. Let f, g € L°°(T). Then Ty T, = Ty Ty if and only if

3f(2)38(z) =08(2)d f (2)
on D.

The form in the above theorem not only combines three conditions in the original form of the
Brown and Halmos theorem [2] into one condition, but also makes sense on the bidisk. A proof
of Theorem 1.2 will be given in Section 2.

To motivate readers to the first version of our main result, we reformulate the result in [7]
in the similar way as the above theorem. To simplify notation we use f(z1, z2) to denote the
harmonic extension f (z1,22)-

Theorem 1.3. (See [7].) Let f and g be two functions in L®(T?). The semi-commutator T¢T, —
Trq equals zero on the Hardy space H 2(D?) of the bidisk D? if and only if

(a) for almostall ¢; in T,

3 f(z1,62)018(z1,62) =0

for z1in D, and
(b) for almostall ¢y in T,

R f(s1,22)028(51,22) =0

forzpin D,
(c) forall 71,72 €D,

3 f(z1,22)91028(z1,22) = 0.

Inspired by the above results, we obtain the following version of our main result, whose proof
will be given in Section 4.

Theorem 1.4 (First version). Let f, g € L>(T?). The Toeplitz operator Ty commutes with the
Toeplitz operator T, on the Hardy space of the bidisk if and only if the following conditions hold.

(a) Foralmostall ¢; in'T,

3 f(z1, 6291821, $2) = d18(21, $2)91 £ (21, 62)

for z1 in D, and
(b) for almostall ¢y in T,

3£ (51,22)028(51,22) = dg(s1, 22)32.f (51, 22)

for z in D, and
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(c) forall 71,72 €D,

N f(z1,22)91028(21,22) = 1028(21, 22)1 2 f (21, 22).-

In order to state the second version of our main result, which is analogous to the Brown and
Halmos theorem [2], we introduce some decompositions of functions in L2(T2) As in [7], for
each fin[),_ g<oo L (Tz) we write the power series expansion of the harmonic extension f (2)
of f as follows:

f=0 fnd" = fre+ fomt foi + f—o,

meZ?

where

fee@i= ) fud,

meZyxZy

fr—(2) = Z fmzm,

meZyx7Z_

fr@= ) fa?"

meZ_xZ7Zy

f—@= Y fud"
meZ_xZ_
and z("1m2) = 2" 702 Moreover z|'! is the m th power of z; if m is nonnegative and z|"' is
the |m1|th power of 71 if m is negative.
The following is the second version of our main result. It is analogous to the Brown and
Halmos theorem [2]. Its proof will be given in Section 5.

Theorem 1.5 (Second version). Let f and g be in L (T?). The Toeplitz operator Ty commutes
with the Toeplitz operator T, on the Hardy space of the bidisk if and only if the following three
conditions hold:

(a) For almostall ¢ €T,
(al) f(z1,s2) and g(z1, §2) are both analytic in variable z1 on D, or
(@2) f(z1, ¢2) and g(z1, §2) are both co-analytic in variable z1 on D, or
(a3) there are a1(cp) and b1 (c2), not both zero, such that

a1(s2) f(z1, $2) + b1(s2)g(z1, 2)

is a constant in variable 71 on D.
(b) Foralmostall ¢ €T,
(bl) f(c1,22) and g(s1, z2) are both analytic in variable zo on D, or
(b2) f(s1,22) and g(s1, z2) are both co-analytic in variable z3 on D, or
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(b3) there are ax(g1) and by (g1), not both zero, such that

ax(s1) f (61, 22) +ba(s1)g(s1, 22)

is a constant in variable zo on D.
(c) One of the following conditions holds:

(cl)
S+, 22) = filzi) + f2(z2),
g++(z1,22) = g1(z1) + 82(22),
where f1, f2, g1 and gy are in H1(D) for every g > 1.
(c2)

f——(z1,22) = fi(z1) + f2(z2),
g——(z1,22) = g1(z1) + g2(22),

where f1, fa, g1 and gy are in H1 (D) for every g > 1.
(c3) There exist constants a, b, not both zero, such that

afyy(z1,22) +bgi1(21,22) = h1(z1) + ha(22),

af-_(z1,22) + bg—_(z1,22) =r1(z1) + r2(z2),
where hy, hy, r1 and ry are in H1(D) for every g > 1.
2. The Brown—-Halmos theorem via the Berezin transform

The harmonic extension will play an important role in this section. For f € L (T), f (z) is
harmonic on D and

lim £(r¢) = £ (<)
for almost everywhere ¢ € T. Conversely, if f(z) is a harmonic function in the unit disk D,
one asks when f has boundary values, and how f is determined by its boundary values. The

following theorem [8, p. 38, Corollary 2] gives a nice answer.

