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a b s t r a c t

Some dynamical properties for a classical particle confined in an infinitely deep box of
potential containing a periodically oscillating square well are studied. The dynamics of
the system is described by using a two-dimensional non-linear area-preserving map for
the variables energy and time. The phase space is mixed and the chaotic sea is described
using scaling arguments. Scaling exponents are obtained as a function of all the control
parameters, extending the previous results obtained in the literature.

© 2012 Elsevier B.V.

1. Introduction

Dynamical systems described by mappings have been considered widely during the past years [1,2]. In particular, and
for the most simple case, i.e., for a system with 1 and 1/2 degrees of freedom, which corresponds to a time perturbation
in a system with one degree of freedom, the description of Hamiltonian systems leads many times to two-dimensional
non-linear area-preserving mappings. Many different applications of the formalism using area-preserving mappings are
observed, in particular, studying magnetic field lines in toroidal plasma devices with reversed shear (such as tokamaks)
[3–6], waveguide [7–11], Fermi acceleration [12], billiards [13–15] and many other generalizations [16–19].

In this paperwe consider some dynamical properties of a problemwith 1 and 1/2 degrees of freedom. Themodel consists
of a classical particle confined inside an infinitely deep potential well and contains a time periodically moving square well.
The Hamiltonian describing the model is H(x, p, t) = p2/(2m) + V (x, t), where V (x, t) = V0(x) + V1(x, t), where x, p and t
correspond to the position, momentum coordinates and time, respectively. The potential V0(x) denotes the integrable part
of the Hamiltonianwhile V1(x, t) leads to the non-integrable part. As will be shown in the next section, the potential V1(x, t)
is controlled by three relevant control parameters. If they are changed accordingly, a phase transition from integrability to
non-integrability is observed. Among other things we discuss in the paper, this transition is basically the main focus of the
present work and extends the results obtained previously in Ref. [20].

The dynamics of the model is described in terms of a two-dimensional non-linear area-preserving mapping for the
variables energy and time. The phase space is mixed in the sense that periodic islands are observed surrounded by a chaotic
sea characterised by a positive Lyapunov exponent. The size of the chaotic sea depends on the control parameters and is
limited by a set of invariant tori (also called invariant spanning curves) that prevents the unlimited energy of the particle
(also known as Fermi acceleration). If the law which controls the time perturbation of the moving well is smooth enough,
Fermi acceleration [21] is not observed (see Ref. [22] for a similar discussion in one-dimensional Fermi accelerator models
and Ref. [23] where it occurs for specific ranges of control parameters).

The size of the chaotic sea and, consequently, the position of the first invariant spanning curve bordering the chaotic sea
are strongly dependent on the control parameters of the model. Therefore, the average properties of the chaotic sea can
be described by using scaling formalism and scaling exponents can be obtained, in particular considering the behaviour of
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Fig. 1. Sketch of the potential considered.

the average energy of the particle or the average standard deviation of the energy. Then, classes of universality [24] can be
defined according to the numerical values of the scaling exponents.

This paper is organised as follows. In Section 2, we describe the model under consideration and four different potential
shapes which lead to the same characterisation of the problem. Our numerical results and the scaling exponents are shown
in Section 3, together with a discussion about the behaviour of the Lyapunov exponents. Final remarks and conclusions are
drawn in Section 4.

2. The model and the map

In this section we discuss the model and the corresponding map that describes the dynamics of the system. The model
consists of a classical particle confined inside a box of an infinitely deep potential and contains an oscillating square well in
the middle. We assume that the oscillations of the bottom are periodic in time and are given by a cosine function. A typical
sketch of the potential is shown in Fig. 1. Along region b (where the potential is constant and equal to V0) and region a (where
potential is time dependent), the velocity of the particle is constant because no dissipative forces act on the particle. The
total energy is obtained by the summation of the kinetic and potential energies. The motion of the particle changing from
one region to another is marked by an abrupt change in its kinetic energy.

We emphasise that different kinds of potential shape lead to similar dynamics. For a chain of infinitely many and
symmetric oscillating square wells with their bottoms moving periodically and synchronised in time (see Ref. [25] and
in Fig. 2(a)), the dynamics leads to diffusion in space. One can also assume a single oscillating square well with periodic
boundary conditions, as shown in Fig. 2(b). Finally, a step potential whose bottommoves periodically in time confined in an
infinite box of potential (see Fig. 2(c)) leads to similar results in the phase space.

