amino acid sequence motif, \(^{75} \text{LNXVXGXG}^{83} \text{XXXT} \), which is proposed to be essential for dimerization in glycoporphin A is similarly observed on TMVI of \(\beta_2 \)AR as in \(^{276} \text{IMMFTTLCWLPFFIVNIVH} \). A peptide derived from TMVI consisting of residues from 276 to 296, \(\text{GIIMFTTCLWLPFFIVNIVH} \) and blindly docked to one conformer of the monomeric structure using a rigid body approach, via AutoDock v4.0 software tool [3]. Bound conformations were then reevaluated with a knowledge-based scoring function called DSXonline v0.88 [4]. Docking results show that the peptide has the highest binding affinity for TMVI which supports the possible role of TMVI at the interface of a dimeric structure. Also, an initial assessment of the propensity data derived from a set of 32 nonhomologous homodimers [5] is able to identify TMVI as the domain which contains the highest number of residues with the highest interface propensity values.

References

2387-P pos Board B157
Characterizing the Motion of W6.48 in the Active State of a GPCR
Diane Lynch1, Dow Hurst1, Tod Romo2, Alan Grossfield2, Patti Reggio1, Mike Pitman3.

1University of North Carolina-Greensboro, Greensboro, NC, USA.
2University of Rochester Medical School, Rochester, NY, USA.
3IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.

Several recent studies have assessed for protein–lipid interactions [2]. Early biochemical and biophysical studies of GPCRs (G-Protein Coupled Receptors) have suggested that there are a series of switches which trigger the conformational changes associated with activation[1]. These switches include i) the rupture of the cytosolic “ionic-lock” between the E/DRY motif on TMH3 and the intracellular end of TMH6, with a subsequent outward displacement of TMH6, as well as ii) a rotamer transition of W6.48, a modulator of the geometry of TMH6 about the conserved P6.50. This “toggle switch” mechanism effectively couples ligand binding to intracellular conformational changes necessary for activation. Recently several activated state crystal structures have been released, of particular significance is the agonist bound [2AR in complex with the Gs heterotrimer[2]. This state is noteworthy as it is the first structure of an activated GPCR in complex with it’s cognate G-protein. Although these structures display the expected outward movement of TMH6, none indicate a rotation of W6.48, implying that a rotamic change is not required for activation. Alternately, it has been suggested that the transition is transitory[3].

Given that the [2AR displays constitutive activity[4], it seems plausible that the energy required to transition from the inactive to the active state is thermally accessible. In order to test the hypothesis that W6.48 makes transient rotameric changes we have undertaken microsecond long molecular dynamics simulations embedded in the full [2AR complex, derived from the crystal structure, into an all atom phospholipid environment. The thermal motion/fluctuations available to the complex and the propensity of W6.48 to undergo rotamic changes will be discussed in light of recent structural studies.

2388-P pos Board B158
Molecular Determinants for a Mutant Mu-Opioid Receptor in which Naloxone Acts as a Partial Agonist
Elizabeth Pearseall1, Bing-Yee Law1, Patricia H. Reggio1,2.

1University of NC at Greensboro, Greensboro, NC, USA.
2University of Minnesota, Minneapolis, MN, USA.

The Law group has identified a mutant \(\mu \)-opioid receptor (MOR), S4.54A, at which traditional opioid alkaloid agonists become antagonists (Yang et al., 2003). Subsequent targeted gene therapy studies using the S4.54A mutant receptor have indicated that naloxone can act as an anti-opioid agent in vivo (Chen et al., 2007). The goal of the work presented here was to understand at the molecular level, the origins of this unusual phenotype. Compounding the unusual nature of this mutant is the fact that S4.54 is a lipid facing residue. Ballesteros and colleagues have reported that the hydrogen bonding capacity of lipid facing Ser/Thr residues in \(\alpha \)-helices can be satisfied by an intrahelical hydrogen bond interaction, in either the \(g^- \)- or \(g^+ \)- conformation, between the O-atom and the i-3-hydroxyl and carbon-2 (Ballesteros et al., 2000). Ser/Thr residues in the \(g^- \)- conformation can induce a bend in an \(\alpha \)-helix, and we have found that changes in wobble angle and face shift can also occur (Ballesteros et al., 2000). To explore the effect of the S4.54A mutation on the conformation of TMH4, we used the Monte Carlo/simulated annealing technique, Conformational Memories (CM) (Konvicka et al., 1998; Whitwell et al., 2008). CM results showed that the S4.54A mutation alters the conformation of TMH4, such that the top of TMH4 bends into the bundle towards TMH3. When the output S4.54A mutant TMH4 was incorporated into our inactive state MOR model, packing of the TMHs in the TMH3/TMH4 region was altered such that the opioids antagonist, naloxone could no longer stabilize the toggle switch residue, W6.48 in its inactive state conformation. [Support: DA023905, P-Y L; DA021358, PHR]