Theorem 2.1. (See [8].) Let f be a complex-valued harmonic function in the unit disk and
suppose that the integrals

/If(rg)lpdo(g)
T

are bounded as r — 1 for some p, 1 < p < 0o. Then for almost every ¢ the radial limit
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fH(¢)=1lim f(rg)
r—1

exists and defines a function f* in LP of the circle T. If p > 1, then f(z) is the harmonic
extension of f*.

For f € L'(T?) and fixed z; € D, we defined
Pi flg=z = / fEk, (&) do(&), 1<i<2,
T

L (T?) ={f e L4(T?): f is analytic in variable z; }.
Using the boundedness of P; on LY for ¢ > 1, one can easily verify the following facts:

e P commutes with P, and P = P; P, is a bounded linear operator from L4 (T2) to LI ("JI‘Z)
for every g > 1.
. ﬂ1<q<oo L7 is an algebra, i.e., both fg and f + g are in ﬂl<q<oo L7 if f and g are in
1<g<oo LY. In addition, f} and f_ arein (), _, oo LY if f €[ ye0o LY.
e If f and g belong to (), _, o, LY(T), then Ty Ty is an operator densely defined on H 2(D).

Although our main concern is with bounded Toeplitz operators, we will need to make use of
densely defined unbounded Toeplitz operators. Given two operators S; and S densely defined
on H%(D), we say that §1 = S if

Sip=58p

for each p in the set P of analytic polynomials.

In 1998, Stroethoff obtained a characterization of f, g, u, v € L°(T) for which TiT, +T,T,
is a Toeplitz operator in [11]. Although the proof of the following theorem may be known, we
will include a proof for completeness since ideas in the proof will play an important role on the
bidisk later. In fact, the proof gives another proof of the Brown—Halmos theorem via the Berezin
treZInsform. Let P be the orthogonal projection from L?(T) onto H?(ID). For each function f in
L~(T), let

f+=P(f),
f-=0-=P)(f).
Then we write
f=Fot s

Theorem 2.2. Let functions f, g, u, v be in ﬂ1<q<oo L4(T). Then
Tf Tg =TTy

holds on H*(D) if and only if
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f1(@)g- (@) —us(v_(2)

is harmonic and

f(s)g(s) =u(s)v(s)

for almost all ¢ on the unit circle T.

Proof. In the case that the four functions f, g, u, v are in L*°(T), if
TiT,=T,T,,

using the symbol mapping [6] from the C*-algebra generated by bounded Toeplitz operators
to L°°(T) we have that operators in both sides of the above equality have the same symbol
immediately to get

f(9)gls) =ul(s)v(c)

for almost all ¢ on the unit circle T.
We will use the Berezin transform to settle the general case. Noting that for analytic function
hin H2(D),

Thk, = hk,
and
Tyk: = h(2)k;,
taking the Berezin transform of the operator T¢T, — T, T, we obtain that for every z € D,
<[Tf Ty — Ty Tk, kz> = ([T(f++f7)T(g++g7) - T(u++u7)T(U++U7)]kZ’ kZ)
=([(Ty, To, + Tr_ Ty ) + (Tp_ Ty, + Ty, Ty ) Jkz k)
— ([T, Toy + Tu_To) + (T _Toy + Ty Ty ) ke k)
=([(Trog +Trg) + Trg, Joo ko) +(Tg_ko, T k)
~[(Tusoy + Tuv) + Ty Yo k) + (To_ke, T k2]

= [f+ @8+ + f-(Dg- @]+ F-8+ (@) + f+(De-(2)

— [+ @v4 @) + u-@v-(2)] = -3 (2) = u4 (@D (2).

If 7T, =T,T,, the above equalities give

U (v-(2) — f+(2)g-(2)
= [£+@8+@ + f-(g-@] + F-g+(2) = [+ (@v4D) + u-@v-()] = i 03.2).
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Each term in the right hand side of the above equation is harmonic. Thus fy(z)g—(z) —
u+(z)v—(z) is harmonic as desired. Writing z in the polar coordinates ¢ and taking limit as
r goes to 17, since each terms are the products of harmonic extensions of some functions in
N g1 L49(T), we obtain that for almost all ¢ on T,

U1 (S-(5) — f4(6)8-(5) = [ f+(5)8+(5) + [-(6)8— ()] + f-(5)g+(5)
— [u()v4() +u—(Hv— ()] — u—()v4+(5).

This gives

f()g(s) =u(s)v(s)

for almost all ¢ on T.
Conversely, suppose

f(s)g(c) =u(s)v(s)

for almost all ¢ on T and

fr(@g-(2) —uyr(v_(2)

is harmonic. Let

V(@) = f1(2)g-(2) —ur(@v_(2).

