The inverse of band preserving and disjointness preserving operators

by C.B. Huijsmans¹ and A.W. Wickstead²

¹ Department of Mathematics, University of Leiden, P.O. Box 9512, 2300 RA Leiden, the Netherlands
² Department of Pure Mathematics, The Queen's University of Belfast, Belfast BT7 INN, Northern Ireland, U.K.

Communicated by Prof. A.C. Zaanen at the meeting of February 24, 1992

Recently it was shown by C.B. Huijsmans and B. de Pagter [6] (see also the book by P. Meyer-Nieberg [10, Theorem 3.1.10]) that if T is an orthomorphism on an Archimedean vector lattice E (denoted by $T \in \text{Orth}(E)$ and meaning that T is order bounded and band preserving) and T is bijective (i.e., T is invertible in the algebra $L(E)$ of all linear operators on E), then $T^{-1} \in \text{Orth}(E)$ as well. In other words, Orth(E) is a full subalgebra of $L(E)$. Since a result due to Y.A. Abramovich, A.I. Veksler and A.V. Koldunov [2] (see also [8] or [12]) states that band preserving mappings from a Banach lattice E into itself are automatically order (and norm) bounded (actually, in this case Orth(E) = $Z(E)$, the center of E), we get as a corollary that the inverse of a bijective band preserving operator on a Banach lattice is band preserving as well.

However, operators between Banach lattices which are merely disjointness preserving need not be order or norm bounded (see [1] for a counterexample). Note in this connection that Y.A. Abramovich showed in [1] (see also [12]) that any norm bounded disjointness preserving operator between two Banach lattices is order bounded. Furthermore, it is of independent interest to observe that a disjointness preserving operator T between two Archimedean vector lattices E and F which is, in addition, σ-order continuous is automatically order bounded. Indeed, it was shown by P.T.N. McPolin and A.W. Wickstead in [9, Theorem 2.1] that if $T : E \to F$ is disjointness preserving and satisfies (*):

(*) $\bigwedge_{n=1}^{\infty} |Tx_n| = 0$ for all sequences $\{x_n\}_{n=1}^{\infty}$ in E' converging relatively uniformly to 0,
then T is order bounded. Obviously, (*) is satisfied if T is σ-order continuous. Consequently, a band preserving operator on an Archimedean vector lattice is order bounded if and only if it is (σ-) order continuous. Notice also that any norm bounded operator between two Banach lattices satisfies (*), so a norm bounded disjointness preserving operator between two Banach lattices is order bounded (see above).

It was shown by W. Arendt in [3, Proposition 2.7] that a bijective order bounded disjointness preserving operator between two Banach lattices has an order bounded disjointness preserving inverse. This result can easily be extended to Archimedean vector lattices.

Theorem 1. Let E, F be Archimedean vector lattices and $T : E \to F$ be a bijective order bounded disjointness preserving operator. Then $T^{-1} : F \to E$ is also order bounded and disjointness preserving. Moreover, $|T|$ and $|T^{-1}|$ exist and satisfy $|T^{-1}| = |T|^{-1}$.

Proof. It is a well-known result due to M. Meyer [10] (see also S.J. Bernau [5] or B. de Pagter [12]) that under the present hypotheses T^+, T^- and $|T|$ exist, are lattice homomorphisms and satisfy

\begin{align*}
(1) \quad & (Tx)^+ = T^+x, \quad (Tx)^- = T^-x \quad (x \in E^+) \\
(2) \quad & |Tx| = |T||x| = |T||x| \quad (x \in E).
\end{align*}