In this paper we consider the potential as shown in Fig. 1, and is given by

V (x, t) =


∞, if x ≤ 0 or x ≥ (a + b)

V0, if 0 < x <
b
2
or

a +

b
2


< x < (a + b)

V1 cos(ωt), if
b
2

≤ x ≤


a +

b
2


,

(1)

where the control parameters a, b, V0, V1 and ω are constants. Considering the symmetry of the problem, the mapping is
obtained upon the entrance of the particle in the oscillating square well. To construct the map, we suppose that at the
time t = tn, the particle has energy E = En and is ready to enter the oscillating square well. After entering the well, it
experiences an abrupt change in its kinetic energy, leading to Kn

′
= En − V1 cos(ωtn) =

1
2mvn

′2, where |vn
′
| =


2Kn

′/m
is constant. Arriving on the other side of the well the energy of the particle is En′

= Kn
′
+ V1 cos[ω(tn + 1t ′n)], where

1t ′n = a/|v′
n|. If the particle does not have enough energy to escape the well it is reflected backwards, given that E ′

n ≤ V0.
It may experience many other successive reflections until it escapes the well and E ′

n may be redefined more generically as
En′

= Kn
′
+ V1 cos[ω(tn + i1t ′n)], where i is the smallest positive integer number that matches the condition En′ > V0, a

conditionwhich assures the escape of the particle. Once the particle escapes the oscillatingwell it travels towards the infinite
potential boundary of the box, experiences an elastic reflection from it andmoves backwards towards a next entrance of the
oscillating square well. The new energy of the particle is given by En+1 = En +V1{cos[ω(tn + i1t ′n)]− cos(ωtn)}. The time at
the next entrance is written as tn+1 = tn + i1tn′

+ 1tn′′, where 1t ′′n = b/|v′′
n | with |vn|

′′
=

2Kn

′′/m and K ′′
n = En+1 − V0.
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Fig. 2. (a) A chain of infinitely many and symmetric oscillating square wells with their bottomsmoving periodically and synchronised in time. (b) A single
oscillating square well. (c) A step potential whose bottom moves periodically in time.

As one can see, there are many control parameters which are not relevant to describe the dynamics; five in total, namely
a, b, V0, V1 and ω. So, it is convenient to define some dimensionless variables such as δ = V1/V0, r = b/a, en = En/V0,
Nc = ω/(2π) (a/

√
2V0/m) and the time is measured in terms of the number of oscillations of the moving well, φ = ωt .

The parameter Nc corresponds to the number of oscillations that the square well completes in time t = a/
√
2V0/m.

With this set of new variables, the mapping which describes the dynamics of the system is written as

T :

en+1 = en + δ[cos(φn + i1φa) − cosφn]

φn+1 = [φn + i1φa + 1φb](mod 2π),
(2)

where the auxiliary variables are given by

1φa =
2πNc

√
en − δ cos(φn)

, 1φb =
2πNcr

√
en+1 − 1

.

During the dynamics, when the particle stays confined in the oscillating square well with its energy at the boundaries
1− δ < e ≤ 1, a trapping would be longer or not. The distribution of successive reflection numbers obeys a power lawwith
exponent around −3, as shown in Fig. 3.

Given the determinant of the Jacobianmatrix is equal to the unity, themapping (2) is area preserving. The phase space of
the model is mixed, containing periodic islands, chaotic sea and a set of invariant spanning curves, as one can see in Fig. 4.

Once the equations of the mapping are given, the corresponding fixed points can be obtained. The fixed points of period
one, without multiple reflections, are obtained by the condition en+1 = en = e∗ and φn+1 = φn + 2mπ = φ∗, where m
is a non-negative integer number. Considering the periodic functions of the mapping it is necessary to apply two different
procedures to obtain the fixed points [e∗, φ∗

]: (i) obtained analytically by the expressions
Ncr

m − k

2

+ 1, arccos


1
δ


e −


Nc

k

2


, (3)

and 
Ncr

m − k

2

+ 1, 2π − arccos


1
δ


e −


Nc

k

2


; (4)

where k arises from the condition that the arguments of the periodic cosine function must differ from each other by integer
multiples of 2π , then 1φa = k2π . The other possibility is 1φa = k2π − 2φ∗, leading to the procedure (ii) which gives the
fixed points after a numerical solution of

1 +


πNcr

π(m − k) + φ

2

− δ cos(φ) −


πNc

πk − φ

2

= 0, (5)
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Fig. 3. (Colour online) Distribution of successive reflections of the particle by the oscillating square well. The control parameters used were r = 1, δ = 0.5
and: (a) Nc = 33.18; (b) Nc = 300 and (c) Nc = 3000.

