Commuting Toeplitz operators on the bidisk

Xuanhao Ding ${ }^{\text {a }}$, Shunhua Sun ${ }^{\text {b }}$, Dechao Zheng ${ }^{\text {c,d,* }}$
${ }^{a}$ School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, PR China
${ }^{\text {b }}$ Institute of Mathematics, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
${ }^{\text {c }}$ Center of Mathematics, Chongqing University, Chongqing 401331, PR China
${ }^{d}$ Department of Mathematics, Vanderbilt University, Nashville, TN 37240, United States

Received 27 March 2012; accepted 9 August 2012
Available online 3 September 2012
Communicated by S. Vaes

Abstract

A necessary and sufficient condition is obtained for two Toeplitz operators to be commuting on the Hardy space of the bidisk. The main tool is the Berezin transform and the harmonic extension. © 2012 Elsevier Inc. All rights reserved.

Keywords: Toeplitz operators; Hardy space; Bidisk; Berezin transform

1. Introduction

Let \mathbb{D} denote the open unit disk in the complex plane \mathbb{C}. Its boundary is the unit circle \mathbb{T}. The bidisk \mathbb{D}^{2} and the torus \mathbb{T}^{2} are the subsets of \mathbb{C}^{2} which are Cartesian products of two copies \mathbb{D} and \mathbb{T}, respectively. Let $d \sigma(z)$ be the normalized Haar measure on \mathbb{T}^{2}. The Hardy space $H^{2}\left(\mathbb{D}^{2}\right)$ is the closure of the analytic polynomials in $L^{2}\left(\mathbb{T}^{2}, d \sigma\right)$ (or $L^{2}\left(\mathbb{T}^{2}\right)$). Let P be the orthogonal

[^0]projection from $L^{2}\left(\mathbb{T}^{2}\right)$ onto $H^{2}\left(\mathbb{D}^{2}\right)$. The Toeplitz operator with symbol f in $L^{\infty}\left(\mathbb{T}^{2}\right)$ is defined by
$$
T_{f} h=P(f h)
$$
for all $h \in H^{2}\left(\mathbb{D}^{2}\right)$.
On the Hardy space of the unit disk, Brown and Halmos [2] first showed that two Toeplitz operators are commuting if and only if either both symbols of these operators are analytic, or both symbols of these operators are co-analytic, or a nontrivial linear combination of the symbols of these operators is constant. Axler and Cuckvoic obtained the analogous result for Toeplitz operators with bounded harmonic symbols on the Bergman space of the unit disk [1]. A natural question is to characterize commuting Toeplitz operators on the Hardy space of bidisk.

Question. For which functions f and g,

$$
T_{f} T_{g}=T_{g} T_{f} ?
$$

The above question is equivalent to the question that the commutator $T_{f} T_{g}-T_{g} T_{f}$ equals zero. On the other hand, the commutator $T_{f} T_{g}-T_{g} T_{f}$ equals the difference of two semicommutators $T_{f} T_{g}-T_{f g}$ and $T_{g} T_{f}-T_{g f}$. In [7], Gu and the third author showed that the semi-commutator $T_{f} T_{g}-T_{f g}$ equals zero if and only if for each $i=1,2$, either $\bar{f}\left(z_{1}, z_{2}\right)$ or $g\left(z_{1}, z_{2}\right)$ is analytic in z_{i}. Recently, in [9], Lee had made the progress on the above question for the special case when one symbol of two Toeplitz operators T_{f} and T_{g} is in the form

$$
h\left(z_{1}\right) z_{2}^{\alpha}+k\left(z_{1}\right) \bar{z}_{2}^{\beta} .
$$

Later, in [10], Lee obtained some results to address the above question on the Hardy space of the polydisk. The first author worked on the question in [4,3,5]. In this paper, we answer the above question by completely characterizing commuting Toeplitz operators on the Hardy space of the bidisk. The main idea is to use the Berezin transform and the harmonic extension. Even on the unit disk, the idea is new.

To state our results and to reformulate the Brown-Halmos theorem [2] in a different form, we need some notation. Let $K_{z_{1}}\left(w_{1}\right)$ denote the reproducing kernel

$$
\frac{1}{1-\overline{z_{1}} w_{1}}
$$

of Hardy space $H^{2}(\mathbb{D})$ at the point $z_{1} \in \mathbb{D}$ and $k_{z_{1}}\left(w_{1}\right)$ the normalized reproducing kernel $\frac{\left(1-\left|z_{1}\right|\right)^{\frac{1}{2}}}{1-\bar{z}_{1} w_{1}}$ of $H^{2}(\mathbb{D})$ at the point $z_{1} \in \mathbb{D}$. Clearly, the reproducing kernel of $H^{2}\left(\mathbb{D}^{2}\right)$ at the point z with coordinates $\left(z_{1}, z_{2}\right)$ in \mathbb{D}^{2} is given by

$$
K_{z}(w)=\prod_{i=1}^{2} K_{z_{i}}\left(w_{i}\right)
$$

Thus the normalized reproducing kernel $k_{z}(w)$ of $H^{2}\left(\mathbb{D}^{2}\right)$ is in the form

$$
k_{z}(w)=\prod_{i=1}^{2} k_{z_{i}}\left(w_{i}\right)
$$

Given $f \in L^{1}\left(\mathbb{T}^{2}\right)$, the harmonic extension of f is given by

$$
\begin{aligned}
\hat{f}(z) & =\int_{\mathbb{T}^{2}} f(\zeta) \prod_{j=1}^{2} \frac{1-\left|z_{j}\right|^{2}}{\left|1-z_{j} \overline{\zeta_{j}}\right|^{2}} d \sigma(\zeta) \\
& =\int_{\mathbb{T}^{2}} f(\zeta)\left|k_{z}(\zeta)\right|^{2} d \sigma(\zeta) \\
& =\left\langle f k_{z}, k_{z}\right\rangle
\end{aligned}
$$

Let ∂_{i} denote $\frac{\partial}{\partial z_{i}}$ and $\bar{\partial}_{i}$ denote $\frac{\partial}{\partial \bar{z}_{i}}$. The operator \triangle_{j} is defined by

$$
\Delta_{j}=\partial_{j} \bar{\partial}_{j}
$$

for $j=1,2$. Clearly, $\hat{f}(z)$ is 2-harmonic function on \mathbb{D}^{2}. That is

$$
\Delta_{j} \hat{f}(z)=0
$$

for $j=1,2$.
For a bounded operator S on $H^{2}\left(\mathbb{D}^{2}\right)$, the Berezin transform of S is the function \tilde{S} on \mathbb{D}^{2} defined by

$$
\begin{aligned}
\tilde{S}(z) & =\left\langle S k_{z}, k_{z}\right\rangle \\
& =\int_{\mathbb{T}^{2}} S k_{z}(\xi) \overline{k_{z}(\xi)} d \sigma(\xi) .
\end{aligned}
$$

Thus the harmonic extension $\hat{f}(z)$ of f is the Berezin transform $\widetilde{T_{f}}$ of the Toeplitz operator T_{f} with symbol f. First we state the Brown and Halmos theorem in [2] as follows.

Theorem 1.1. (See Brown and Halmos [2].) Let $f, g \in L^{\infty}(\mathbb{T})$. Then $T_{f} T_{g}=T_{g} T_{f}$ if and only if
(a) both f and g are analytic; or
(b) both f and g are co-analytic; or
(c) there are constants a and b with $|a|+|b| \neq 0$ such that $a f+b g$ is constant.

On the unit disk, for f in $L^{1}(\mathbb{T})$, we still use $\hat{f}(z)$ to denote the harmonic extension of f at a point z in the unit disk \mathbb{D}. The result of Brown and Halmos is reformulated in the following form.

Theorem 1.2. Let $f, g \in L^{\infty}(\mathbb{T})$. Then $T_{f} T_{g}=T_{g} T_{f}$ if and only if

$$
\partial \hat{f}(z) \bar{\partial} \hat{g}(z)=\partial \hat{g}(z) \bar{\partial} \hat{f}(z)
$$

on \mathbb{D}.
The form in the above theorem not only combines three conditions in the original form of the Brown and Halmos theorem [2] into one condition, but also makes sense on the bidisk. A proof of Theorem 1.2 will be given in Section 2.

To motivate readers to the first version of our main result, we reformulate the result in [7] in the similar way as the above theorem. To simplify notation we use $f\left(z_{1}, z_{2}\right)$ to denote the harmonic extension $\hat{f}\left(z_{1}, z_{2}\right)$.

Theorem 1.3. (See [7].) Let f and g be two functions in $L^{\infty}\left(\mathbb{T}^{2}\right)$. The semi-commutator $T_{f} T_{g}$ $T_{f g}$ equals zero on the Hardy space $H^{2}\left(\mathbb{D}^{2}\right)$ of the bidisk \mathbb{D}^{2} if and only if
(a) for almost all ς_{2} in \mathbb{T},

$$
\partial_{1} f\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} g\left(z_{1}, \varsigma_{2}\right)=0
$$

for z_{1} in \mathbb{D}, and
(b) for almost all ς_{1} in \mathbb{T},

$$
\partial_{2} f\left(\varsigma_{1}, z_{2}\right) \bar{\partial}_{2} g\left(\varsigma_{1}, z_{2}\right)=0
$$

for z_{2} in \mathbb{D},
(c) for all $z_{1}, z_{2} \in \mathbb{D}$,

$$
\partial_{1} \partial_{2} f\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} g\left(z_{1}, z_{2}\right)=0
$$

Inspired by the above results, we obtain the following version of our main result, whose proof will be given in Section 4.

Theorem 1.4 (First version). Let $f, g \in L^{\infty}\left(\mathbb{T}^{2}\right)$. The Toeplitz operator T_{f} commutes with the Toeplitz operator T_{g} on the Hardy space of the bidisk if and only if the following conditions hold.
(a) For almost all ς_{2} in \mathbb{T},

$$
\partial_{1} f\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} g\left(z_{1}, \varsigma_{2}\right)=\partial_{1} g\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} f\left(z_{1}, \varsigma_{2}\right)
$$

for z_{1} in \mathbb{D}, and
(b) for almost all ς_{1} in \mathbb{T},

$$
\partial_{2} f\left(\varsigma_{1}, z_{2}\right) \bar{\partial}_{2} g\left(\varsigma_{1}, z_{2}\right)=\partial_{2} g\left(\varsigma_{1}, z_{2}\right) \bar{\partial}_{2} f\left(\varsigma_{1}, z_{2}\right)
$$

for z_{2} in \mathbb{D}, and
(c) for all $z_{1}, z_{2} \in \mathbb{D}$,

$$
\partial_{1} \partial_{2} f\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} g\left(z_{1}, z_{2}\right)=\partial_{1} \partial_{2} g\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} f\left(z_{1}, z_{2}\right) .
$$

In order to state the second version of our main result, which is analogous to the Brown and Halmos theorem [2], we introduce some decompositions of functions in $L^{2}\left(\mathbb{T}^{2}\right)$. As in [7], for each f in $\bigcap_{1<q<\infty} L^{q}\left(\mathbb{T}^{2}\right)$, we write the power series expansion of the harmonic extension $\hat{f}(z)$ of f as follows:

$$
f=\sum_{m \in Z^{2}} f_{m} z^{m}=f_{++}+f_{+-}+f_{-+}+f_{--},
$$

where

$$
\begin{aligned}
f_{++}(z) & :=\sum_{m \in Z_{+} \times Z_{+}} f_{m} z^{m}, \\
f_{+-}(z) & :=\sum_{m \in Z_{+} \times Z_{-}} f_{m} z^{m}, \\
f_{-+}(z) & :=\sum_{m \in Z_{-} \times Z_{+}} f_{m} z^{m}, \\
f_{--}(z) & :=\sum_{m \in Z_{-} \times Z_{-}} f_{m} z^{m}
\end{aligned}
$$

and $z^{\left(m_{1}, m_{2}\right)}=z_{1}^{m_{1}} z_{2}^{m_{2}}$. Moreover $z_{1}^{m_{1}}$ is the m_{1} th power of z_{1} if m_{1} is nonnegative and $z_{1}^{m_{1}}$ is the $\left|m_{1}\right|$ th power of \bar{z}_{1} if m_{1} is negative.