2389-P pos Board B159
Mentromd: Adding the Grease to Membrane Protein Structures
Phillip J. Stansfeld, Mark S.P. Sansom.

University of Oxford, Oxford, United Kingdom.

Membrane protein structural biology is one of the key biochemical challenges. With continuous improvements to the methods used by structural biologists there is a predicted exponential growth in the number of membrane proteins structures. Nevertheless, these biological assemblies are usually resolved in the absence of the native lipid environment. Coarse-Grained molecular dynamics (CGMD) simulations provide a means for assessing the assembly and interactions of molecular complexes at a reduced level of representation. This method has been shown to accurately predict the position and orientation of proteins within a cell membrane. The results of these predictions are available in a database (http://sbcb.bioch.ox.ac.uk/cgdb). We are in the process of pipelining the procedure, so that new membrane protein structures are automatically inserted into a DPPC lipid bilayer on release from the Protein Data Bank (PDB). The simulations are then assessed for protein–lipid interactions, bilayer deformation, lipid diffusion and protein tilt. The resulting models are then refined to include more physiologically relevant lipid mixtures and subsequently converted to an atomistic resolution [1] to enable more detailed simulations of lipid protein interactions [2].

2391-P pos Board B161
Identification and Characterization of Transmembrane Segments
Shaun D. Adams.

University of Arkansas, Fayetteville, AR, USA.

Membrane protein structural biology is one of the key biochemical challenges. The protein data bank contains very few detailed 3D structures of the transmembrane segments of transmembrane proteins.
proteins. This project seeks to determine which amino acids are necessary or present in the transmembrane segment as well as the juxtamembrane segments. It also seeks to characterize the physical orientation of the fibroblast growth factor receptor transmembrane segment in the membrane and how the amino acids are oriented within the helix. An exclusive database of transmembrane proteins and juxtamembrane domains was created to search for trends, homology, and potential phosphorylation sites. Even though only a very limited amount of homology was found, the transmembrane segment from the fibroblast growth factor receptor will be used as a model and synthesized and characterized through a variety of biophysical techniques such as multidimensional NMR spectroscopy, circular dichroism, and fluorescence spectroscopy.

2392-Pos Board B162
An Empirical Scoring Function for the Transmembrane Helical Protein Assembly
Jose C. Flores, Igor Kurnikov, Maria Kurnikova. Carnegie Mellon University, Pittsburgh, PA, USA.

We present a coarse-grained scoring energy able to identify near-native transmembrane (TM) helices pairs of an ensemble generated by two different strategies: Rigid Body Monte Carlo simulations and a collision detection algorithm (Sethabaran et al., work in progress). We test the scoring energy on a set of four known native transmembrane helix pairs. Near native structures are identified with C₆ root mean squared deviation (RMSD) lower than 3 Å. This empirical energy function is based on a knowledge based potential obtained from a representative set of globular protein structures. We compensate packing differences of globular and helical membrane protein structures by adding a residue solvent accessible area energy term based on a membrane partition scale obtained from the membrane insertion by the Sec translocon (Hessa et al., Nature 450, 1026-1030, 2007). In addition, we strengthen the interactions among small and polar amino acids that improve the scoring of topologically correct near-native structures. We conclude that our scoring energy function favors near-native conformations of TM dimers without structural knowledge extracted from the yet small set of known membrane protein structures. This proposed method circumvents intensive membrane protein molecular dynamics simulations opening the possibility of further refinement of near-native TM structures through atomistic MD simulations.