First we need to verify the conditions in Theorem 2.1 for the function V. Since f4,g_,uy, v_
arein L (T) forevery 1 <g¢ < o0, fi-g— —uyv—_isin();_,_ o LY (T) because (), _, oo LI (T)
is an algebra. On the other hand, the Cauchy—Schwarz inequality gives

/|V(r;>|2<f|f+<rg)g_(rg)|2+/|u+<rg>v_<rg>|2
T T T

. 3 . )
<{/|f+(g>\ do(g)} {/\g@! da(g)}
T T

4 2 4 :
+{/|u+(§)| do(g)} {/Iv—(g)l da(g)} :
T T

Thus Theorem 2.1 gives

rlgnl Virg)= rlgn] J+(re)g-(rg) —ut(re)v—(rg)
= f+(6)g-(5) —u4()v-(s) =V(s).

By Theorem 2.1 again, we have
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J+(@2)g- (@) —ut(v-(2) =V(2)
=V@
= [frg- —u+v-1().
An easy calculation gives that the harmonic extension of fg — uv equals
(fg —uv)(@) =([(frg+ + f-8-) — (uyvy +u_v)
+ (frg—+ f-g4) — (upv_ +u_vi) ke, ke)
= (f+(2)g+() + [-(2)&-(2) — (U4 (D)v4(2) + u—(2)v-(2))
+ (frg- —uv)(@) + (f-g4+ —u—vH)(2)
= (f+(2)8+@) + [-(2)8-(2)) — (u4(Dv4(2) + u_(Dv_(2))
+ f+(2)8-(2) —us ()v—(2) + (f—g+ —u—v+H) ().
Thus we have
([TfTy — TuTodkz kz) = (fg — uv) ().
So the Berezin transform of the operator 7T, — T, T,, equals zero on the unit disk. We conclude
T/T, =T1,T,
as Berezin transform is one-to-one. This completes the proof. O
Proof of Theorem 1.2. By Theorem 2.2, Ty commutes with T, if and only if f}(z)g—(z) —

8+(2) f-(z) is harmonic on the unit disk. Applying the Laplace operator to the harmonic function
implies that this is equivalent to

fr@8 () =g () f ().
Thus this is also equivalent to
3f(2)38(2) =383 f(2)
on D as
1f (@) = fL (2,
308(2) =g (2),
98(z) = g4 (z), and
3f (@) = fL(.

This completes the proof of Theorem 1.2. O
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3. Reduction to one variable case
In this section, freezing one variable we reduce two variables problem to one variable condi-
tions.

If we directly follow the idea in the previous section, as in [7], for each f in ﬂl <g<o0 L’ (TI‘Z),
we write f as

f=f+ -+t

where o =Pf, fr_-=P(0-P)f, f[.x=0—-P)Pfand f_=(1—-P)I - P)f.
Thus we have

TyTg =Ty + Ty +Tr  +Tr NTg, +To +Tg  +T, ]
So we face the difficulty that
TyTy =TTy
is an equation containing 32 terms of products of two Toeplitz operators. Hence we need to

introduce a simpler decomposition of symbols. To do so, for each function f in (7, _, .o, LY (T?),
we write f as

+00 +00 )
f=hr@ )+ ii-GLa) =) 4@+ Y a i)z,
i=0 i=1

where

~+00
firGr) =Pif =) 4,2

i=0
is analytic in variable z; and

+00

fisGra) =U —P)f=) ai(@)Z,

i=1

is co-analytic in variable z;. Similarly, we decompose f(z1, z2) with respect to the second vari-
able z, as follows

+o00 +o0
f=fr@nm) + o) =) bz + ) bz,

i=0 i=1

Since the operators P; are bounded on each L7(T?), we obtain that f;; and f;_ belong to
m1<q<oo Lq(Tz)'

For each function f in (), _, o LY (T?) and for fixed z; € D, let Ty, ., denote the Toeplitz
operator on H2(ID) given by
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Tf,yu= P[f(Z] , )u]

for u € H?(ID) and for fixed zo € D, let Ty (. z,) denote the Toeplitz operator on H 2(D) given by

T zpu=P[f (. 22)u]

for u € H*(D).
The following is the reduction procedure.