The following is the second version of our main result. It is analogous to the Brown and Halmos theorem [2]. Its proof will be given in Section 5.

Theorem 1.5 (Second version). Let f and g be in $L^{\infty}\left(\mathbb{T}^{2}\right)$. The Toeplitz operator T_{f} commutes with the Toeplitz operator T_{g} on the Hardy space of the bidisk if and only if the following three conditions hold:
(a) For almost all $\varsigma_{2} \in \mathbb{T}$,
(a1) $f\left(z_{1}, \varsigma_{2}\right)$ and $g\left(z_{1}, \varsigma_{2}\right)$ are both analytic in variable z_{1} on \mathbb{D}, or
(a2) $f\left(z_{1}, \varsigma_{2}\right)$ and $g\left(z_{1}, \varsigma_{2}\right)$ are both co-analytic in variable z_{1} on \mathbb{D}, or
(a3) there are $a_{1}\left(\varsigma_{2}\right)$ and $b_{1}\left(\varsigma_{2}\right)$, not both zero, such that

$$
a_{1}\left(\varsigma_{2}\right) f\left(z_{1}, \varsigma_{2}\right)+b_{1}\left(\varsigma_{2}\right) g\left(z_{1}, \varsigma_{2}\right)
$$

is a constant in variable z_{1} on \mathbb{D}.
(b) For almost all $\varsigma_{1} \in \mathbb{T}$,
(b1) $f\left(\varsigma_{1}, z_{2}\right)$ and $g\left(\varsigma_{1}, z_{2}\right)$ are both analytic in variable z_{2} on \mathbb{D}, or
(b2) $f\left(\varsigma_{1}, z_{2}\right)$ and $g\left(\varsigma_{1}, z_{2}\right)$ are both co-analytic in variable z_{2} on \mathbb{D}, or
(b3) there are $a_{2}\left(\varsigma_{1}\right)$ and $b_{2}\left(\varsigma_{1}\right)$, not both zero, such that

$$
a_{2}\left(\varsigma_{1}\right) f\left(\varsigma_{1}, z_{2}\right)+b_{2}\left(\varsigma_{1}\right) g\left(\varsigma_{1}, z_{2}\right)
$$

is a constant in variable z_{2} on \mathbb{D}.
(c) One of the following conditions holds:
(c1)

$$
\begin{aligned}
& f_{++}\left(z_{1}, z_{2}\right)=f_{1}\left(z_{1}\right)+f_{2}\left(z_{2}\right), \\
& g_{++}\left(z_{1}, z_{2}\right)=g_{1}\left(z_{1}\right)+g_{2}\left(z_{2}\right),
\end{aligned}
$$

where f_{1}, f_{2}, g_{1} and g_{2} are in $H^{q}(\mathbb{D})$ for every $q>1$.
(c2)

$$
\begin{aligned}
& f_{--}\left(z_{1}, z_{2}\right)=\overline{f_{1}\left(z_{1}\right)}+\overline{f_{2}\left(z_{2}\right)}, \\
& g_{--}\left(z_{1}, z_{2}\right)=\overline{g_{1}\left(z_{1}\right)}+\overline{g_{2}\left(z_{2}\right)},
\end{aligned}
$$

where f_{1}, f_{2}, g_{1} and g_{2} are in $H^{q}(\mathbb{D})$ for every $q>1$.
(c3) There exist constants a, b, not both zero, such that

$$
\begin{aligned}
& a f_{++}\left(z_{1}, z_{2}\right)+b g_{++}\left(z_{1}, z_{2}\right)=h_{1}\left(z_{1}\right)+h_{2}\left(z_{2}\right), \\
& a f_{--}\left(z_{1}, z_{2}\right)+b g_{--}\left(z_{1}, z_{2}\right)=\overline{r_{1}\left(z_{1}\right)}+\overline{r_{2}\left(z_{2}\right)},
\end{aligned}
$$

where h_{1}, h_{2}, r_{1} and r_{2} are in $H^{q}(\mathbb{D})$ for every $q>1$.

2. The Brown-Halmos theorem via the Berezin transform

The harmonic extension will play an important role in this section. For $f \in L^{1}(\mathbb{T}), \hat{f}(z)$ is harmonic on \mathbb{D} and

$$
\lim _{r \rightarrow 1} \hat{f}(r \varsigma)=f(\varsigma)
$$

for almost everywhere $\varsigma \in \mathbb{T}$. Conversely, if $f(z)$ is a harmonic function in the unit disk \mathbb{D}, one asks when f has boundary values, and how f is determined by its boundary values. The following theorem [8, p. 38, Corollary 2] gives a nice answer.

Theorem 2.1. (See [8].) Let f be a complex-valued harmonic function in the unit disk and suppose that the integrals

$$
\int_{\mathbb{T}}|f(r \varsigma)|^{p} d \sigma(\varsigma)
$$

are bounded as $r \rightarrow 1$ for some $p, 1 \leqslant p<\infty$. Then for almost every ς the radial limit

$$
f^{*}(\varsigma)=\lim _{r \rightarrow 1} f(r \varsigma)
$$

exists and defines a function f^{*} in L^{p} of the circle \mathbb{T}. If $p>1$, then $f(z)$ is the harmonic extension of f^{*}.

For $f \in L^{1}\left(\mathbb{T}^{2}\right)$ and fixed $z_{i} \in \mathbb{D}$, we defined

$$
\begin{gathered}
\left.P_{i} f\right|_{\xi_{i}=z_{i}}=\int_{\mathbb{T}} f(\xi) k_{z_{i}}\left(\xi_{i}\right) d \sigma\left(\xi_{i}\right), \quad 1 \leqslant i \leqslant 2, \\
L_{a i}^{q}\left(\mathbb{T}^{2}\right)=\left\{f \in L^{q}\left(\mathbb{T}^{2}\right): f \text { is analytic in variable } z_{i}\right\} .
\end{gathered}
$$

Using the boundedness of P_{i} on L^{q} for $q>1$, one can easily verify the following facts:

- P_{1} commutes with P_{2}, and $P=P_{1} P_{2}$ is a bounded linear operator from $L^{q}\left(\mathbb{T}^{2}\right)$ to $L_{a}^{q}\left(\mathbb{T}^{2}\right)$ for every $q>1$.
- $\bigcap_{1<q<\infty} L^{q}$ is an algebra, i.e., both $f g$ and $f+g$ are in $\bigcap_{1<q<\infty} L^{q}$ if f and g are in $\bigcap_{1<q<\infty} L^{q}$. In addition, f_{+}and f_{-}are in $\bigcap_{1<q<\infty} L^{q}$ if $f \in \bigcap_{1<q<\infty} L^{q}$.
- If f and g belong to $\bigcap_{1<q<\infty} L^{q}(\mathbb{T})$, then $T_{f} T_{g}$ is an operator densely defined on $H^{2}(\mathbb{D})$.

Although our main concern is with bounded Toeplitz operators, we will need to make use of densely defined unbounded Toeplitz operators. Given two operators S_{1} and S_{2} densely defined on $H^{2}(\mathbb{D})$, we say that $S_{1}=S_{2}$ if

$$
S_{1} p=S_{2} p
$$

for each p in the set \mathcal{P} of analytic polynomials.
In 1998, Stroethoff obtained a characterization of $f, g, u, v \in L^{\infty}(\mathbb{T})$ for which $T_{f} T_{g}+T_{u} T_{v}$ is a Toeplitz operator in [11]. Although the proof of the following theorem may be known, we will include a proof for completeness since ideas in the proof will play an important role on the bidisk later. In fact, the proof gives another proof of the Brown-Halmos theorem via the Berezin transform. Let P be the orthogonal projection from $L^{2}(\mathbb{T})$ onto $H^{2}(\mathbb{D})$. For each function f in $L^{2}(\mathbb{T})$, let

$$
\begin{aligned}
& f_{+}=P(f) \\
& f_{-}=(1-P)(f)
\end{aligned}
$$

Then we write

$$
f=f_{+}+f_{-} .
$$

Theorem 2.2. Let functions f, g, u, v be in $\bigcap_{1<q<\infty} L^{q}(\mathbb{T})$. Then

$$
T_{f} T_{g}=T_{u} T_{v}
$$

holds on $H^{2}(\mathbb{D})$ if and only if

$$
f_{+}(z) g_{-}(z)-u_{+}(z) v_{-}(z)
$$

is harmonic and

$$
f(\varsigma) g(\varsigma)=u(\varsigma) v(\varsigma)
$$

for almost all ς on the unit circle \mathbb{T}.
Proof. In the case that the four functions f, g, u, v are in $L^{\infty}(\mathbb{T})$, if

$$
T_{f} T_{g}=T_{u} T_{v},
$$

using the symbol mapping [6] from the C^{*}-algebra generated by bounded Toeplitz operators to $L^{\infty}(\mathbb{T})$ we have that operators in both sides of the above equality have the same symbol immediately to get

$$
f(\varsigma) g(\varsigma)=u(\varsigma) v(\varsigma)
$$

for almost all ς on the unit circle \mathbb{T}.
We will use the Berezin transform to settle the general case. Noting that for analytic function h in $H^{2}(\mathbb{D})$,

$$
T_{h} k_{z}=h k_{z}
$$

and

$$
T_{h}^{*} k_{z}=\bar{h}(z) k_{z},
$$

taking the Berezin transform of the operator $T_{f} T_{g}-T_{u} T_{v}$ we obtain that for every $z \in \mathbb{D}$,

$$
\begin{aligned}
\left\langle\left[T_{f} T_{g}-T_{u} T_{v}\right] k_{z}, k_{z}\right\rangle= & \left\langle\left[T_{\left(f_{+}+f_{-}\right)} T_{\left(g_{+}+g_{-}\right)}-T_{\left(u_{+}+u_{-}\right)} T_{\left(v_{+}+v_{-}\right)}\right] k_{z}, k_{z}\right\rangle \\
= & \left\langle\left[\left(T_{f_{+}} T_{g_{+}}+T_{f_{-}} T_{g_{-}}\right)+\left(T_{f_{-}} T_{g_{+}}+T_{f_{+}} T_{g_{-}}\right)\right] k_{z}, k_{z}\right\rangle \\
& -\left\langle\left[\left(T_{u_{+}} T_{v_{+}}+T_{u_{-}} T_{v_{-}}\right)+\left(T_{u_{-}} T_{v_{+}}+T_{u_{+}} T_{v_{-}}\right)\right] k_{z}, k_{z}\right\rangle \\
= & \left\langle\left[\left(T_{f_{+} g_{+}}+T_{f_{-} g_{-}}\right)+T_{f_{-} g_{+}}\right] k_{z}, k_{z}\right\rangle+\left\langle T_{g_{-}} k_{z}, T_{f_{+}}^{*} k_{z}\right\rangle \\
& -\left[\left\langle\left[\left(T_{u_{+} v_{+}}+T_{u_{-} v_{-}}\right)+T_{u_{-} v_{+}}\right] k_{z}, k_{z}\right\rangle+\left\langle T_{v_{-}} k_{z}, T_{u_{+}}^{*} k_{z}\right\rangle\right] \\
= & {\left[f_{+}(z) g_{+}(z)+f_{-}(z) g_{-}(z)\right]+\widehat{f_{-} g_{+}}(z)+f_{+}(z) g_{-}(z) } \\
& -\left[u_{+}(z) v_{+}(z)+u_{-}(z) v_{-}(z)\right] \widehat{u_{-} v_{+}}(z)-u_{+}(z) v_{-}(z) .
\end{aligned}
$$