Fig. 4. (Colour online) Phase space for the mapping (2). The circles correspond to elliptic fixed points while crosses denote hyperbolic ones. The red (grey)
colour is used to identify treatment (i) and blue (black) colour to treatment (ii) (see details in the text). The control parameters usedwere r = 1,Nc = 33.18
and δ = 0.5.
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where m > k, with m and k integers larger than 1. Solution of Eq. (5) furnishes φ numerically. The corresponding energy is
given by

e =


πNcr

π(m − k) + φ

2

+ 1. (6)

The characterisation of the fixed points is made by the eigenvalues of the Jacobian matrix J [26]. If the evaluation of the
eigenvalues at the fixed point produces (TrJ)2 > 4, the fixed point is said to be hyperbolic. On the other hand, for the case
of (TrJ)2 < 4, the fixed points are classified as elliptic. The fixed points for mapping (2) are identified in Fig. 4 by circles
(elliptic fixed point) and crosses (hyperbolic fixed point). The red (grey) circles (crosses) correspond to elliptic (hyperbolic)
fixed points obtained by Eqs. (3) and (4) while the blue (black) are obtained via Eqs. (5) and (6).

3. Numerical results

Let us now discuss the numerical results. We start by presenting the Lyapunov exponents characterising the chaotic sea
below the first invariant spanning curve. It is known that Lyapunov exponents are used in order to verify if the system is
chaotic or not. Basically, the procedure to obtain the Lyapunov exponents consists of verifying if two trajectories, initially
close to each other, will diverge exponentially for an infinitely long time. According to Ref. [27], the Lyapunov exponents
can be obtained by

λj = lim
n→∞

1
n
ln |Λj

(n)
|, j = 1, 2 (7)

where Λj
(n) are the eigenvalues of the matrix B =

n
i Ji(ei, φi) and Ji is the Jacobian matrix of the system evaluated over the

orbit. If the system exhibits at least one positive Lyapunov exponent, then it has chaotic components.
Fig. 5(a) shows the behaviour of the positive Lyapunov exponent as a function of n for six different initial conditions

randomly chosen along the chaotic sea. The control parameters used were r = 1, Nc = 500 and δ = 0.5. After an initial
fluctuation, the positive Lyapunov exponent converges to a constant value for large enough n. Given the convergence, the
average Lyapunov exponent can be obtained as λ̄ =

1
6

6
i=1 λi, where each of the λi correspond to the asymptotic value of

the Lyapunov exponent for the initial condition (ei, φi) with i = 1, 2, . . . , 6. After taking the average, the behaviour of λ̄
is obtained as function of the control parameters Nc , δ and r . Fig. 5(b) shows a plot of λ̄ × Nc for fixed r = 1 and δ = 0.5.
As one can see, the positive Lyapunov exponent varies from λ̄ ≈ 0.5 for Nc = 1 up to λ̄ ≈ 2 for Nc = 103. It also has a
monotonic tendency of growth as a function of Nc . Note, however, that increasing Nc corresponds to raising the number of
oscillations of the well and consequently increasing the randomness of the system, leading to an increase in the Lyapunov
exponent. A plot of λ̄ × δ is shown in Fig. 5(c). The control parameters used were r = 1 and Nc = 33.18. Here, it is easy to
see that small values of δ, which corresponds to small fluctuations of the oscillating square well, produce a large Lyapunov
exponent. A minimum value of λ̄ ≈ 1.4 was observed for δ ≈ 0.2. Finally, a plot of λ̄ × r is shown in Fig. 5(d) for fixed
δ = 0.5 and Nc = 33.18. Since the control parameter r = b/a, increasing r for a fixed Nc corresponds to increasing b, thus,
increasing the distance from the well up to the box of potential. Such an increase leads to a long flight of the particle until
the next entrance in the oscillating square well, yielding an increase of the number of oscillations of the moving well and
consequently increasing the randomness of the system. The sudden jumps in the behaviour of the Lyapunov exponent are
explained as the destruction of invariant spanning curves, leading to a joining of different chaotic regions (see Ref. [23] for
a discussion in the Fermi–Ulam model and Ref. [28] for the time-dependent square well).