Theorem 3.1. Let f, g € L°(T?). Then TyT, =T, Ty if and only if the following two conditions
hold:

(1) Forzi,z2€D

e~

(Trio0To @) = Tarin Tho@o1(z2)

is harmonic in variable z;.
(2) Forz1,z2€D

—_~—

(Th e Tor o) = Torp o Thi- (a1 (21)
is harmonic in variable z5.
Proof. Assuming that TyT, = T,Ty, we need to show that Conditions (1) and (2) hold.
Clearly, it is sufficient to prove that Condition (1) holds. To do so, write f = fi+ + f1— and

g = 81+ + g1—. Using the same idea to calculate the Berezin transform as one in the proof of
Theorem 2.2, we calculate the Berezin transform of the operator 7T, — T, Ty to get

((Tng =TTk, kZ)
= <[T.f1++f1—Tg1++g1— - T81++g1—T.f1++f1—]kz’ kz)

= <[/((f1_(g1, §2)P2g1+(s1, 62)
T

— (81-(51, ) P2 f14(51. 62)) k2, (62) k2, (52) dU(gz)}kzl,kzl>

+ <[Tf|+(Z|,-)Tg1+(Zl,-) - Tg1+(Z|,-)Tf1+(Z1w)]k229 kzz)
+ <[Tf17(11s§2)Tg17(11>§2) - Tglf(m»-)Tflf(m,')]kzzv kzz>
+ <[Tf1+(Z1-,-)Tg17(21,-) - Tg1+(11-,-)Tf17(21w)]k22’ kZz>'

Since Ty commutes with T, the above equalities give



X. Ding et al. / Journal of Functional Analysis 263 (2012) 3333-3357 3345

_<[Tfl+(zly§2)Tgl—(Zl>§2) - Tg1+(Z1>§2)Tf17(Z1>§2)]k12’ k22)

= <[/((f1—(§1, ) P2g1+(s1, 62)
T

— (81-(51, 62 P2 f14(51. 62)) k2, (62) k2, (52) d0(§2):|k21 ) kz1>

F(Th @10 Ters 0 = Ter i T o e s ko)
T h_i Ter— o = Ter i Tho o ey oy )-

Noting that each term in the right hand side of the above equation is harmonic with respect to z7,
we obtain the function

([Thy 0 Ter—Gioy = Top i Thi- iy ey kzy)

—_~

=T Ta-Gy — Ta 0 Tho i 1(22)

is harmonic in variable z; as desired.

Conversely assuming that Conditions (1) and (2) hold, we will show that Ty commutes
with T,. To do so it is sufficient to show that the Berezin transform of the commutator
T;T, — Ty Ty vanishes on the bidisk since the Berezin transform is injective.

First we verify that conditions hold in Theorem 2.1. Since (1, _, _o, L?(T) is an algebra and

fi+> fi-and gj4, gj— belong to ), _, o, HY (D), we have
2
/|<Tf1+(r§1,s‘2)Tglf(rsl-,;z)km’k22>} do(s1)
T
2
</Hf1+(rg1,-)Pzglf(rglf)kzzu do(s1)
T

=//|f1+(r§1,§2)P2817(r§1,§2)kz2(§2)|2d0(§2)d6(§1)
T T

1 1
2 2
< C(Zz){ /|f1+(g)|4da(g)} { /|g1<g>|4da(g>} :
T2 T2
where C(z2) is a constant for fixed z,. Thus

r—1-

T 2
lim /|<Tf1+(r§1,§2)Tglf(rgl,gz)kzz’kzz>’ do(g1) < o0.
T

If we write

+00
gi-(z1, ) =Y 8-, )7}

n=1
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and

+00

fi+Ge) =) fiem, o)z,

m=0
we have

“+00 400
(f1+(z1, 2) Pagi—(z1, §2)kzy, kzy) = Z Z(fw(m, ) P2g1-(n, 2)kz,, k)2 2]

n=1m=0

Using the polar coordinates for z; = r ¢ and taking the limit as r tends to 1 give

Him(fi4 (61, ) Pagi- (61, ey ko)
+00 +00
=1im Y Y (fie(m, ) Pagi-(n, ey ke )(re)” (1)

r—1
n=1m=0

+00 +00

=D (fie . Y Pagi—(n, Yy ko )(s)™ (G1)"

n=1m=0

=(f11+(s1. ) P2g1-(51. Vkzy. kzy)-

Thus we obtain
rli_I)nl<Tf1+(r§1,-)Tglf(rgl,-)kzzv kay) = (This 1.0 Tor-(c1.9 ke Kap)-
Letting
Fle) = <[Tf1+(§1,~)Tg17(§1,-) —To 10 Th-(s1. Iz kzz)’
by Theorem 2.1, we have that the harmonic extension of F(¢) is given by

F(z1) = ([Tf1+(21,-)Tg17(21u) - Tgl+(21")Tfl—(Zlv‘)]kZZ’ k22>-

An easy calculation gives that the Berezin transform of the commutator 7¢T, — 7,7 is equal
to

([Tf Ty —TgTylk:, kZ)