If $T_{f} T_{g}=T_{u} T_{v}$, the above equalities give

$$
\begin{aligned}
& u_{+}(z) v_{-}(z)-f_{+}(z) g_{-}(z) \\
& \quad=\left[f_{+}(z) g_{+}(z)+f_{-}(z) g_{-}(z)\right]+\widehat{f_{-} g_{+}}(z)-\left[u_{+}(z) v_{+}(z)+u_{-}(z) v_{-}(z)\right]-\widehat{u_{-} v_{+}}(z) .
\end{aligned}
$$

Each term in the right hand side of the above equation is harmonic. Thus $f_{+}(z) g_{-}(z)-$ $u_{+}(z) v_{-}(z)$ is harmonic as desired. Writing z in the polar coordinates $r \varsigma$ and taking limit as r goes to 1^{-}, since each terms are the products of harmonic extensions of some functions in $\bigcap_{q>1} L^{q}(\mathbb{T})$, we obtain that for almost all ς on \mathbb{T},

$$
\begin{aligned}
u_{+}(\varsigma) v_{-}(\varsigma)-f_{+}(\varsigma) g_{-}(\varsigma)= & {\left[f_{+}(\varsigma) g_{+}(\varsigma)+f_{-}(\varsigma) g_{-}(\varsigma)\right]+f_{-}(\varsigma) g_{+}(\varsigma) } \\
& -\left[u_{+}(\varsigma) v_{+}(\varsigma)+u_{-}(\varsigma) v_{-}(\varsigma)\right]-u_{-}(\varsigma) v_{+}(\varsigma)
\end{aligned}
$$

This gives

$$
f(\varsigma) g(\varsigma)=u(\varsigma) v(\varsigma)
$$

for almost all ς on \mathbb{T}.
Conversely, suppose

$$
f(\varsigma) g(\varsigma)=u(\varsigma) v(\varsigma)
$$

for almost all ς on \mathbb{T} and

$$
f_{+}(z) g_{-}(z)-u_{+}(z) v_{-}(z)
$$

is harmonic. Let

$$
V(z)=f_{+}(z) g_{-}(z)-u_{+}(z) v_{-}(z)
$$

First we need to verify the conditions in Theorem 2.1 for the function V. Since $f_{+}, g_{-}, u_{+}, v_{-}$ are in $L^{q}(\mathbb{T})$ for every $1<q<\infty, f_{+} g_{-} u_{+} v_{-}$is in $\bigcap_{1<q<\infty} L^{q}(\mathbb{T})$ because $\bigcap_{1<q<\infty} L^{q}(\mathbb{T})$ is an algebra. On the other hand, the Cauchy-Schwarz inequality gives

$$
\begin{aligned}
\int_{\mathbb{T}}|V(r \varsigma)|^{2} \leqslant & \int_{\mathbb{T}}\left|f_{+}(r \varsigma) g_{-}(r \varsigma)\right|^{2}+\int_{\mathbb{T}}\left|u_{+}(r \varsigma) v_{-}(r \varsigma)\right|^{2} \\
\leqslant & \left\{\int_{\mathbb{T}}\left|f_{+}(\varsigma)\right|^{4} d \sigma(\varsigma)\right\}^{\frac{1}{2}}\left\{\int_{\mathbb{T}}\left|g_{-}(\varsigma)\right|^{4} d \sigma(\varsigma)\right\}^{\frac{1}{2}} \\
& +\left\{\int_{\mathbb{T}}\left|u_{+}(\varsigma)\right|^{4} d \sigma(\varsigma)\right\}^{\frac{1}{2}}\left\{\int\left|v_{-}(\varsigma)\right|^{4} d \sigma(\varsigma)\right\}^{\frac{1}{2}}
\end{aligned}
$$

Thus Theorem 2.1 gives

$$
\begin{aligned}
\lim _{r \rightarrow 1} V(r \varsigma) & =\lim _{r \rightarrow 1} f_{+}(r \varsigma) g_{-}(r \varsigma)-u_{+}(r \varsigma) v_{-}(r \varsigma) \\
& =f_{+}(\varsigma) g_{-}(\varsigma)-u_{+}(\varsigma) v_{-}(\varsigma)=V(\varsigma)
\end{aligned}
$$

By Theorem 2.1 again, we have

$$
\begin{aligned}
f_{+}(z) g_{-}(z)-u_{+}(z) v_{-}(z) & =V(z) \\
& =\hat{V}(z) \\
& =\left[f_{+} \widehat{g_{-} u_{+}} v_{-}\right](z) .
\end{aligned}
$$

An easy calculation gives that the harmonic extension of $f g-u v$ equals

$$
\begin{aligned}
(\widehat{f g-u} v)(z)= & \left\langle\left[\left(f_{+} g_{+}+f_{-} g_{-}\right)-\left(u_{+} v_{+}+u_{-} v_{-}\right)\right.\right. \\
& \left.\left.+\left(f_{+} g_{-}+f_{-} g_{+}\right)-\left(u_{+} v_{-}+u_{-} v_{+}\right)\right] k_{z}, k_{z}\right\rangle \\
= & \left(f_{+}(z) g_{+}(z)+f_{-}(z) g_{-}(z)\right)-\left(u_{+}(z) v_{+}(z)+u_{-}(z) v_{-}(z)\right) \\
& +\left(f_{+} \widehat{g_{-}-u_{+}} v_{-}\right)(z)+\left(f_{-} g_{+-} u_{-} v+\right)(z) \\
= & \left(f_{+}(z) g_{+}(z)+f_{-}(z) g_{-}(z)\right)-\left(u_{+}(z) v_{+}(z)+u_{-}(z) v_{-}(z)\right) \\
& +f_{+}(z) g_{-}(z)-u_{+}(z) v_{-}(z)+\left(f_{-} \widehat{\left.g_{+}-u_{-} v+\right)(z) .}\right.
\end{aligned}
$$

Thus we have

$$
\left\langle\left[T_{f} T_{g}-T_{u} T_{v}\right] k_{z}, k_{z}\right\rangle=(\widehat{f g-u} v)(z)
$$

So the Berezin transform of the operator $T_{f} T_{g}-T_{u} T_{v}$ equals zero on the unit disk. We conclude

$$
T_{f} T_{g}=T_{u} T_{v}
$$

as Berezin transform is one-to-one. This completes the proof.
Proof of Theorem 1.2. By Theorem 2.2, T_{f} commutes with T_{g} if and only if $f_{+}(z) g_{-}(z)-$ $g_{+}(z) f_{-}(z)$ is harmonic on the unit disk. Applying the Laplace operator to the harmonic function implies that this is equivalent to

$$
f_{+}^{\prime}(z) g_{-}^{\prime}(z)=g_{+}^{\prime}(z) f_{-}^{\prime}(z)
$$

Thus this is also equivalent to

$$
\partial \hat{f}(z) \bar{\partial} \hat{g}(z)=\partial \hat{g}(z) \bar{\partial} \hat{f}(z)
$$

on \mathbb{D} as

$$
\begin{aligned}
\partial \hat{f}(z) & =f_{+}^{\prime}(z), \\
\bar{\partial} \hat{g}(z) & =g_{-}^{\prime}(z), \\
\partial \hat{g}(z) & =g_{+}^{\prime}(z), \quad \text { and } \\
\bar{\partial} \hat{f}(z) & =f_{-}^{\prime}(z)
\end{aligned}
$$

This completes the proof of Theorem 1.2.

3. Reduction to one variable case

In this section, freezing one variable we reduce two variables problem to one variable conditions.

If we directly follow the idea in the previous section, as in [7], for each f in $\bigcap_{1<q<\infty} L^{q}\left(\mathbb{T}^{2}\right)$, we write f as

$$
f=f_{++}+f_{+-}+f_{-+}+f_{--},
$$

where $f_{++}=P f, f_{+-}=P_{1}\left(1-P_{2}\right) f, f_{-+}=\left(1-P_{1}\right) P_{2} f$ and $f_{--}=\left(1-P_{1}\right)\left(1-P_{2}\right) f$. Thus we have

$$
T_{f} T_{g}=\left[T_{f_{++}}+T_{f_{+-}}+T_{f_{-+}}+T_{f_{--}}\right]\left[T_{g_{++}}+T_{g_{+-}}+T_{g_{-+}}+T_{g_{--}}\right]
$$

So we face the difficulty that

$$
T_{f} T_{g}=T_{g} T_{f}
$$

is an equation containing 32 terms of products of two Toeplitz operators. Hence we need to introduce a simpler decomposition of symbols. To do so, for each function f in $\bigcap_{1<q<\infty} L^{q}\left(\mathbb{T}^{2}\right)$, we write f as

$$
f=f_{1+}\left(z_{1}, z_{2}\right)+f_{1-}\left(z_{1}, z_{2}\right)=\sum_{i=0}^{+\infty} a_{i}\left(z_{2}\right) z_{1}^{i}+\sum_{i=1}^{+\infty} a_{-i}\left(z_{2}\right) \bar{z}_{1}^{i}
$$

where

$$
f_{1+}\left(z_{1}, z_{2}\right)=P_{1} f=\sum_{i=0}^{+\infty} a_{i}\left(z_{2}\right) z_{1}^{i}
$$

is analytic in variable z_{1} and

$$
f_{1-}\left(z_{1}, z_{2}\right)=\left(I-P_{1}\right) f=\sum_{i=1}^{+\infty} a_{-i}\left(z_{2}\right) \bar{z}_{1}^{i}
$$

is co-analytic in variable z_{1}. Similarly, we decompose $f\left(z_{1}, z_{2}\right)$ with respect to the second variable z_{2} as follows

$$
f=f_{2+}\left(z_{1}, z_{2}\right)+f_{2-}\left(z_{1}, z_{2}\right)=\sum_{i=0}^{+\infty} b_{i}\left(z_{1}\right) z_{2}^{i}+\sum_{i=1}^{+\infty} b_{-i}\left(z_{1}\right) \bar{z}_{2}^{i} .
$$

Since the operators P_{i} are bounded on each $L^{q}\left(\mathbb{T}^{2}\right)$, we obtain that f_{i+} and f_{i-} belong to $\bigcap_{1<q<\infty} L^{q}\left(\mathbb{T}^{2}\right)$.