Let us now address properly the scaling description of the chaotic sea. The position of the first invariant spanning
curve (invariant tori) bordering the chaotic sea depends on the control parameters. As they change, the position of the
first invariant spanning curve varies, allowing the chaotic sea to enlarge or reduce. See Ref. [29] for a phenomenological
description of the estimation of the position of the first invariant spanning curve for a family of 2-D area-preservingmapping
with one of the variables diverging in the limit of vanishing action. Our main interest is to characterise the behaviour of the
average energy and, hence, the average standard deviation of the energy for the chaotic sea as a function of the control
parameters. To do so, we define the average energy as

e(n, δ,Nc, r) =
1
n

n
i=1

ei, (8)

and the average standard deviation of the energy is given by

ω(n, δ,Nc, r) =
1
M

M
j=1


ej2(n, δ,Nc, r) − ej2(n, δ,Nc, r), (9)

where M denotes an ensemble of different initial conditions. Fig. 6 shows three different curves of ω, as a function of n,
obtained for different values of the control parameter Nc . As one can see, after an initial and short transient,ω starts to grow
according to a power law and eventually, after reaching a characteristic crossover time, nx, it bends towards a regime of



3612 D.R. da Costa et al. / Physica A 391 (2012) 3607–3615

Fig. 5. (Colour online) (a) Time evolution of the positive Lyapunov exponent for six different initial conditions, evolved up to 5 × 108 times. The control
parameters used were r = 1; Nc = 500 and δ = 0.5. (b) Plot of λ̄ × Nc for fixed r = 1 and δ = 0.5. (c) Plot of λ̄ × δ for fixed r = 1 and Nc = 33.18.
(d) Plot of λ̄ × r for fixed Nc = 33.18 and δ = 0.5.

Fig. 6. (Colour online) Plot of ω × n for fixed r = 1, δ = 0.5 and three different Nc , namely Nc = 100, Nc = 500 and Nc = 1000.
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Fig. 7. (Colour online) Behaviour of (a) ωsat × Nc and (b) nx as a function of Nc . The control parameters used were: black bullet r = 1 and δ = 0.1; red
bullet r = 1 and δ = 0.25. (c) Plot of ωsat × r; (d) nx as a function of r . The parameters used were δ = 0.5 and Nc = 500. (e) Plot of ωsat as a function of δ
and (f) nx × δ. The control parameters used were r = 1, Nc = 150 and Nc = 790.

saturation for long enough n. Similar behaviour is observed when the control parameters δ and r are varied. Based on such
a behaviour we propose the following scaling hypotheses:

• (i) For n ≪ nx, the behaviour of ω can be described as

ω(nδ2,Nc, r, δ) ∝ [nδ2
]
β , (10)

where β is the acceleration exponent;
• (ii) For n ≫ nx, ωsat is given by

ωsat(nδ2,Nc, r, δ) ∝ Nc
α1 rα2δα3 , (11)

where αi for i = 1, 2, 3 are the saturation exponents;
• (iii) The characteristic crossover nx is written as

nx(nδ2,Nc, r, δ) ∝ Nc
z1 rz2δz3 , (12)

and zi with i = 1, 2, 3 are the crossover exponents.

The saturation exponents αi and the crossover exponents zi can be found if the behaviour of ωsat and nx are obtained as
functions of the control parameters. After some extensive numerical investigation they are shown in Fig. 7. Additionally, we
found that the acceleration exponent is β ∼= 0.5.

Applying a power-law fitting in Fig. 7(a, b) we obtain α1 = 0.669(1) and z1 = 1.31(1). Extending the procedure to the
variable r , as shown in Fig. 7(c, d), we obtain α2 = 0.295(4) and z2 = 0.59(1). Finally, Fig. 7(e, f) shows the behaviour
of ωsat and nx as a function of the control parameter δ. In the last case, we can see two different sets of values for α3 and
z3. The explanation for such a difference is due to a sudden destruction of the invariant spanning curve that separates two
different chaotic regions (see Ref. [23] for occurrence of such destruction in the Fermi–Ulam model). After the destruction
and the joining of two chaotic components, the critical exponents change substantially. Before the destruction, say δ < 0.2,
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Fig. 8. (Colour online) (a) Behaviour of ω × n for different values of the control parameters r , δ and Nc ; (b) merger of all curves shown in (a) onto a single
plot, after a suitable rescale of axis.

we obtain α3 = 0.721(7) and z3 = −0.58(3) for Nc = 790 and α3 = 0.75(1) and z3 = −0.59(3) for Nc = 150. On the other
hand, after the destruction, i.e. for δ > 0.2, the exponents obtained were α3 = 0.35(2) and z3 = −1.25(5) for Nc = 790
and α3 = 0.34(2) and z3 = −1.41(5) for Nc = 150. To check the validity of the scaling hypotheses we can rescale the axis
properly and a single plot for different curves of ω is obtained, as shown in Fig. 8.