2
= /<[Tf17(§)Tgl+(§) - Tglf(s)TfH(g)]kszkzz)‘km(gl)‘ do(s1)
T
+ <[Tf1+(z1,-)Tgl+(21,-) - Tg1+(z1,-)Tf1+(z1,-)]kz2» kzz>|H2(JD))
+ <[Tf|—(Z1,-)Tgl—(Z|,-) —Tg_ i Thoo ke, kZ2>|H2(]D))

+ <[Tfl+(zl~,')Tgl—(Zl,') - Tg1+(11,-)Tf17(zl,»)]kzz’ k12>|H2(]D))
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2
:/\<[Tf(§1,-)Tg(§1«) - Tg(s‘l,-)Tf(gl,-)]kzz’kzz)lkm| do(s1) (%)

=

= /[f2+(§1 ,22)82- (51, 22) — 824(51, 22) fo— (51, 22) | lkz, | dor (51)
T

+/[fzf(§)gz+(§) — 82-(8) fo+ (O ]Iz do ().

T2

The last two equalities follow from calculating the action of the commutator of two Toeplitz
operators on reproducing kernels on the Hardy space of the unit circle. By the same argument,
we have

2
(ITf Ty — Ty Tylky, ko) = /<[Tf(w§2)Tg(w§2) — TgtoonTreenlkzy kzy )|z (62) | do (62)
T

is harmonic in variable z,. Thus we have that

/[f2+(§1, 22)82- (51, 22) — 82+(51, 22) fo— (51, 22) | k2, I dor (1)
T

is also harmonic in variable z;. Differentiating under the integral sign, we obtain

/{Az[fer(s‘l,Zz)gz—(gl, 22) — g24(51,22) fo- (51, 22) |} Ik, 1P do (51) = 0.
T

Since the Berezin transform is one-to-one, it follows

Do fo+ (51, 22)82- (51, 22) — 824 (51, 22) fa— (51, 22)] = 0.

This implies that f(s1,22)2+8(s1, 22)2— — g(S1, 22)2+ f (61, 22)2— is harmonic in variable z5.
By Theorem 2.2,

Tr1 9 Tg(cr,) = Tes1.9T 1 (1.

By Eq. (%), we have
(T Ty — T Tylkz, ko) = /<[Tf<g1,‘>Tg<g1,‘> — Tete10 Trier0 ke Koy Iz, |2 dor (1) = 0.
T
Since the Berezin transform is one-to-one, it follows that

TiTe=TgTy.

This completes the proof. O
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4. Proof of the first version of the main result
Theorem 3.1 gives a necessary and sufficient condition for two Toeplitz operators to be com-
muting on the Hardy space of the bidisk in terms of the Berezin transform by reducing it to the

disk. In this section, using Theorem 3.1 we will give the proof of Theorem 1.4.

Proof of Theorem 1.4. First we assume that the Toeplitz operator 7y commutes with the
Toeplitz operator T, on the Hardy space of the bidisk. By Theorem 3.1, we obtain

<[Tf1+(11v)Tg17(le) - Tgl+(21>')Tfl—(Zly')]kU’ kzz>

is harmonic in variable z;. Taking differentiation under the integral gives

0= A1<[Tf1+(21,~)Tg17(21c) —Torv i) Tk, kZz)
= ([T31f1+(21,~)Télgl,(zl,‘) — Toyg14 (21 Télfl,(z1,~)]k22v k12>'
Since the Berezin transform is injective, this implies that for a fixed z; in the unit disk,
Talf|+(1|")T51g1—(Z|,-) - Talgl‘*'(zl")Télfl—(ZI»') =0

on H?(D). Theorem 2.2 gives that for almost all ¢; € T,

3 f(z1, 6201821, $2) = 318(21, 62)31 £ (21, 2)

holds for z; € D, and

(31f1+(Z1,Zz))2+(51g1—(21722))2_ — (01814 (21, Zz))2+(51f1—(11, 22)),_

is harmonic in variable z,. Thus Condition (a) holds. Applying the Laplacian operator with re-
spect to the variable z; to the above function gives

3(01 f1+(21,Zz))2+52(5181—(21,22))2_ — (31814 (21, Zz))2+52(51 fi—(z1,22)),_ =0.
Since fiy = fot+ fo— fi-=f——+ -+, 81+ =8++ +g+—and g1 =g__+g_4, wehave
(31 f1+ (21, 22)),, = 912 f+ (21, 22),

92(01/1-(z1,22)),_ =102/ (21, 22),

DI

2(0181-(21.22)), = 01028 (21.22),

D

2 (91814 (21, 22)) . = 12844 (21, 22),

so from the equation we get

N fi4(21,22)1028—— (21, 22) = 019284+ (21, 22)01 92 f—— (21, 22)-
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This implies Condition (c):