For each function f in $\bigcap_{1<q<\infty} L^{q}\left(\mathbb{T}^{2}\right)$ and for fixed $z_{1} \in \mathbb{D}$, let $T_{f\left(z_{1}, \cdot\right)}$ denote the Toeplitz operator on $H^{2}(\mathbb{D})$ given by

$$
T_{f\left(z_{1} \cdot\right)} u=P\left[f\left(z_{1}, \cdot\right) u\right]
$$

for $u \in H^{2}(\mathbb{D})$ and for fixed $z_{2} \in \mathbb{D}$, let $T_{f\left(\cdot, z_{2}\right)}$ denote the Toeplitz operator on $H^{2}(\mathbb{D})$ given by

$$
T_{f\left(\cdot, z_{2}\right)} u=P\left[f\left(\cdot, z_{2}\right) u\right]
$$

for $u \in H^{2}(\mathbb{D})$.
The following is the reduction procedure.
Theorem 3.1. Let $f, g \in L^{\infty}\left(\mathbb{T}^{2}\right)$. Then $T_{f} T_{g}=T_{g} T_{f}$ if and only if the following two conditions hold:
(1) For $z_{1}, z_{2} \in \mathbb{D}$

$$
\left[T_{f_{1+}\left(z_{1}, \cdot\right)} T_{g_{1-}\left(z_{1}, \cdot\right)}-T_{g_{1+}\left(z_{1}, \cdot\right)} T_{f_{1-}\left(z_{1}, \cdot\right)}\right]\left(z_{2}\right)
$$

is harmonic in variable z_{1}.
(2) For $z_{1}, z_{2} \in \mathbb{D}$

$$
\left[T_{f_{2+}\left(\cdot, z_{2}\right)} T_{g_{2-}\left(\cdot, z_{2}\right)} \widetilde{\sim} T_{g_{1+}\left(\cdot, z_{2}\right)} T_{f_{1-}\left(\cdot, z_{2}\right)}\right]\left(z_{1}\right)
$$

is harmonic in variable z_{2}.
Proof. Assuming that $T_{f} T_{g}=T_{g} T_{f}$, we need to show that Conditions (1) and (2) hold. Clearly, it is sufficient to prove that Condition (1) holds. To do so, write $f=f_{1+}+f_{1-}$ and $g=g_{1+}+g_{1-.}$. Using the same idea to calculate the Berezin transform as one in the proof of Theorem 2.2, we calculate the Berezin transform of the operator $T_{f} T_{g}-T_{g} T_{f}$ to get

$$
\begin{aligned}
\left\langle\left(T_{f}\right.\right. & \left.\left.T_{g}-T_{g} T_{f}\right) k_{z}, k_{z}\right\rangle \\
= & \left\langle\left[T_{f_{1+}+f_{1-}} T_{g_{1+}+g_{1-}}-T_{g_{1+}+g_{1-}} T_{f_{1+}+f_{1-}}\right] k_{z}, k_{z}\right\rangle \\
= & \left\langle\left[\int _ { \mathbb { T } } \left(\left(f_{1-}\left(\varsigma_{1}, \varsigma_{2}\right) P_{2} g_{1+}\left(\varsigma_{1}, \varsigma_{2}\right)\right.\right.\right.\right. \\
& \left.\left.\left.\left.-\left(g_{1-}\left(\varsigma_{1}, \varsigma_{2}\right) P_{2} f_{1+}\left(\varsigma_{1}, \varsigma_{2}\right)\right)\right) k_{z_{2}}\left(\varsigma_{2}\right)\right) \overline{k_{z_{2}}\left(\varsigma_{2}\right)} d \sigma\left(\varsigma_{2}\right)\right] k_{z_{1}}, k_{z_{1}}\right\rangle \\
& +\left\langle\left[T_{f_{1+}\left(z_{1}, \cdot\right)} T_{g_{1+}\left(z_{1}, \cdot\right)}-T_{g_{1+}\left(z_{1}, \cdot\right)} T_{f_{1+}\left(z_{1}, \cdot\right)}\right] k_{z_{2}}, k_{z_{2}}\right\rangle \\
& +\left\langle\left[T_{f_{1-(}\left(z_{1}, \varsigma_{2}\right)} T_{g_{1-}\left(z_{1}, \varsigma_{2}\right)}-T_{g_{1-}\left(z_{1}, \cdot\right)} T_{f_{1-}\left(z_{1}, \cdot\right)}\right] k_{z_{2}}, k_{z_{2}}\right\rangle \\
& +\left\langle\left[T_{f_{1+}\left(z_{1}, \cdot\right)} T_{g_{1-}\left(z_{1}, \cdot\right)}-T_{g_{1+}\left(z_{1}, \cdot\right)} T_{f_{1-}\left(z_{1}, \cdot\right)}\right] k_{z_{2}}, k_{z_{2}}\right\rangle .
\end{aligned}
$$

Since T_{f} commutes with T_{g}, the above equalities give

$$
\begin{aligned}
-\langle & \left.\left\langle T_{f_{1+}\left(z_{1}, \varsigma_{2}\right)} T_{g_{1-}\left(z_{1}, \varsigma_{2}\right)}-T_{g_{1+}\left(z_{1}, \varsigma_{2}\right)} T_{f_{1-}\left(z_{1}, \varsigma_{2}\right)}\right] k_{z_{2}}, k_{z_{2}}\right\rangle \\
= & \left\langle\left[\int _ { \mathbb { T } } \left(\left(f_{1-}\left(\varsigma_{1}, \varsigma_{2}\right) P_{2} g_{1+}\left(\varsigma_{1}, \varsigma_{2}\right)\right.\right.\right.\right. \\
& \left.\left.\left.\left.-\left(g_{1-}\left(\varsigma_{1}, \varsigma_{2}\right) P_{2} f_{1+}\left(\varsigma_{1}, \varsigma_{2}\right)\right)\right) k_{z_{2}}\left(\varsigma_{2}\right)\right) \overline{k_{z_{2}}\left(\varsigma_{2}\right)} d \sigma\left(\varsigma_{2}\right)\right] k_{z_{1}}, k_{z_{1}}\right\rangle \\
& +\left\langle\left[T_{f_{1+(}\left(z_{1}, \cdot\right)} T_{g_{1+}\left(z_{1}, \cdot\right)}-T_{g_{1+(}\left(z_{1}, \cdot\right)} T_{f_{1+}\left(z_{1}, \cdot\right)}\right] k_{z_{2}}, k_{z_{2}}\right\rangle \\
& +\left\langle\left[T_{f_{1-}\left(z_{1}, \cdot\right)} T_{g_{1-}\left(z_{1}, \cdot\right)}-T_{g_{1-\left(z_{1}, \cdot\right)}} T_{f_{1-(}\left(z_{1}, \cdot\right)}\right] k_{z_{2}}, k_{z_{2}}\right\rangle .
\end{aligned}
$$

Noting that each term in the right hand side of the above equation is harmonic with respect to z_{1}, we obtain the function

$$
\begin{aligned}
& \left\langle\left[T_{f_{1+(}\left(z_{1}, \cdot\right)} T_{g_{1-}\left(z_{1}, \cdot\right)}-T_{g_{1+}\left(z_{1}, \cdot\right)} T_{f_{1-(}\left(z_{1}, \cdot\right)}\right] k_{z_{2}}, k_{z_{2}}\right\rangle \\
& \quad=\left[T_{f_{1+}\left(z_{1}, \cdot\right)} T_{g_{1-(}\left(z_{1}, \cdot\right)}-T_{g_{1+}\left(z_{1}, \cdot\right)} T_{f_{1-(}\left(z_{1}, \cdot\right)}\right]\left(z_{2}\right)
\end{aligned}
$$

is harmonic in variable z_{1} as desired.
Conversely assuming that Conditions (1) and (2) hold, we will show that T_{f} commutes with T_{g}. To do so it is sufficient to show that the Berezin transform of the commutator $T_{f} T_{g}-T_{g} T_{f}$ vanishes on the bidisk since the Berezin transform is injective.

First we verify that conditions hold in Theorem 2.1. Since $\bigcap_{1<q<\infty} L^{q}(\mathbb{T})$ is an algebra and $f_{j+}, \overline{f_{j-}}$ and $g_{j+}, \overline{g_{j-}}$ belong to $\bigcap_{1<q<\infty} H^{q}(\mathbb{D})$, we have

$$
\begin{aligned}
& \int_{\mathbb{T}}\left|\left\langle T_{f_{1+}\left(r \varsigma_{1}, \varsigma_{2}\right)} T_{g_{1-}\left(r \varsigma_{1}, \varsigma_{2}\right)} k_{z_{2}}, k_{z_{2}}\right\rangle\right|^{2} d \sigma\left(\varsigma_{1}\right) \\
& \quad \leqslant \int_{\mathbb{T}}\left\|f_{1+}\left(r \varsigma_{1}, \cdot\right) P_{2} g_{1-}\left(r \varsigma_{1}, \cdot\right) k_{z_{2}}\right\|^{2} d \sigma\left(\varsigma_{1}\right) \\
& \quad=\int_{\mathbb{T}} \int_{\mathbb{T}}\left|f_{1+}\left(r \varsigma_{1}, \varsigma_{2}\right) P_{2} g_{1-}\left(r \varsigma_{1}, \varsigma_{2}\right) k_{z_{2}}\left(\varsigma_{2}\right)\right|^{2} d \sigma\left(\varsigma_{2}\right) d \sigma\left(\varsigma_{1}\right) \\
& \quad \leqslant C\left(z_{2}\right)\left\{\int\left|f_{\mathbb{T}^{2}}(\varsigma)\right|^{4} d \sigma(\varsigma)\right\}^{\frac{1}{2}}\left\{\int_{\mathbb{T}^{2}}\left|g_{1-}(\varsigma)\right|^{4} d \sigma(\varsigma)\right\}^{\frac{1}{2}}
\end{aligned}
$$

where $C\left(z_{2}\right)$ is a constant for fixed z_{2}. Thus

$$
\varlimsup_{r \rightarrow 1^{-}} \int_{\mathbb{T}}\left|\left\langle T_{f_{1+}\left(r \varsigma_{1}, \varsigma_{2}\right)} T_{g_{1-}\left(r_{\varsigma_{1}}, \varsigma_{2}\right)} k_{z_{2}}, k_{z_{2}}\right\rangle\right|^{2} d \sigma\left(\varsigma_{1}\right)<\infty .
$$

If we write

$$
g_{1-}\left(z_{1}, \varsigma_{2}\right)=\sum_{n=1}^{+\infty} \hat{g}_{1-}\left(n, \varsigma_{2}\right) \bar{z}_{1}^{n}
$$

and

$$
f_{1+}\left(z_{1}, \varsigma_{2}\right)=\sum_{m=0}^{+\infty} \hat{f}_{1+}\left(m, \varsigma_{2}\right) z_{1}^{m}
$$

we have

$$
\left\langle f_{1+}\left(z_{1}, \varsigma_{2}\right) P_{2} g_{1-}\left(z_{1}, \varsigma_{2}\right) k_{z_{2}}, k_{z_{2}}\right\rangle=\sum_{n=1}^{+\infty} \sum_{m=0}^{+\infty}\left\langle\hat{f}_{1+}\left(m, \varsigma_{2}\right) P_{2} \hat{g}_{1-}\left(n, \varsigma_{2}\right) k_{z_{2}}, k_{z_{2}}\right) z_{1}^{m} \bar{z}_{1}^{n}
$$

Using the polar coordinates for $z_{1}=r \varsigma_{1}$ and taking the limit as r tends to 1 give

$$
\begin{aligned}
& \lim _{r \rightarrow 1}\left\langle f_{1+}\left(r \varsigma_{1}, \cdot\right) P_{2} g_{1-}\left(r \varsigma_{1}, \cdot\right) k_{z_{2}}, k_{z_{2}}\right\rangle \\
& \quad=\lim _{r \rightarrow 1} \sum_{n=1}^{+\infty} \sum_{m=0}^{+\infty}\left\langle\hat{f}_{1+}(m, \cdot) P_{2} \hat{g}_{1-}(n, \cdot) k_{z_{2}}, k_{z_{2}}\right\rangle\left(r \varsigma_{1}\right)^{m}\left(r \varsigma_{1}\right)^{n} \\
& \quad=\sum_{n=1}^{+\infty} \sum_{m=0}^{+\infty}\left\langle\hat{f}_{1+}(m, \cdot) P_{2} \hat{g}_{1-}(n, \cdot) k_{z_{2}}, k_{z_{2}}\right\rangle\left(\varsigma_{1}\right)^{m}\left(\bar{\varsigma}_{1}\right)^{n} \\
& \quad=\left\langle f_{1+}\left(\varsigma_{1}, \cdot\right) P_{2} g_{1-}\left(\varsigma_{1}, \cdot\right) k_{z_{2}}, k_{z_{2}}\right\rangle .
\end{aligned}
$$

Thus we obtain

$$
\lim _{r \rightarrow 1}\left\langle T_{f_{1+}\left(r \varsigma_{1}, \cdot\right)} T_{g_{1-}\left(r \varsigma_{1}, \cdot\right)} k_{z_{2}}, k_{z_{2}}\right\rangle=\left\langle T_{f_{1+}\left(\varsigma_{1}, \cdot\right)} T_{g_{1-}\left(\varsigma_{1}, \cdot\right)} k_{z_{2}}, k_{z_{2}}\right\rangle .
$$