We show first that $|T|$ is injective. Indeed, if $|T|x = 0$, then by (2), $Tx = 0$, so $x = 0$. Next we claim that $|T|$ is surjective. To this end, take $y \in F$. There exist $x_1, x_2 \in E$ such that $Tx_1 = y^+, Tx_2 = y^-$ and thus

\[
|T|(|x_1| - |x_2|) = |Tx_1| - |Tx_2| = y^+ - y^- = y,
\]

which proves the claim. We have therefore that $|T|$ is a lattice isomorphism, so $|T|^{-1}$ is a lattice isomorphism as well and consequently $|T|^{-1} \geq 0$. In order to verify that T^{-1} is disjointness preserving it has to be shown that $|Tx_1| \land |Tx_2| = 0$ in F implies $|x_1| \land |x_2| = 0$ in E. This follows immediately from

\[
|x_1| \land |x_2| = |T|^{-1}|T||x_1| \land |T|^{-1}|T||x_2| \\
= |T|^{-1}|Tx_1| \land |T|^{-1}|Tx_2| \\
= |T|^{-1}(|Tx_1| \land |Tx_2|) \\
= |T|^{-1}(0) = 0.
\]

Next, if $|x| \leq z (z \in E^+)$, then $|T|^{-1}|x| \leq |T|^{-1}z$, as $|T|^{-1} \geq 0$. Put $y = T^{-1}x (x = Ty)$. Since $|x| = |T||y|$, we have $|T^{-1}x| = |y| = |T|^{-1}|x| \leq |T|^{-1}z$ for all $x \in E$ satisfying $|x| \leq z$, showing that T^{-1} is order bounded. Consequently, $|T^{-1}|$ exists by Meyer's theorem. Hence, it follows from

\[
|x| = |TT^{-1}x| = |T||T^{-1}||x|
\]
that \(|T||T^{-1}| = I_I \). Similarly, \(|T^{-1}| = I_{E} \) and therefore \(|T^{-1}| = |T|^{-1} \). The proof is complete. \(\square \)

On account of the above observations the following two questions seem natural to ask:

(a) if \(E \) is an Archimedean vector lattice and \(T : E \rightarrow E \) is a bijective band preserving operator in \(E \), is \(T^{-1} \) band preserving as well?

(\(\beta \)) if \(E \) and \(F \) are Archimedean vector lattices (or even Banach lattices) and \(T : E \rightarrow F \) is bijective and disjointness preserving, is \(T^{-1} : F \rightarrow E \) also disjointness preserving? Problem \((\beta) \) was proposed by Y.A. Abramovich in the problem section of [7].

The purpose of this note is to show that (a) has an affirmative answer in the following two cases:

(i) \(E \) has the principal projection property

(ii) \(E \) is relatively uniformly complete.

Of course, (ii) generalizes the fore-mentioned result that the inverse of an invertible band preserving operator on a Banach lattice is also band preserving.

Theorem 2. Let \(E \) be a vector lattice with the principal projection property and \(T : E \rightarrow E \) be an invertible band preserving operator on \(E \). Then \(T^{-1} \) is also band preserving.

Proof. Observe that \(T^{-1} \) is band preserving if and only if \(T^{-1}x \in \{x\}^{dd} \) for all \(x \in E \). Decompose

\[
T^{-1}x = x_1 + x_2(x_1 \in \{x\}^{dd}, x_2 \in \{x\}^{d}).
\]

By hypothesis, \(T(\{x\}^{dd} \subset \{x\}^{dd} \) and \(T(\{x\}^{d}) \subset \{x\}^{d} \). Hence, \(Tx_1 \in \{x\}^{dd} \) and \(Tx_2 \in \{x\}^{d} \). It follows from \(Tx_2 = x - Tx_1 \) that \(Tx_2 \in \{x\}^{dd} \) as well. Hence, \(Tx_2 = 0 \), so injectivity of \(T \) yields \(x_2 = 0 \). Therefore \(T^{-1}x = x_1 \in \{x\}^{dd} \) and we are done. Observe that we did not use the surjectivity of \(T \) in the proof. \(\square \)

Before stating and proving the next theorem we first remind the reader of the following result due to P.T.N. McPolin and A.W. Wickstead [9, Theorem 2.2]: If \(E \) is an Archimedean relatively uniformly complete vector lattice and \(T \) is a non-order bounded band preserving operator on \(E \), then \(E \) contains a universally \(\sigma \)-complete principal projection band \(B \) such that the restriction \(T/B \) is not order bounded. Recall that a vector lattice is termed universally \(\sigma \)-complete whenever it is Dedekind \(\sigma \)-complete and laterally \(\sigma \)-complete (the latter meaning that every disjoint sequence of positive elements has a supremum).