N f(z1,22)01028(z1,22) = 31028(21,22)0102 £ (21, 22)

since

0102 f++ (21, 22) = 0102 f (21, 22),
9102 f-—(21,22) = 0102 f (1. 22).
01028~ (21,22) = 01028 (21, 22),
01028++ (21, 22) = 01028(21, 22)-

Using the second condition in Theorem 3.1 that

([Tt conTerz) = Tore oo Thi— oz Jzy - ke )

is harmonic in variable 7z, as we did as above, we derive that for almost all ¢; € T,

3 f(s1,22)028(51,22) = g (s1, 22)3.f (52, 22)

holds for z; € D. Thus Condition (b) holds.
Conversely, suppose Conditions (a), (b) and (c) hold. For z; in D, and ¢, in T,

Nf(z1, )81, 62) = d1g(z1, $2)01 f (21, $2)
and forzo in D, ¢; in T,
0 f(51,22)928(1, 22) = D8(51, 22)02 f (51, 22)-
For z;,z2in D,
32 f(z1,22)01028(21, 22) = 31028 (21, 22) N 2 f (21, 22)-
This gives

(01f14(21,22)), (9181- (21, 22)),_ — (01814 (21, 22)),, (1 f1-(21,22)),_

is harmonic in variable z, and

A f14(z1, 62)0181- (21, 62) = 1814 (21, $2)31 fi- (21, 62).

By Theorem 2.2, we obtain

T31f1+(11v)T51g17(z1,~) - T3181+(11>')T51f17(21,') =0.

This implies that
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<[Tf1+(11v)Tglf(le) - Tg1+(11,')Tflf(m,')]kZz’ kZz)

is harmonic in variable z;.
On the other hand,

N fr4(21,22)01028—— (21, 22) = 31328++ (21, 22)01 02 f—— (21, 22)
implies that

(32f2+(11,Zz))H(ézng(m,zz))], - (8282+(Z],Zz))1+(52f27(21,22))17

is harmonic in variable z; and

3o+ (51, 22)9282— (51, 22) = 3282+ (51, 22) 32 fr— (51, 22)-

By Theorem 2.2 again, we have

T32f2+("22) Tézgz_(-,zz) - T82g2+("22) Tézfz_(gZQ) =0

to get that

([ThiconTer o) = Toay o) Thoo oz ke Ky )

is harmonic in variable z;. Theorem 3.1 gives that 7y commutes with T,. This completes the
proof. O

5. Proof of the second version of the main result

In this section we will prove the second version of the main result by using Theorem 1.4. At
the end of the section we will obtain a characterization of normal Toeplitz operators.

Proof of Theorem 1.5. First we observe that if Condition (a) holds, then for z; in D and almost
all ¢ in T,

A f(z1, 6201821, $2) = 018(z21, 62)1 £ (21, 2);

if Condition (b) holds, then for z; in ID and almost all ¢1 in T,

h f(51,22)28(51, 22) = D8(51, 22)02 f (61, 22);
and if Condition (c) holds, then for all z, zp € D,

NN f(z1,22)01028(z21,22) = 1328(21, 22)1 32 £ (21, 22)-

By Theorem 1.4, we have that Ty commutes with 7.
Conversely, assuming that 7y commutes with 7, we will derive three conditions.
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We will show that Condition (c) holds. By Theorem 1.4, we have that for (z1, z2) in D2,

N frt(z1,22)01028—— (21, 22) = N 2g+4 (21, 22)h 2 f-— (21, 22). 3.1
Now we consider two cases.

First if one of 8192 f4+ (21, 22), 31828—— (21, 22), d1928++ (21, 22) and 812 f—— (21, 22) iden-
tically equals zero on the bidisk D2, for simplicity, we may assume

0102 f+4(z1,22) =0

on D2, then

frv 1, 22) = fiz) + fo(22)

on D? for two functions f] and f> in HY for every ¢ > 1. Moreover Eq. (5.1) gives that either

01028++(z1,22) =0

or

Nhfo—(z1,22) =0

on D?. Thus this implies that

g++(z1,22) = g1(z1) + g2(22)

or

f-—(z1,22) = h1(z1) + h2(22)

where g1, g2, h1 and hy are in H? for every g > 1. So Condition (c1) holds or Condition (c3)
holds.

Next if none of 9102 f+ (21, 22), 01028—— (21, 22), 01028++ (21, z2) and 9102 f—_(z1, z2) iden-
tically equals zero on the bidisk D2, then

9102 fr+(z1.22) _ 9102f——(21.22)
010284+ (21,22) 01028 (z1,22)

The right hand side of the above equation is analytic in both z1 and z; in the bidisk and the left
hand side of the equation is co-analytic in both z; and z; in the bidisk except for a zero set of an
analytic function of z; and z». Thus it must be a constant C. So this implies that

fovr —Cgrqy =h1(z1) + ha(z2)

and

fe—Cg—=r1(z1) +2(22)
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where h;, r; € H1(D) for every g > 1. Thus Condition (c3) holds. So we have proved that Con-
dition (c) holds.