Letting

$$
F\left(\varsigma_{1}\right)=\left\langle\left[T_{f_{1+}\left(\varsigma_{1}, \cdot\right)} T_{g_{1-(}\left(\varsigma_{1}, \cdot\right)}-T_{g_{1+}\left(\varsigma_{1}, \cdot\right)} T_{f_{1-\left(\varsigma_{1}, \cdot\right)}}\right] k_{z_{2}}, k_{z_{2}}\right\rangle,
$$

by Theorem 2.1, we have that the harmonic extension of $F\left(\varsigma_{1}\right)$ is given by

$$
\hat{F}\left(z_{1}\right)=\left\langle\left[T_{f_{1+}\left(z_{1}, \cdot\right)} T_{g_{1-\left(z_{1}, \cdot\right)}}-T_{g_{1+}\left(z_{1}, \cdot\right)} T_{\left.f_{1-\left(z_{1}, \cdot\right)}\right]}\right] k_{z_{2}}, k_{z_{2}}\right\rangle .
$$

An easy calculation gives that the Berezin transform of the commutator $T_{f} T_{g}-T_{g} T_{f}$ is equal to

$$
\begin{aligned}
&\langle[\left.\left.T_{f} T_{g}-T_{g} T_{f}\right] k_{z}, k_{z}\right\rangle \\
&= \int_{\mathbb{T}}\left\langle\left[T_{f_{1-(}(\varsigma)} T_{g_{1+}(\varsigma)}-T_{g_{1-}(\varsigma)} T_{f_{1+}(\varsigma)}\right] k_{z_{2}}, k_{z_{2}}\right)\left|k_{z_{1}}\left(\varsigma_{1}\right)\right|^{2} d \sigma\left(\varsigma_{1}\right) \\
&+\left.\left\langle\left[T_{f_{1+}\left(z_{1}, \cdot\right)} T_{g_{1+}\left(z_{1}, \cdot\right)}-T_{g_{1+}\left(z_{1}, \cdot\right)} T_{f_{1+(}\left(z_{1}, \cdot\right)}\right] k_{z_{2}}, k_{z_{2}}\right)\right|_{H^{2}(\mathbb{D})} \\
&+\left.\left\langle\left[T_{f_{1-\left(z_{1}, \cdot\right)}} T_{g_{1-\left(z_{1}, \cdot\right)}}-T_{g_{1-(}\left(z_{1}, \cdot\right)} T_{\left.f_{1-\left(z_{1}, \cdot\right)}\right]}\right] k_{z_{2}}, k_{z_{2}}\right)\right|_{H^{2}(\mathbb{D})} \\
& \quad+\left\langle\left.\left[\left[T_{f_{1+}\left(z_{1}, \cdot\right)} T_{g_{1-\left(z_{1}, \cdot\right)}}-T_{g_{1+}\left(z_{1}, \cdot\right)} T_{f_{1-}\left(z_{1}, \cdot\right)}\right] k_{z_{2}}, k_{z_{2}}\right\rangle\right|_{H^{2}(\mathbb{D})}\right.
\end{aligned}
$$

$$
\begin{align*}
= & \int_{\mathbb{T}}\left\langle\left[T_{f\left(\varsigma_{1}, \cdot\right)} T_{g\left(\varsigma_{1}, \cdot\right)}-T_{g\left(\varsigma_{1}, \cdot\right)} T_{f\left(\varsigma_{1}, \cdot\right)}\right] k_{z_{2}}, k_{z_{2}}\right)\left|k_{z_{1}}\right|^{2} d \sigma\left(\varsigma_{1}\right) \tag{*}\\
= & \int_{\mathbb{T}}\left[f_{2+}\left(\varsigma_{1}, z_{2}\right) g_{2-}\left(\varsigma_{1}, z_{2}\right)-g_{2+}\left(\varsigma_{1}, z_{2}\right) f_{2-}\left(\varsigma_{1}, z_{2}\right)\right]\left|k_{z_{1}}\right|^{2} d \sigma\left(\varsigma_{1}\right) \\
& +\int_{\mathbb{T}^{2}}\left[f_{2-}(\varsigma) g_{2+}(\varsigma)-g_{2-}(\varsigma) f_{2+}(\varsigma)\right]\left|k_{z}\right|^{2} d \sigma(\varsigma) .
\end{align*}
$$

The last two equalities follow from calculating the action of the commutator of two Toeplitz operators on reproducing kernels on the Hardy space of the unit circle. By the same argument, we have

$$
\left\langle\left[T_{f} T_{g}-T_{g} T_{f}\right] k_{z}, k_{z}\right\rangle=\int_{\mathbb{T}}\left\langle\left[T_{f\left(\cdot, \varsigma_{2}\right)} T_{g\left(\cdot, \varsigma_{2}\right)}-T_{g\left(\cdot, \varsigma_{2}\right)} T_{f\left(\cdot, \varsigma_{2}\right)}\right] k_{z_{1}}, k_{z_{1}}\right\rangle\left|k_{z_{2}}\left(\varsigma_{2}\right)\right|^{2} d \sigma\left(\varsigma_{2}\right)
$$

is harmonic in variable z_{2}. Thus we have that

$$
\int_{\mathbb{T}}\left[f_{2+}\left(\varsigma_{1}, z_{2}\right) g_{2-}\left(\varsigma_{1}, z_{2}\right)-g_{2+}\left(\varsigma_{1}, z_{2}\right) f_{2-}\left(\varsigma_{1}, z_{2}\right)\right]\left|k_{z_{1}}\right|^{2} d \sigma\left(\varsigma_{1}\right)
$$

is also harmonic in variable z_{2}. Differentiating under the integral sign, we obtain

$$
\int_{\mathbb{T}}\left\{\Delta_{2}\left[f_{2+}\left(\varsigma_{1}, z_{2}\right) g_{2-}\left(\varsigma_{1}, z_{2}\right)-g_{2+}\left(\varsigma_{1}, z_{2}\right) f_{2-}\left(\varsigma_{1}, z_{2}\right)\right]\right\}\left|k_{z_{1}}\right|^{2} d \sigma\left(\varsigma_{1}\right)=0 .
$$

Since the Berezin transform is one-to-one, it follows

$$
\Delta_{2}\left[f_{2+}\left(\varsigma_{1}, z_{2}\right) g_{2-}\left(\varsigma_{1}, z_{2}\right)-g_{2+}\left(\varsigma_{1}, z_{2}\right) f_{2-}\left(\varsigma_{1}, z_{2}\right)\right]=0 .
$$

This implies that $f\left(\varsigma_{1}, z_{2}\right)_{2+} g\left(\varsigma_{1}, z_{2}\right)_{2-}-g\left(\varsigma_{1}, z_{2}\right)_{2+} f\left(\varsigma_{1}, z_{2}\right)_{2-}$ is harmonic in variable z_{2}. By Theorem 2.2,

$$
T_{f\left(\varsigma_{1}, \cdot\right)} T_{g\left(\varsigma_{1}, \cdot\right)}=T_{g\left(\varsigma_{1}, \cdot\right)} T_{f\left(\varsigma_{1}, \cdot\right)} .
$$

By Eq. (*), we have

$$
\left\langle\left[T_{f} T_{g}-T_{g} T_{f}\right] k_{z}, k_{z}\right\rangle=\int_{\mathbb{T}}\left\langle\left[T_{f\left(\varsigma_{1}, \cdot\right)} T_{g\left(\varsigma_{1}, \cdot\right)}-T_{g\left(\varsigma_{1}, \cdot\right)} T_{f\left(\varsigma_{1}, \cdot\right)}\right] k_{z_{2}}, k_{z_{2}}\right|\left|k_{z_{1}}\right|^{2} d \sigma\left(\varsigma_{1}\right)=0 .
$$

Since the Berezin transform is one-to-one, it follows that

$$
T_{f} T_{g}=T_{g} T_{f}
$$

This completes the proof.

4. Proof of the first version of the main result

Theorem 3.1 gives a necessary and sufficient condition for two Toeplitz operators to be commuting on the Hardy space of the bidisk in terms of the Berezin transform by reducing it to the disk. In this section, using Theorem 3.1 we will give the proof of Theorem 1.4.

Proof of Theorem 1.4. First we assume that the Toeplitz operator T_{f} commutes with the Toeplitz operator T_{g} on the Hardy space of the bidisk. By Theorem 3.1, we obtain

$$
\left\langle\left[T_{f_{1+}\left(z_{1}, \cdot\right)} T_{g_{1-}\left(z_{1}, \cdot\right)}-T_{g_{1+}\left(z_{1}, \cdot\right)} T_{\left.f_{1-\left(z_{1}, \cdot\right)}\right]}\right] k_{z_{2}}, k_{z_{2}}\right\rangle
$$

is harmonic in variable z_{1}. Taking differentiation under the integral gives

$$
\begin{aligned}
0 & =\Delta_{1}\left\langle\left[T_{f_{1+}\left(z_{1}, \cdot\right)} T_{g_{1-\left(z_{1}, \cdot\right)}}-T_{g_{1+}\left(z_{1}, \cdot\right)} T_{f_{1-(}\left(z_{1}, \cdot\right)}\right] k_{z_{2}}, k_{z_{2}}\right\rangle \\
& =\left\langle\left[T_{\partial_{1} f_{1+}\left(z_{1}, \cdot\right)} T_{\bar{\partial}_{1} g_{1-(}\left(z_{1}, \cdot\right)}-T_{\partial_{1} g_{1+}\left(z_{1}, \cdot\right)} T_{\bar{\partial}_{1} f_{1-(}\left(z_{1}, \cdot\right)}\right] k_{z_{2}}, k_{z_{2}}\right\rangle .
\end{aligned}
$$

Since the Berezin transform is injective, this implies that for a fixed z_{1} in the unit disk,

$$
T_{\partial_{1} f_{1+}\left(z_{1}, \cdot\right)} T_{\bar{\partial}_{1} g_{1-(}\left(z_{1}, \cdot\right)}-T_{\partial_{1} g_{1+}\left(z_{1}, \cdot\right)} T_{\bar{\partial}_{1} f_{1-}\left(z_{1}, \cdot\right)}=0
$$

on $H^{2}(\mathbb{D})$. Theorem 2.2 gives that for almost all $\varsigma_{2} \in \mathbb{T}$,

$$
\partial_{1} f\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} g\left(z_{1}, \varsigma_{2}\right)=\partial_{1} g\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} f\left(z_{1}, \varsigma_{2}\right)
$$

holds for $z_{1} \in \mathbb{D}$, and

$$
\left(\partial_{1} f_{1+}\left(z_{1}, z_{2}\right)\right)_{2+}\left(\bar{\partial}_{1} g_{1-}\left(z_{1}, z_{2}\right)\right)_{2-}-\left(\partial_{1} g_{1+}\left(z_{1}, z_{2}\right)\right)_{2+}\left(\bar{\partial}_{1} f_{1-}\left(z_{1}, z_{2}\right)\right)_{2-}
$$

is harmonic in variable z_{2}. Thus Condition (a) holds. Applying the Laplacian operator with respect to the variable z_{2} to the above function gives

$$
\partial_{2}\left(\partial_{1} f_{1+}\left(z_{1}, z_{2}\right)\right)_{2+} \bar{\partial}_{2}\left(\bar{\partial}_{1} g_{1-}\left(z_{1}, z_{2}\right)\right)_{2-}-\partial_{2}\left(\partial_{1} g_{1+}\left(z_{1}, z_{2}\right)\right)_{2+} \bar{\partial}_{2}\left(\bar{\partial}_{1} f_{1-}\left(z_{1}, z_{2}\right)\right)_{2-}=0
$$