Theorem 3. Let \(E \) be an Archimedean relatively uniformly complete vector lattice and \(T : E \rightarrow E \) bijective and band preserving. Then \(T^{-1} \) is also band preserving.
PROOF. It suffices to show that $Tx \perp y$ implies $x \perp y$. Since $Tx^+ \perp Tx^-$ we have
\[|Tx| = |Tx^+ - Tx^-| = |Tx^+ + Tx^-| = |T|x||. \]
Replacing therefore, if necessary, x by $|x|$ and y by $|y|$ we may assume without loss of generality that $x, y \in E^+$. Write $z = x \wedge y$. Since T is band preserving, T leaves $\{z\}_{dd}$ invariant. Therefore, the restriction mapping $S = T/\{z\}_{dd}$ maps $\{z\}_{dd}$ into itself. We distinguish two cases:

(I) S is order bounded (so $S \in \text{Orth} (\{z\}_{dd})$). Fix $n \in \mathbb{N}$. We assert that $\{nz \wedge x\}_{dd} = \{z\}_{dd}$. Evidently, $0 \leq nz \wedge x \leq nz$ implies $\{nz \wedge x\}_{dd} \subseteq \{z\}_{dd}$. Conversely, if $u \vee nz \wedge x = 0$, then $u \wedge nz \wedge x = u \cap nz = 0$, so $u \in \{z\}_{dd}$, showing that $\{nz \wedge x\}_{dd} \subseteq \{z\}_{dd}$. This proves the assertion. Since $x - (nz \wedge x) = (nz - x)^- \perp (nz - x)^+$, the band preserving property of T yields $T(x - (nz \wedge x)) \perp (nz - x)^+$. But $Tx \perp y$ and $0 \leq z \leq y$ implies $Tx \perp z$. Consequently, $Tx \perp (nz - x)^+$. Combining these two results we get
\[T(nz \wedge x) = S(nz \wedge x) \perp (nz - x)^+. \]
Since $(nz - x)^+ = nz - nz \wedge x$ and $\{nz \wedge x\}_{dd} = \{z\}_{dd}$ we have that $(nz - x)^+ \in \{nz \wedge x\}_{dd}$. Order continuity of S gives $Sp \perp (nz - x)^+$ for all $p \in \{nz \wedge x\}_{dd}$. In particular, $S(nz - x)^+ \perp (nz - x)^+$. Another use of the band preserving property of S yields $S(nz - x)^+ \perp S(nz - x)^+$, i.e., $S(nz - x)^+ = 0$. This shows $(nz - x)^+ = 0$, as S is injective, i.e., $nz \leq x$. This holds for all $n \in \mathbb{N}$, so by the Archimedean property $z = x \wedge y = 0$ which was to be proved.

(II) S is not order bounded (so clearly $z > 0$). We will show that this case cannot occur. By the previously cited McPolin-Wickstead result [9, Theorem 2.2], $\{z\}_{dd}$ contains a universally σ-complete band $B \neq \{0\}$. In [4, Theorem 1] S.J. Bernau presents an elementary proof of a result due to A.I. Veksler and V.A. Geiler [13], viz. that an Archimedean laterally σ-complete vector lattice has the principal projection property. Actually, a close inspection of Bernau’s proof shows that any laterally σ-complete principal band in an Archimedean vector lattice is a projection band. Particularly, the above band B is a projection band in E. Denote the band projection of E onto B by P.

Since $\{z\}_{dd} \subseteq B^d$ and $Tx \perp z$ we have $PTx = 0$. Also, $Px \neq 0$, because $B \subseteq \{z\}_{dd} \subseteq \{x\}_{dd}$ implies $x \in B^d$. For any $y \in E$ we have $TPy \in B$ and $T(I - P)y \in B^d$, so
\[Ty = TPy + T(I - P)y \]
is the decomposition of Ty into an element of B and an element of B^d. It follows immediately that $TPy = PTy$ for all $y \in E$. Specifically, $TPx = PTx = 0$. Injectivity of T yields $Px = 0$. This is the desired contradiction so that the second case cannot happen and we are through.

REFERENCES