Now we turn to the proof of that Conditions (a) and (b) hold if 7y commutes with 7, and
Condition (c) holds. We need only prove that Condition (a) holds. The same argument will derive
Condition (b). We consider three cases.

First assume Condition (c1) holds:

fr4 @1, 22) = fiz) + fo(22)

and

g++(z1,22) = g1(z1) + g2(22),

where f1, f2, g1, &2 € H1(D) for every g > 1. Thus we have

01f(z1,62) =01
=9
=3
=3

frr @1 6) + -G e) + foi (21, 62) + f-— (21, 62) ]
[, 62) + fr—(21, 62)]

f1z) + f2(62) + f+-(z1. 62)]

fi@) + fr-(z1, 62)].

—

So 31 f(z1, ¢2) is in H2(D) for the second variable ¢5. Similarly, we also have that
31821, 62) = di[g1(z1) + g+—(z1. 2]

is in H2(DD) for the second variable ¢.
If there is a positive measure set E C T such that for ¢» € E,

01f(z1,62) =0
for z; € D, we have
01f(z1,62) =0

for z1 in D and for almost all ¢» € T since 31 f(z1, ¢») is in H2(ID) for the second variable ¢.
By Theorem 1.4, we have

9 f(z1,2)018(z1, $2) = 018(z21, 62)01 £ (21, 62)- (5.2)
This implies
018(z1,62) =0

for z; in D and for almost all ¢ in T or

N f(z1,62)=0
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for z1 in D and for almost all ¢, in T since 9;g(z1, ¢2) is in H2(ID) for the second variable ¢;.
Thus f(z1, ¢2) and g(z1, ¢2) are both co-analytic in variable z1, which gives Condition (a2), or
f(z1, ¢2) is a constant in variable z;. The later case implies that 1 - f(z1, ¢2) +0- g(z1, ¢2) is
constant in variable z1, which gives Condition (a3).

By the same argument, if 91g(z, ¢2) identically equals zero for z; in D and for ¢» on a
positive measure subset of T, then Condition (a) holds.

Next assume that none of 9 f (21, ¢2) and 91¢(z1, ¢2) identically equals zero for z; in ID and
for ¢ on a positive measure subset of T. Let

Ey={c €T: 01g(z1, 52) =0 for z; in D}.
If 0 (Ey) =0 (T), then for almost all ¢; in T,
318(z1,62) =0
for z1 in D. Thus (5.2) gives that for almost ¢, in T,
élf(le §2) =0
for z; in D. This implies that for almost all ¢, in T, both g(z1, ¢2) and f(z1, ¢2) are analytic

in z1. Thus we obtain Condition (al).
If o (Ey) <o (T), (5.2) gives that for almost all ¢; in the complement Eg of Eg,

0f(z1.62) _ if(z1.5)
018(z1.62)  dig(z1, 52)

on . The left hand side of the above equation is analytic in variable z; and the right hand side of
the equation is co-analytic in variable z;. Thus it must be constant with respect to the variable z;.
So for almost all ¢; € Eg,', there is a function a(s7) of ¢» such that

0 f(z1.62) _ 0f@6) _
01g(z1,62)  91g(z1, $2)

a(s2).

This gives that for almost all ¢ in T,

xE5(2) f (21, 62) — a(s2) xEg(62)8 (21, 62)

is a constant in variable z; and the function a(s?) is defined to be equal to zero on E,. Hence
Condition (a3) holds.

Next assume Condition (c2) holds. By the same argument as in the previous case, we obtain
that Condition (a) holds.

Finally assume Condition (c3) holds. In this case, there exist constants a, b, not both zero,
such that

afyy(z1,22) +bgyy(z1,22) =hi(z1) + ha(z2)

and
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af-_(z1,22) + bg——(z1, z2) = r1(z1) + r2(z2),

where hy, ho,r1,rp € H1(D) forevery g > 1.

If one of a and b equals zero, then we can use the same method as in the first case to obtain
that Condition (a) holds.