Since $f_{1+}=f_{++}+f_{+-}, f_{1-}=f_{--}+f_{-+}, g_{1+}=g_{++}+g_{+-}$and $g_{1-}=g_{--}+g_{-+}$, we have

$$
\begin{aligned}
& \partial_{2}\left(\partial_{1} f_{1+}\left(z_{1}, z_{2}\right)\right)_{2+}=\partial_{1} \partial_{2} f_{++}\left(z_{1}, z_{2}\right), \\
& \bar{\partial}_{2}\left(\bar{\partial}_{1} g_{1-}\left(z_{1}, z_{2}\right)\right)_{2-}=\bar{\partial}_{1} \bar{\partial}_{2} g_{--}\left(z_{1}, z_{2}\right), \\
& \partial_{2}\left(\partial_{1} g_{1+}\left(z_{1}, z_{2}\right)\right)_{2+}=\partial_{1} \partial_{2} g_{++}\left(z_{1}, z_{2}\right), \\
& \bar{\partial}_{2}\left(\bar{\partial}_{1} f_{1-}\left(z_{1}, z_{2}\right)\right)_{2-}=\bar{\partial}_{1} \bar{\partial}_{2} f_{--}\left(z_{1}, z_{2}\right),
\end{aligned}
$$

so from the equation we get

$$
\partial_{1} \partial_{2} f_{++}\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} g_{--}\left(z_{1}, z_{2}\right)=\partial_{1} \partial_{2} g_{++}\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} f_{--}\left(z_{1}, z_{2}\right)
$$

This implies Condition (c):

$$
\partial_{1} \partial_{2} f\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} g\left(z_{1}, z_{2}\right)=\partial_{1} \partial_{2} g\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} f\left(z_{1}, z_{2}\right)
$$

since

$$
\begin{aligned}
& \partial_{1} \partial_{2} f_{++}\left(z_{1}, z_{2}\right)=\partial_{1} \partial_{2} f\left(z_{1}, z_{2}\right), \\
& \bar{\partial}_{1} \bar{\partial}_{2} f_{--}\left(z_{1}, z_{2}\right)=\bar{\partial}_{1} \bar{\partial}_{2} f\left(z_{1}, z_{2}\right), \\
& \bar{\partial}_{1} \bar{\partial}_{2} g_{--}\left(z_{1}, z_{2}\right)=\bar{\partial}_{1} \bar{\partial}_{2} g\left(z_{1}, z_{2}\right), \\
& \partial_{1} \partial_{2} g_{++}\left(z_{1}, z_{2}\right)=\partial_{1} \partial_{2} g\left(z_{1}, z_{2}\right) .
\end{aligned}
$$

Using the second condition in Theorem 3.1 that

$$
\left\langle\left[T_{f_{2+}\left(\cdot, z_{2}\right)} T_{g_{2-}\left(\cdot, z_{2}\right)}-T_{g_{1+}\left(\cdot, z_{2}\right)} T_{f_{1-}\left(\cdot, z_{2}\right)}\right] k_{z_{1}}, k_{z_{1}}\right\rangle
$$

is harmonic in variable z_{2}, as we did as above, we derive that for almost all $\varsigma_{1} \in T$,

$$
\partial_{2} f\left(\varsigma_{1}, z_{2}\right) \bar{\partial}_{2} g\left(\varsigma_{1}, z_{2}\right)=\partial_{2} g\left(\varsigma_{1}, z_{2}\right) \bar{\partial}_{2} f\left(\varsigma_{2}, z_{2}\right)
$$

holds for $z_{2} \in \mathbb{D}$. Thus Condition (b) holds.
Conversely, suppose Conditions (a), (b) and (c) hold. For z_{1} in \mathbb{D}, and ς_{2} in \mathbb{T},

$$
\partial_{1} f\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} g\left(z_{1}, \varsigma_{2}\right)=\partial_{1} g\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} f\left(z_{1}, \varsigma_{2}\right)
$$

and for z_{2} in $\mathbb{D}, \varsigma_{1}$ in \mathbb{T},

$$
\partial_{2} f\left(\varsigma_{1}, z_{2}\right) \bar{\partial}_{2} g\left(\varsigma_{1}, z_{2}\right)=\partial_{2} g\left(\varsigma_{1}, z_{2}\right) \bar{\partial}_{2} f\left(\varsigma_{1}, z_{2}\right)
$$

For z_{1}, z_{2} in \mathbb{D},

$$
\partial_{1} \partial_{2} f\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} g\left(z_{1}, z_{2}\right)=\partial_{1} \partial_{2} g\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} f\left(z_{1}, z_{2}\right)
$$

This gives

$$
\left(\partial_{1} f_{1+}\left(z_{1}, z_{2}\right)\right)_{2+}\left(\bar{\partial}_{1} g_{1-}\left(z_{1}, z_{2}\right)\right)_{2-}-\left(\partial_{1} g_{1+}\left(z_{1}, z_{2}\right)\right)_{2+}\left(\bar{\partial}_{1} f_{1-}\left(z_{1}, z_{2}\right)\right)_{2-}
$$

is harmonic in variable z_{2} and

$$
\partial_{1} f_{1+}\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} g_{1-}\left(z_{1}, \varsigma_{2}\right)=\partial_{1} g_{1+}\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} f_{1-}\left(z_{1}, \varsigma_{2}\right) .
$$

By Theorem 2.2, we obtain

$$
T_{\partial_{1} f_{1+}\left(z_{1}, \cdot\right)} T_{\bar{\partial}_{1} g_{1-}\left(z_{1}, \cdot\right)}-T_{\partial_{1} g_{1+}\left(z_{1}, \cdot\right)} T_{\bar{\partial}_{1} f_{1-}\left(z_{1}, \cdot\right)}=0 .
$$

This implies that

$$
\left\langle\left[T_{f_{1+}+\left(z_{1},\right)} T_{g_{1-(}\left(z_{1},\right)}-T_{g_{1+}\left(z_{1},\right)} T_{\left.f_{1-\left(z_{1},\right)}\right)} k_{z_{2}}, k_{z_{2}}\right\rangle\right.
$$

is harmonic in variable z_{1}.
On the other hand,

$$
\partial_{1} \partial_{2} f_{++}\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} g_{--}\left(z_{1}, z_{2}\right)=\partial_{1} \partial_{2} g_{++}\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} f_{--}\left(z_{1}, z_{2}\right)
$$

implies that

$$
\left(\partial_{2} f_{2+}\left(z_{1}, z_{2}\right)\right)_{1+}\left(\bar{\partial}_{2} g_{2-}\left(z_{1}, z_{2}\right)\right)_{1-}-\left(\partial_{2} g_{2+}\left(z_{1}, z_{2}\right)\right)_{1+}\left(\bar{\partial}_{2} f_{2-}\left(z_{1}, z_{2}\right)\right)_{1-}
$$

is harmonic in variable z_{1} and

$$
\partial_{2} f_{2+}\left(\varsigma_{1}, z_{2}\right) \bar{\partial}_{2} g_{2-}\left(\varsigma_{1}, z_{2}\right)=\partial_{2} g_{2+}\left(\varsigma_{1}, z_{2}\right) \bar{\partial}_{2} f_{2-}\left(\varsigma_{1}, z_{2}\right) .
$$

By Theorem 2.2 again, we have

$$
T_{\partial_{2} f_{2+}\left(\cdot, z_{2}\right)} T_{\bar{\partial}_{2} g_{2-}\left(\cdot, z_{2}\right)}-T_{\partial_{2} g_{2+}\left(\cdot ; z_{2}\right)} T_{\bar{\partial}_{2} f_{2}-\left(\cdot, z_{2}\right)}=0
$$

to get that

$$
\left\langle\left[T_{f_{2+}\left(\cdot, z_{2}\right)} T_{g_{2-}\left(\cdot, z_{2}\right)}-T_{g_{2+}\left(\cdot, z_{2}\right)} T_{f_{2-}\left(\cdot, z_{2}\right)}\right] k_{z_{1}}, k_{z_{1}}\right\rangle
$$

is harmonic in variable z_{2}. Theorem 3.1 gives that T_{f} commutes with T_{g}. This completes the proof.

5. Proof of the second version of the main result

In this section we will prove the second version of the main result by using Theorem 1.4. At the end of the section we will obtain a characterization of normal Toeplitz operators.

Proof of Theorem 1.5. First we observe that if Condition (a) holds, then for z_{1} in \mathbb{D} and almost all ς_{2} in \mathbb{T},

$$
\partial_{1} f\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} g\left(z_{1}, \varsigma_{2}\right)=\partial_{1} g\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} f\left(z_{1}, \varsigma_{2}\right) ;
$$

if Condition (b) holds, then for z_{2} in \mathbb{D} and almost all ς_{1} in \mathbb{T},

$$
\partial_{2} f\left(\varsigma_{1}, z_{2}\right) \bar{\partial}_{2} g\left(\varsigma_{1}, z_{2}\right)=\partial_{2} g\left(\varsigma_{1}, z_{2}\right) \bar{\partial}_{2} f\left(\varsigma_{1}, z_{2}\right)
$$

and if Condition (c) holds, then for all $z_{1}, z_{2} \in \mathbb{D}$,

$$
\partial_{1} \partial_{2} f\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} g\left(z_{1}, z_{2}\right)=\partial_{1} \partial_{2} g\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} f\left(z_{1}, z_{2}\right) .
$$

By Theorem 1.4, we have that T_{f} commutes with T_{g}.
Conversely, assuming that T_{f} commutes with T_{g}, we will derive three conditions.

We will show that Condition (c) holds. By Theorem 1.4, we have that for $\left(z_{1}, z_{2}\right)$ in \mathbb{D}^{2},

$$
\begin{equation*}
\partial_{1} \partial_{2} f_{++}\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} g_{--}\left(z_{1}, z_{2}\right)=\partial_{1} \partial_{2} g_{++}\left(z_{1}, z_{2}\right) \bar{\partial}_{1} \bar{\partial}_{2} f_{--}\left(z_{1}, z_{2}\right) \tag{5.1}
\end{equation*}
$$

Now we consider two cases.
First if one of $\partial_{1} \partial_{2} f_{++}\left(z_{1}, z_{2}\right), \bar{\partial}_{1} \bar{\partial}_{2} g_{--}\left(z_{1}, z_{2}\right), \partial_{1} \partial_{2} g_{++}\left(z_{1}, z_{2}\right)$ and $\bar{\partial}_{1} \bar{\partial}_{2} f_{--}\left(z_{1}, z_{2}\right)$ identically equals zero on the bidisk \mathbb{D}^{2}, for simplicity, we may assume

$$
\partial_{1} \partial_{2} f_{++}\left(z_{1}, z_{2}\right) \equiv 0
$$

on \mathbb{D}^{2}, then

$$
f_{++}\left(z_{1}, z_{2}\right)=f_{1}\left(z_{1}\right)+f_{2}\left(z_{2}\right)
$$

on \mathbb{D}^{2} for two functions f_{1} and f_{2} in H^{q} for every $q>1$. Moreover Eq. (5.1) gives that either

$$
\partial_{1} \partial_{2} g_{++}\left(z_{1}, z_{2}\right)=0
$$

or

$$
\bar{\partial}_{1} \bar{\partial}_{2} f_{--}\left(z_{1}, z_{2}\right)=0
$$

on \mathbb{D}^{2}. Thus this implies that

$$
g_{++}\left(z_{1}, z_{2}\right)=g_{1}\left(z_{1}\right)+g_{2}\left(z_{2}\right)
$$

or

$$
f_{--}\left(z_{1}, z_{2}\right)=\overline{h_{1}\left(z_{1}\right)}+\overline{h_{2}\left(z_{2}\right)}
$$

where g_{1}, g_{2}, h_{1} and h_{2} are in H^{q} for every $q>1$. So Condition (c1) holds or Condition (c3) holds.