2393-Pos Board B163
Structure-Functional Insight into Transmembrane Helix Dimerization by Protein Engineering, Molecular Modeling and Heteronuclear NMR Spectroscopy

The interaction between transmembrane helices is of a great interest because it directly determines biological activity of membrane proteins. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One of the most common forms of membrane proteins is a dimer containing two membrane-spanning helices associating laterally to form a tight complex. Development of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. Recent development of protein engineering, optical spectroscopy, molecular modeling and heteronuclear NMR techniques made it possible studies of the nature and mechanisms of important helix-helix interactions inside the membrane mimicking supramolecular complexes. Using a robust strategy we investigated recombinant transmembrane fragments from different families of bitopic membrane proteins including receptor tyrosine kinases, amyloid precursor and pro-apoptotic proteins, which play important roles in normal and pathological conditions of human organism by providing cell signaling, maintaining cellular homeostasis and controlling cell fate. We characterized thermodynamics of transmembrane helix association, diverse helix-helix packing interfaces and obtained detailed atomic picture of the intra- and intermolecular (protein-protein, protein-lipid and protein-water) interactions, that along with the available biochemical data provided useful insights into the membrane protein functioning in norma and pathological states.

This work was supported by RFBR, the Program of PAS “MCB”, the Federal Target Programs “Scientific and Pedagogical Specialists of Innovation Russia (2009-2013)” and “Research and development in priority fields of Russian scientific and technological complex in 2007-2012”.

2394-Pos Board B164
Transmembrane Helix-Helix Interactions in the Human Single-Span Membrane Proteome
Christian L. Ried¹, Jan Kirschb¹, Sebastian Kube¹, Dieter Langosch¹. ¹Technische Universität München, Freising, Germany, ²Ludwig-Maximilians-Universität München, München, Germany.

Most integral membrane proteins form non-covalent functional complexes that are frequently supported by sequence-specific interaction of transmembrane helices [1]. It has been suggested that non-covalent membrane protein multimerization may substitute for the frequently observed multi-domain organization of soluble proteins [2,3]. Here, we aligned human single-span membrane proteins with orthologs from other eukaryotes and examined the sidedness of transmembrane helices. We find that almost half of the human single-span membrane proteins possess a transmembrane helix with unilateral conservation. We propose unilateral conservation in most cases to indicate the presence of a helix-helix interface as well as the strength of interaction since it correlates well with experimentally determined self-affinities. This suggests that unilateral conservation is a good predictor of homotypic TMD interaction and underlines that transmembrane helix-helix interactions significantly contribute to protein assembly in the human single-span membrane proteome.

2395-Pos Board B165
Self-Association of Transmembrane Domains of ErbB2 Receptors in Cholesterol-Containing Membranes
Manolis Doxastakis, Anupam Prakash, Lorant Janosi. University of Houston, Houston, TX, USA.

The transmembrane domain of ErbB2 receptors presents two separate GxxxG motifs that are proposed to be connected to stability and activity of the dimer. Recently developed parallel Monte Carlo methods are employed to study the association of ErbB2 TM domains in cholesterol-containing membranes with coarse-grained models that retain a level of amino-acid specificity. Extensive sampling along separation between the two helices shows that GxxxG motifs play a critical role during the recognition stage. In pure phospholipid bilayers association occurs by contacts formed at the C-terminus promoted by the presence of phenylalanine residues. Helices subsequently rotate to eventually form a stable dimer favored by lipid entropic contributions. In contrast, at intermediate cholesterol concentrations a different pathway is followed that involves dimers with a weaker interface towards the N-terminus. However, at high cholesterol content, a switch towards the C-terminus is observed with an overall non-monotonic change of the dimerization affinity. This conformational switch modulated by cholesterol has important implications on the thermodynamic, structural and kinetic characteristics of helix-helix association in lipid membranes.

2396-Pos Board B166
Assembling the Transmembrane Domain of Vpu from HIV-1
Wolfgang B. Fischer, Li-Hua Li, Hao-Jen Hsu. National Yang-Ming University, Taipei, Taiwan.

Vpu from HIV-1s is an 81 amino acid monotropic viral membrane protein involved in the amplification of viral replication. Vpu is identified to down regulate membrane proteins of the host e.g. CD4, CD74, CD317 and BST-2/Tetherin. Based on the findings that Vpu exhibits channel activity especially when reconstituted into lipid membranes the protein is also proposed to act as a viral channel forming protein (VCP) in vivo. How Vpu is supposed to form the channel is unknown.