Now we assume that a 7 0 and b £ 0. We have

b
f++(1,22) = —;g++(21, 22) + Hi(z1) + Ha(22)

and
b _ _
f——(z1,22) = —;g——(zl, 22) + R1(z1) + R2(z2),

where H; = _f_zhi and R; = —gri. Let

F(zi,20) = f(z1,22) + 28(21, 22).
Since Ty commutes with T, we obtain
TrTy =T, TF.
Also we have
Fiy(z1,22) = fr4 (21, 22) + §g++(21,zz) = H(z1) + H2(z2)

and

b _ _
F__(z1,22) = f-—(21,22) + ;g——(m, 22) = R1(z21) + R2(22)
to get

I F(z1,62) = 01[Hi(z1) + F1—(z1, $2)]

is analytic in z; and co-analytic in ¢», and

N F(z1,62) =h[Ri(z1) + F-4(z21. 62)]

is co-analytic in z; and analytic in ¢>. We observe that for almost each ¢» in T, the zero set of
01 F (21, ¢2) or 91 F(z1, ) is discrete or equal to the unit disk. Let

Ey={c €T: 91F(z1, s2) =0 for countable many z; € D}

and
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E, = {gz eT: 9 F(z1, ¢2) = 0 for countable many z; € ]D)}.
Theorem 1.4 gives that for almost all ¢» in T,

dg(z1, 62001 F(z1, 62) = d1g(z1, 62)d1 F(z1, 2) (5.3)

holds on ID. Thus for ¢, in E1 N E,, we have that

018(z1,62) _ 91821, $2)
nF(z1.62)  WF(z1,62)

holds for all except for countable many z; in D. The left hand side of the above equality is
analytic in z; and the right hand side of the above equality is co-analytic in z;. Thus it must
be a constant function of z; and so it depends only on ¢> and is denoted by A(s2). The above
equation gives that on E1 N E»

8(z1,62) — A(62) F(z1, 62)
is a function of ¢». If the Lebesgue measure of E| N E; equals the measure of T, this implies
Condition (a3).
If the Lebesgue measure of E1 N E» is less than the measure of T, then one of the measures

of E1 and E» is less than the measure of T. We may assume that the measure of E| is less than
the measure of T. For ¢; in the complement Ef of Eq, we have

01F(z1,62)=0

for z1 in the unit disk . Since 81 F(z1, ¢2) is analytic in zy, for a fixed z1, 81 F (21, ¢2) is H2(DD)
in variable ¢, and E f has positive measure, we have that for almost all ¢, in T, we have

01F(z1,62)=0

for z; in the unit disk D. Thus by (5.3), we have that for almost all ¢» in T,
918(21,62)01 F(z1,62) =0

for z1 in the unit disk. This implies that for almost all ¢» in T,

018(z1,62)=0
for z; in D or for almost all ¢; in T,

N F(z1,6)=0
for z; in the unit disk I since 3; F(z1, ¢2) is co-analytic in z; and for a fixed zy, 9 F(z1,¢2) 18

H?(D) in variable ¢». That means that for almost all ¢, in T, either both F(z1, ¢2) and g(z1, ¢2)
are co-analytic in z| or F(z1, ¢2) is constant in z;. The first case gives Condition (a2) since
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b
F(z1,62) = f(z1,52) + 58(21, $2).

The later case gives that for almost all ¢» in T,

b
F(z1,6) = f(z1,62) + 58(21, $2)
is a function ¢7. This is Condition (a3). This completes the proof. 0O

We immediately get the following corollary to characterize normal Toeplitz operators T'f.
That is,

Ty T; = T}k Ty.
Corollary 5.1. Let f € L®(T?). Then Ty is normal operator if and only if the following hold:
(a) For almost all ¢» € T, there are aj(s2) and b1(s3), not both zero, such that

a1(s2) f(z1, $2) + bi(s2) f (21, 52)

is a constant in variable 7.
(b) For almost all ¢; € T, there are a>(¢1) and by(c1), not both zero, such that

a2(61) f(s1,22) + b2(s1) f (51, 22)

is a constant in variable z;.
(c) There are constants a and b, not both zero, such that

afy(z1,22) +bf__(z1,22) = h1(z1) + h2(z2)

and

af-—(z1,22) + b f+4(z1,22) =71(21) +72(22),
where h;,r; € Hz(D).

The following example gives that even if Ty commutes with Ty, but for any constants a, b,
not both zero, af (z1, z2) + bg(z1, z2) is not a constant in variable z.

Example. For /(c) € L°°(T) and a(s;) € L*°(T), let
f(s1,62) =h(s1),

g(s1, 62) =h(s1)a(s2).

Then
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(a) forzi eDand ¢ €T,

a(s2) f(z1, 62) — g(z1, 62) =0,

(b) forzieDand ¢, €T,

1 f(s1,22) +0-g(s1,22)

is a constant in variable z»,
(c3)

L fy(z1,22) +0- g4y (21,22) = hy(21)

and

1-f (z1,22) +0-g_(z1,22) =h_(z21).

Thus Theorem 1.5 gives that
TiT, =TgTy.

But there are no constants a, b, not both zero, such that af (z1, z2) + bg(z1, z2) is a constant in
variable z;.
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