Next if none of $\partial_{1} \partial_{2} f_{++}\left(z_{1}, z_{2}\right), \bar{\partial}_{1} \bar{\partial}_{2} g_{--}\left(z_{1}, z_{2}\right), \partial_{1} \partial_{2} g_{++}\left(z_{1}, z_{2}\right)$ and $\bar{\partial}_{1} \bar{\partial}_{2} f_{--}\left(z_{1}, z_{2}\right)$ identically equals zero on the bidisk \mathbb{D}^{2}, then

$$
\frac{\partial_{1} \partial_{2} f_{++}\left(z_{1}, z_{2}\right)}{\partial_{1} \partial_{2} g_{++}\left(z_{1}, z_{2}\right)}=\frac{\bar{\partial}_{1} \bar{\partial}_{2} f_{--}\left(z_{1}, z_{2}\right)}{\bar{\partial}_{1} \bar{\partial}_{2} g_{--}\left(z_{1}, z_{2}\right)}
$$

The right hand side of the above equation is analytic in both z_{1} and z_{2} in the bidisk and the left hand side of the equation is co-analytic in both z_{1} and z_{2} in the bidisk except for a zero set of an analytic function of z_{1} and z_{2}. Thus it must be a constant C. So this implies that

$$
f_{++}-C g_{++}=h_{1}\left(z_{1}\right)+h_{2}\left(z_{2}\right)
$$

and

$$
f_{--}-C g_{--}=\overline{r_{1}\left(z_{1}\right)}+\overline{r_{2}\left(z_{2}\right)}
$$

where $h_{i}, r_{i} \in H^{q}(\mathbb{D})$ for every $q>1$. Thus Condition (c3) holds. So we have proved that Condition (c) holds.

Now we turn to the proof of that Conditions (a) and (b) hold if T_{f} commutes with T_{g} and Condition (c) holds. We need only prove that Condition (a) holds. The same argument will derive Condition (b). We consider three cases.

First assume Condition (c1) holds:

$$
f_{++}\left(z_{1}, z_{2}\right)=f_{1}\left(z_{1}\right)+f_{2}\left(z_{2}\right)
$$

and

$$
g_{++}\left(z_{1}, z_{2}\right)=g_{1}\left(z_{1}\right)+g_{2}\left(z_{2}\right),
$$

where $f_{1}, f_{2}, g_{1}, g_{2} \in H^{q}(\mathbb{D})$ for every $q>1$. Thus we have

$$
\begin{aligned}
\partial_{1} f\left(z_{1}, \varsigma_{2}\right) & =\partial_{1}\left[f_{++}\left(z_{1}, \varsigma_{2}\right)+f_{+-}\left(z_{1}, \varsigma_{2}\right)+f_{-+}\left(z_{1}, \varsigma_{2}\right)+f_{--}\left(z_{1}, \varsigma_{2}\right)\right] \\
& =\partial_{1}\left[f_{++}\left(z_{1}, \varsigma_{2}\right)+f_{+-}\left(z_{1}, \varsigma_{2}\right)\right] \\
& =\partial_{1}\left[f_{1}\left(z_{1}\right)+f_{2}\left(\varsigma_{2}\right)+f_{+-}\left(z_{1}, \varsigma_{2}\right)\right] \\
& =\partial_{1}\left[f_{1}\left(z_{1}\right)+f_{+-}\left(z_{1}, \varsigma_{2}\right)\right] .
\end{aligned}
$$

So $\partial_{1} f\left(z_{1}, \varsigma_{2}\right)$ is in $\overline{H^{2}(\mathbb{D})}$ for the second variable ς_{2}. Similarly, we also have that

$$
\partial_{1} g\left(z_{1}, \varsigma_{2}\right)=\partial_{1}\left[g_{1}\left(z_{1}\right)+g_{+-}\left(z_{1}, \varsigma_{2}\right)\right]
$$

is in $\overline{H^{2}(\mathbb{D})}$ for the second variable ς_{2}.
If there is a positive measure set $E \subset \mathbb{T}$ such that for $\varsigma_{2} \in E$,

$$
\partial_{1} f\left(z_{1}, \varsigma_{2}\right)=0
$$

for $z_{1} \in \mathbb{D}$, we have

$$
\partial_{1} f\left(z_{1}, \varsigma_{2}\right)=0
$$

for z_{1} in \mathbb{D} and for almost all $\varsigma_{2} \in \mathbb{T}$ since $\partial_{1} f\left(z_{1}, \varsigma_{2}\right)$ is in $\overline{H^{2}(\mathbb{D})}$ for the second variable ς_{2}. By Theorem 1.4, we have

$$
\begin{equation*}
\partial_{1} f\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} g\left(z_{1}, \varsigma_{2}\right)=\partial_{1} g\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} f\left(z_{1}, \varsigma_{2}\right) . \tag{5.2}
\end{equation*}
$$

This implies

$$
\partial_{1} g\left(z_{1}, \varsigma_{2}\right) \equiv 0
$$

for z_{1} in \mathbb{D} and for almost all ς_{2} in \mathbb{T} or

$$
\bar{\partial}_{1} f\left(z_{1}, \varsigma_{2}\right) \equiv 0
$$

for z_{1} in \mathbb{D} and for almost all ς_{2} in \mathbb{T} since $\partial_{1} g\left(z_{1}, \varsigma_{2}\right)$ is in $\overline{H^{2}(\mathbb{D})}$ for the second variable ς_{2}. Thus $f\left(z_{1}, \varsigma_{2}\right)$ and $g\left(z_{1}, \varsigma_{2}\right)$ are both co-analytic in variable z_{1}, which gives Condition (a2), or $f\left(z_{1}, \varsigma_{2}\right)$ is a constant in variable z_{1}. The later case implies that $1 \cdot f\left(z_{1}, \varsigma_{2}\right)+0 \cdot g\left(z_{1}, \varsigma_{2}\right)$ is constant in variable z_{1}, which gives Condition (a3).

By the same argument, if $\partial_{1} g\left(z_{1}, \varsigma_{2}\right)$ identically equals zero for z_{1} in \mathbb{D} and for ς_{2} on a positive measure subset of \mathbb{T}, then Condition (a) holds.

Next assume that none of $\partial_{1} f\left(z_{1}, \varsigma_{2}\right)$ and $\partial_{1} g\left(z_{1}, \varsigma_{2}\right)$ identically equals zero for z_{1} in \mathbb{D} and for ς_{2} on a positive measure subset of \mathbb{T}. Let

$$
E_{g}=\left\{\varsigma_{2} \in \mathbb{T}: \bar{\partial}_{1} g\left(z_{1}, \varsigma_{2}\right) \equiv 0 \text { for } z_{1} \text { in } \mathbb{D}\right\}
$$

If $\sigma\left(E_{g}\right)=\sigma(\mathbb{T})$, then for almost all ς_{2} in \mathbb{T},

$$
\bar{\partial}_{1} g\left(z_{1}, \varsigma_{2}\right) \equiv 0
$$

for z_{1} in \mathbb{D}. Thus (5.2) gives that for almost ς_{2} in \mathbb{T},

$$
\bar{\partial}_{1} f\left(z_{1}, \varsigma_{2}\right) \equiv 0
$$

for z_{1} in \mathbb{D}. This implies that for almost all ς_{2} in \mathbb{T}, both $g\left(z_{1}, \varsigma_{2}\right)$ and $f\left(z_{1}, \varsigma_{2}\right)$ are analytic in z_{1}. Thus we obtain Condition (a1).

If $\sigma\left(E_{g}\right)<\sigma(\mathbb{T}),(5.2)$ gives that for almost all ς_{2} in the complement E_{g}^{c} of E_{g},

$$
\frac{\partial_{1} f\left(z_{1}, \varsigma_{2}\right)}{\partial_{1} g\left(z_{1}, \varsigma_{2}\right)}=\frac{\bar{\partial}_{1} f\left(z_{1}, \varsigma_{2}\right)}{\bar{\partial}_{1} g\left(z_{1}, \varsigma_{2}\right)}
$$

on \mathbb{D}. The left hand side of the above equation is analytic in variable z_{1} and the right hand side of the equation is co-analytic in variable z_{1}. Thus it must be constant with respect to the variable z_{1}. So for almost all $\varsigma_{2} \in E_{g}^{c}$, there is a function $a\left(\varsigma_{2}\right)$ of ς_{2} such that

$$
\frac{\partial_{1} f\left(z_{1}, \varsigma_{2}\right)}{\partial_{1} g\left(z_{1}, \varsigma_{2}\right)}=\frac{\bar{\partial}_{1} f\left(z_{1}, \varsigma_{2}\right)}{\bar{\partial}_{1} g\left(z_{1}, \varsigma_{2}\right)}=a\left(\varsigma_{2}\right) .
$$

This gives that for almost all ς in \mathbb{T},

$$
\chi_{E_{g}^{c}}\left(\varsigma_{2}\right) f\left(z_{1}, \varsigma_{2}\right)-a\left(\varsigma_{2}\right) \chi_{E_{g}^{c}}\left(\varsigma_{2}\right) g\left(z_{1}, \varsigma_{2}\right)
$$

is a constant in variable z_{1} and the function $a\left(\varsigma_{2}\right)$ is defined to be equal to zero on E_{g}. Hence Condition (a3) holds.

Next assume Condition (c2) holds. By the same argument as in the previous case, we obtain that Condition (a) holds.

Finally assume Condition (c3) holds. In this case, there exist constants a, b, not both zero, such that

$$
a f_{++}\left(z_{1}, z_{2}\right)+b g_{++}\left(z_{1}, z_{2}\right)=h_{1}\left(z_{1}\right)+h_{2}\left(z_{2}\right)
$$

and

$$
a f_{--}\left(z_{1}, z_{2}\right)+b g_{--}\left(z_{1}, z_{2}\right)=\overline{r_{1}\left(z_{1}\right)}+\overline{r_{2}\left(z_{2}\right)},
$$

where $h_{1}, h_{2}, r_{1}, r_{2} \in H^{q}(\mathbb{D})$ for every $q>1$.
If one of a and b equals zero, then we can use the same method as in the first case to obtain that Condition (a) holds.

Now we assume that $a \neq 0$ and $b \neq 0$. We have

$$
f_{++}\left(z_{1}, z_{2}\right)=-\frac{b}{a} g_{++}\left(z_{1}, z_{2}\right)+H_{1}\left(z_{1}\right)+H_{2}\left(z_{2}\right)
$$

and

$$
f_{--}\left(z_{1}, z_{2}\right)=-\frac{b}{a} g_{--}\left(z_{1}, z_{2}\right)+\bar{R}_{1}\left(z_{1}\right)+\bar{R}_{2}\left(z_{2}\right)
$$

where $H_{i}=-\frac{b}{a} h_{i}$ and $R_{i}=-\frac{b}{a} r_{i}$. Let

$$
F\left(z_{1}, z_{2}\right)=f\left(z_{1}, z_{2}\right)+\frac{b}{a} g\left(z_{1}, z_{2}\right)
$$