Let us discuss the classes of universality. We have to emphasise that the phase transition we are considering in this
paper is not defined in the rigorous Statistical Mechanics point of view. The phase transition we consider is based on the fact
that, for specific control parameters, the system is integrable, for example if δ = 0 or Nc = 0, and non-integrable for the
general case of δ ≠ 0, Nc ≠ 0 and r ≠ 0. Describing the behaviour of average quantities along the chaotic sea, in particular
the average standard deviation of the energy, as a function of the control parameters has been used for a long time. Given
the exponents are known, the system can be rescaled conveniently, which leads to all quantities be scaling independent.
The set of scaling exponents obtained define to what class of universality the system belongs. To illustrate two cases we
consider the following examples: (i) Fermi–Ulam model [30] and periodically corrugated waveguide [7,8]; (ii) a family of
two-dimensional area-preserving mapping [31] and the present model studied.

For case (i) the Fermi–Ulam model (a classical particle confined and bouncing between two rigid walls; one of them is
fixed and the other one is periodically time varying—collisions are elastic and no damping forces are present) is described via
a two-dimensional non-linear, area-preserving mapping for the variables velocity of the particle and phase of the moving
wall. The scaling exponents obtained for the average velocity along the chaotic seawere [30]: α = 0.5, β = 0.5 and z = −1.
The corrugated waveguide model, however, considers the description of a light beam moving inside two mirrors, of which
one is flat and the other is periodically corrugated. The mapping describes the position of the light beam at each reflection
with the mirror and the angle of the light beam trajectory [7,8], thus there is no velocity involved in this model. The critical
exponents obtainedwere the same as those obtained for the Fermi–Ulammodel. Themodels are totally independent of each
other, but, near such a transition, the chaotic seas of both models have qualitatively the same general behaviour. Thus, the
two models belong to the same class of universality near this transition.

For case (ii) a family of mapping is written as Ref. [31]

T :

xn+1 =


xn +

a
yγ

n+1


(mod 1)

yn+1 = |yn − b sin(2πxn)|,
(13)

where a, b andγ are the control parameters. The determinant of the Jacobianmatrix is det(J) = sign(yn−b sin(2πxn)), where
sign(u) = 1 if u > 0 and sign(u) = −1 if u < 0. For γ < 0, depending on the initial conditions and control parameters, the
unlimited growth of the average value of y, namely ȳ, can be observed. Such a growth happens since large values of y imply a
large number of oscillations for the sine function. In the regime of very large oscillations, the sine functionworksmore likely
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as a random function, yielding an unlimited growth for ȳ. To avoid such a condition and confirm the existence of invariant
tori, γ was considered in the range 0 < γ ≤ 1. The parameter a in mapping (13) corresponds to the control parameter
Nc in mapping (2). Raising Nc corresponds to increasing the randomness of the model, a similar behaviour happens when
a is raised in (13). Keeping fixed γ = 1/2 in mapping (13) leads to the corresponding square root in time for mapping (2),
we obtained that the critical exponents are the same, within an uncertainty error. The two different models exhibit the
same critical exponents and therefore belong to the same class of universality for such a phase transition considering the
corresponding control parameter.

4. Summary and conclusions

Wehave studied the dynamics of a classical particle confined in a box of infinitely deep potential containing a periodically
oscillating square well. We have shown that the two-dimensional area-preserving mapping that describes the dynamics of
the model has three relevant control parameters. We have obtained the mapping that describes the dynamics of the system
and shown that the phase space is mixed with a chaotic sea characterised by using the Lyapunov exponents. We have
also studied some average properties of the chaotic sea below the first invariant spanning curve bordering the chaotic sea,
using a scaling approach, as a function of all three control parameters. We have found the scaling exponents, namely, the
acceleration exponent, the saturation exponent and the crossover exponent, and after a suitable rescaling of the axis,wehave
shown a collapse of all the curves of the average standard deviation of the energy onto a single plot. Such a kind of behaviour
is typical of systems experiencing phase transition. In particular, we have considered the transition from integrability to
non-integrability.
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