Since T_{f} commutes with T_{g}, we obtain

$$
T_{F} T_{g}=T_{g} T_{F}
$$

Also we have

$$
F_{++}\left(z_{1}, z_{2}\right)=f_{++}\left(z_{1}, z_{2}\right)+\frac{b}{a} g_{++}\left(z_{1}, z_{2}\right)=H_{1}\left(z_{1}\right)+H_{2}\left(z_{2}\right)
$$

and

$$
F_{--}\left(z_{1}, z_{2}\right)=f_{--}\left(z_{1}, z_{2}\right)+\frac{b}{a} g_{--}\left(z_{1}, z_{2}\right)=\bar{R}_{1}\left(z_{1}\right)+\bar{R}_{2}\left(z_{2}\right)
$$

to get

$$
\partial_{1} F\left(z_{1}, \varsigma_{2}\right)=\partial_{1}\left[H_{1}\left(z_{1}\right)+F_{+-}\left(z_{1}, \varsigma_{2}\right)\right]
$$

is analytic in z_{1} and co-analytic in ς_{2}, and

$$
\bar{\partial}_{1} F\left(z_{1}, \varsigma_{2}\right)=\bar{\partial}_{1}\left[\bar{R}_{1}\left(z_{1}\right)+F_{-+}\left(z_{1}, \varsigma_{2}\right)\right]
$$

is co-analytic in z_{1} and analytic in ς_{2}. We observe that for almost each ς_{2} in \mathbb{T}, the zero set of $\partial_{1} F\left(z_{1}, \varsigma_{2}\right)$ or $\bar{\partial}_{1} F\left(z_{1}, \varsigma_{2}\right)$ is discrete or equal to the unit disk. Let

$$
E_{1}=\left\{\varsigma_{2} \in \mathbb{T}: \partial_{1} F\left(z_{1}, \varsigma_{2}\right)=0 \text { for countable many } z_{1} \in \mathbb{D}\right\}
$$

and

$$
E_{2}=\left\{\varsigma_{2} \in \mathbb{T}: \bar{\partial}_{1} F\left(z_{1}, \varsigma_{2}\right)=0 \text { for countable many } z_{1} \in \mathbb{D}\right\} .
$$

Theorem 1.4 gives that for almost all ς_{2} in \mathbb{T},

$$
\begin{equation*}
\partial_{1} g\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} F\left(z_{1}, \varsigma_{2}\right)=\bar{\partial}_{1} g\left(z_{1}, \varsigma_{2}\right) \partial_{1} F\left(z_{1}, \varsigma_{2}\right) \tag{5.3}
\end{equation*}
$$

holds on \mathbb{D}. Thus for ς_{2} in $E_{1} \cap E_{2}$, we have that

$$
\frac{\partial_{1} g\left(z_{1}, \varsigma_{2}\right)}{\partial_{1} F\left(z_{1}, \varsigma_{2}\right)}=\frac{\bar{\partial}_{1} g\left(z_{1}, \varsigma_{2}\right)}{\bar{\partial}_{1} F\left(z_{1}, \varsigma_{2}\right)}
$$

holds for all except for countable many z_{1} in \mathbb{D}. The left hand side of the above equality is analytic in z_{1} and the right hand side of the above equality is co-analytic in z_{1}. Thus it must be a constant function of z_{1} and so it depends only on ς_{2} and is denoted by $A\left(\varsigma_{2}\right)$. The above equation gives that on $E_{1} \cap E_{2}$

$$
g\left(z_{1}, \varsigma_{2}\right)-A\left(\varsigma_{2}\right) F\left(z_{1}, \varsigma_{2}\right)
$$

is a function of ς_{2}. If the Lebesgue measure of $E_{1} \cap E_{2}$ equals the measure of \mathbb{T}, this implies Condition (a3).

If the Lebesgue measure of $E_{1} \cap E_{2}$ is less than the measure of \mathbb{T}, then one of the measures of E_{1} and E_{2} is less than the measure of \mathbb{T}. We may assume that the measure of E_{1} is less than the measure of \mathbb{T}. For ς_{2} in the complement E_{1}^{c} of E_{1}, we have

$$
\partial_{1} F\left(z_{1}, \varsigma_{2}\right) \equiv 0
$$

for z_{1} in the unit disk \mathbb{D}. Since $\partial_{1} F\left(z_{1}, \varsigma_{2}\right)$ is analytic in z_{1}, for a fixed $z_{1}, \partial_{1} F\left(z_{1}, \varsigma_{2}\right)$ is $\overline{H^{2}(\mathbb{D})}$ in variable ς_{2} and E_{1}^{c} has positive measure, we have that for almost all ς_{2} in \mathbb{T}, we have

$$
\partial_{1} F\left(z_{1}, \varsigma_{2}\right) \equiv 0
$$

for z_{1} in the unit disk \mathbb{D}. Thus by (5.3), we have that for almost all ς_{2} in \mathbb{T},

$$
\partial_{1} g\left(z_{1}, \varsigma_{2}\right) \bar{\partial}_{1} F\left(z_{1}, \varsigma_{2}\right) \equiv 0
$$

for z_{1} in the unit disk. This implies that for almost all ς_{2} in \mathbb{T},

$$
\partial_{1} g\left(z_{1}, \varsigma_{2}\right) \equiv 0
$$

for z_{1} in \mathbb{D} or for almost all ς_{2} in \mathbb{T},

$$
\bar{\partial}_{1} F\left(z_{1}, \varsigma_{2}\right) \equiv 0
$$

for z_{1} in the unit disk \mathbb{D} since $\bar{\partial}_{1} F\left(z_{1}, \varsigma_{2}\right)$ is co-analytic in z_{1} and for a fixed $z_{1}, \bar{\partial}_{1} F\left(z_{1}, \varsigma_{2}\right)$ is $H^{2}(\mathbb{D})$ in variable ς_{2}. That means that for almost all ς_{2} in \mathbb{T}, either both $F\left(z_{1}, \varsigma_{2}\right)$ and $g\left(z_{1}, \varsigma_{2}\right)$ are co-analytic in z_{1} or $F\left(z_{1}, \varsigma_{2}\right)$ is constant in z_{1}. The first case gives Condition (a2) since

$$
F\left(z_{1}, \varsigma_{2}\right)=f\left(z_{1}, \varsigma_{2}\right)+\frac{b}{a} g\left(z_{1}, \varsigma_{2}\right) .
$$

The later case gives that for almost all ς_{2} in \mathbb{T},

$$
F\left(z_{1}, \varsigma_{2}\right)=f\left(z_{1}, \varsigma_{2}\right)+\frac{b}{a} g\left(z_{1}, \varsigma_{2}\right)
$$

is a function ς_{2}. This is Condition (a3). This completes the proof.
We immediately get the following corollary to characterize normal Toeplitz operators T_{f}. That is,

$$
T_{f} T_{f}^{*}=T_{f}^{*} T_{f}
$$

Corollary 5.1. Let $f \in L^{\infty}\left(\mathbb{T}^{2}\right)$. Then T_{f} is normal operator if and only if the following hold:
(a) For almost all $\varsigma_{2} \in \mathbb{T}$, there are $a_{1}\left(\varsigma_{2}\right)$ and $b_{1}\left(\varsigma_{2}\right)$, not both zero, such that

$$
a_{1}\left(\varsigma_{2}\right) f\left(z_{1}, \varsigma_{2}\right)+b_{1}\left(\varsigma_{2}\right) \overline{f\left(z_{1}, \varsigma_{2}\right)}
$$

is a constant in variable z_{1}.
(b) For almost all $\varsigma_{2} \in \mathbb{T}$, there are $a_{2}\left(\varsigma_{1}\right)$ and $b_{2}\left(\varsigma_{1}\right)$, not both zero, such that

$$
a_{2}\left(\varsigma_{1}\right) f\left(\varsigma_{1}, z_{2}\right)+b_{2}\left(\varsigma_{1}\right) \overline{f\left(\varsigma_{1}, z_{2}\right)}
$$

is a constant in variable z_{2}.
(c) There are constants a and b, not both zero, such that

$$
a f_{++}\left(z_{1}, z_{2}\right)+b \overline{f_{--}\left(z_{1}, z_{2}\right)}=h_{1}\left(z_{1}\right)+h_{2}\left(z_{2}\right)
$$

and

$$
a f_{--}\left(z_{1}, z_{2}\right)+b \overline{f_{++}\left(z_{1}, z_{2}\right)}=\bar{r}_{1}\left(z_{1}\right)+\bar{r}_{2}\left(z_{2}\right),
$$

where $h_{i}, r_{i} \in H^{2}(\mathbb{D})$.
The following example gives that even if T_{f} commutes with T_{g}, but for any constants a, b, not both zero, af $\left(z_{1}, z_{2}\right)+b g\left(z_{1}, z_{2}\right)$ is not a constant in variable z_{1}.

Example. For $h\left(\varsigma_{1}\right) \in L^{\infty}(\mathbb{T})$ and $a\left(\varsigma_{2}\right) \in L^{\infty}(\mathbb{T})$, let

$$
\begin{aligned}
& f\left(\varsigma_{1}, \varsigma_{2}\right)=h\left(\varsigma_{1}\right), \\
& g\left(\varsigma_{1}, \varsigma_{2}\right)=h\left(\varsigma_{1}\right) a\left(\varsigma_{2}\right)
\end{aligned}
$$

Then
(a) for $z_{1} \in \mathbb{D}$ and $\varsigma_{2} \in \mathbb{T}$,

$$
a\left(\varsigma_{2}\right) f\left(z_{1}, \varsigma_{2}\right)-g\left(z_{1}, \varsigma_{2}\right)=0,
$$

(b) for $z_{1} \in \mathbb{D}$ and $\varsigma_{2} \in \mathbb{T}$,

$$
1 \cdot f\left(\varsigma_{1}, z_{2}\right)+0 \cdot g\left(\varsigma_{1}, z_{2}\right)
$$

is a constant in variable z_{2},
(c3)

$$
1 \cdot f_{++}\left(z_{1}, z_{2}\right)+0 \cdot g_{++}\left(z_{1}, z_{2}\right)=h_{+}\left(z_{1}\right)
$$

and

$$
1 \cdot f_{--}\left(z_{1}, z_{2}\right)+0 \cdot g_{--}\left(z_{1}, z_{2}\right)=h_{-}\left(z_{1}\right)
$$

Thus Theorem 1.5 gives that

$$
T_{f} T_{g}=T_{g} T_{f}
$$

But there are no constants a, b, not both zero, such that $a f\left(z_{1}, z_{2}\right)+b g\left(z_{1}, z_{2}\right)$ is a constant in variable z_{1}.

Acknowledgments

This paper was in progress while the second author visited Chongqing University. He would like to thank the Center of Mathematics, Chongqing University for hospitality. We thank the referee for his suggestions to improve the paper.

References

[1] S. Axler, Z. Cuckvoic, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991) 1-12.
[2] A. Brown, P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964) 89-102.
[3] X. Ding, The commutator of Toeplitz operators on torus, Acta Math. Sinica 45 (2002) 655-660 (in Chinese).
[4] X. Ding, Products of Toeplitz operators on the polydisk, Integral Equations Operator Theory 45 (2003) 389-403.
[5] X. Ding, The finite sum of finite products of Toeplitz operators on the polydisk, J. Math. Anal. Appl. 320 (2006) 464-481.
[6] R.G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York/London, 1972.
[7] C. Gu, D. Zheng, The semi-commutator of Toeplitz operators on the bidisk, J. Operator Theory 38 (1997) 173-193.
[8] K. Hoffman, Banach Space of Analytic Function, Prentice Hall, Englewood Cliffs, NJ, 1962.
[9] Y.J. Lee, Commuting Toeplitz operators on the Hardy space of the bidisk, J. Math. Anal. Appl. 341 (2008) 738-749.
[10] Y.J. Lee, Commuting Toeplitz operators on the Hardy space of the polydisk, Proc. Amer. Math. Soc. 138 (2010) 189-197.
[11] K. Stroethoff, Algebraic properties of Toeplitz operators on the Hardy space via the Berezin transform, in: Function Space, Edwardville, IL, 1998, in: Contemp. Math., vol. 232, Amer. Math. Soc., Providence, RI, 1999, pp. 313-319.

[^0]: 4. The first author is partially supported by the National Natural Science Foundation of China (10871217). The second author is partially supported by the National Natural Science Foundation of China (11171245). This work was partially supported by a grant from the Simons Foundation (\#196300 to Dechao Zheng).

 * Corresponding author at: Department of Mathematics, Vanderbilt University, Nashville, TN 37240, United States. E-mail addresses: xuanhaod@qq.com (X. Ding), shsun@mail.zjxu.edu.cn (S. Sun), dechao.zheng@ vanderbilt.edu (D. Zheng).

