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Abstract

A laminar cortical model of stereopsis and later stages of 3D surface perception is developed and simulated. The model describes

how initial stages of monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface

filling-in in the lateral geniculate nucleus and cortical areas V1, V2, and V4. In particular, it details how interactions between layers

4, 3B, and 2/3A in V1 and V2 contribute to stereopsis, and clarifies how binocular and monocular information combine to form 3D

boundary and surface representations. Along the way, the model modifies and significantly extends the disparity energy model.

Neural explanations are given for psychophysical data concerning: contrast variations of dichoptic masking and the correspondence

problem, the effect of interocular contrast differences on stereoacuity, Panum�s limiting case, the Venetian blind illusion, stereopsis

with polarity-reversed stereograms, da Vinci stereopsis, and various lightness illusions. By relating physiology to psychophysics, the

model provides new functional insights and predictions about laminar cortical architecture.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This article describes a model of how the lateral

geniculate nucleus (LGN) and cortical areas V1, V2 and

V4 utilize both monocular and binocular visual in-

formation to produce three-dimensional (3D) surface

percepts. Despite some explanatory successes, many

previous cortical models, for example the disparity en-

ergy model of Ohzawa, DeAngelis, and Freeman (1990),

considered only stereopsis, which is an early stage of
depth perception that occurs in cortical area V1. Stere-

opsis is important, but on its own is insufficient to ex-

plain the 3D surface percepts that form an integral part

of our visual consciousness.
The present model, shown in Fig. 1, goes beyond

these previous analyses in several ways. First, it provides

a refined model of stereopsis in V1 which clarifies the

role of cells in cortical layers 4, 3B, and 2/3A. In par-

ticular, the model revises how the disparity energy

model achieves stereopsis, in a manner that is more

consistent with recent data. Second, the model shows

how monocular and binocular information are com-
bined and selected in V2 to form 3D boundary repre-

sentations. Third, the model shows how these 3D

boundaries give rise to visible 3D surface percepts in V4.

Taken together, these model processes are used to ex-

plain and simulate a much larger set of neurophysio-

logical, anatomical, and psychophysical data about

stereopsis and 3D surface perception than has previ-

ously been possible.
The model�s explanatory range is larger still since it is

consistent with, and generalizes, a recent laminar model

of V1 and V2, called the LAMINART model, that

does not incorporate binocular interactions (Gross-

berg, 1999a, 1999b; Grossberg, Mingolla, & Ross, 1997;
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Grossberg & Raizada, 2000; Grossberg & Williamson,

2001; Raizada & Grossberg, 2001). The LAMINART

model explained data about perceptual development,

learning, grouping, and attention. Because the pre-
sent model consistently generalizes the LAMINART

model to 3D vision, it is called the 3D LAMINART

model. Section 4 outlines how this synthesis leads to

a model that predicts how cellular and network mecha-

nisms of 3D vision are linked to mechanisms of devel-

opment, learning, grouping, and attention.

The model achieves these goals by embodying five

basic psychophysical constraints in its neural circuitry:
(1) Reconciles contrast-specific binocular fusion with

contrast-invariant boundary perception. It is well known

that only edges in the left and right retinal images that

have the same contrast polarity (i.e., their luminance

gradients have the same sign) can be binocularly fused

to form a percept of depth (Howard & Rogers, 1995).

Otherwise expressed, binocular fusion obeys the same-

sign hypothesis (see Fig. 2). However, fused boundaries
must also be able to form around objects whose contrast

polarity with respect to the background can reverse

along their perimeters (Grossberg, 1994). In other

words, binocular boundaries need to be represented in a

contrast-invariant way. How can the brain reconcile

contrast-specific fusion with the need to form contrast-

invariant object boundaries? The model proposes that

both constraints are realized by interactions between
cells in layers 4, 3B, and 2/3A of cortical area V1 in-

terblobs (see Fig. 1).

(2) Implements the contrast constraint on binocular

fusion. The brain needs to determine which of the many

potential same-sign edges in the two retinal images

should be binocularly fused, since veridical stereoscopic

depth perception will occur only if the two edges belong

to the same object. This is commonly referred to as

the correspondence problem (Howard & Rogers, 1995;

Julesz, 1971). An early step in solving the correspon-

dence problem is to binocularly fuse only edges with
approximately the same magnitude of contrast (McKee,

Bravo, Taylor, & Legge, 1994). This constraint naturally

arises when the brain fuses edges that derive from the

same objects in the world. The model satisfies this

constraint through interactions between excitatory and

inhibitory cells in layer 3B of V1 that endow the bin-

ocular cells there with an obligate property (Poggio,

1991), whereby they respond preferentially to left and
right eye inputs of approximately equal size.

(3) Solves the correspondence problem. Even if all

binocular matches are of the same-sign and similar

contrast magnitude, there can still exist many false

binocular matches between edges that did not derive

from the same objects. This problem has often been

approached by imposing a unique-matching rule, which

states that any given feature in one retinal image is
matched at most with one feature in the other retinal

image (Grimson, 1981; Marr & Poggio, 1976; for a re-

view see Howard & Rogers, 1995, pp. 42–43). However,

this rule fails in situations like Panum�s limiting case

(Gillam, Blackburn, & Cook, 1995; McKee, Bravo,

Smallman, & Legge, 1995; Panum, 1858) where a bar

presented to one eye is simultaneously matched to two

separate bars presented to the other eye. The present
model does not enforce unique matches. Rather, the

model encourages them by using a disparity filter that is

proposed to occur in the pale stripes of cortical area V2,

possibly in layer 3B (see Fig. 3). This disparity filter uses

two types of inhibitory interactions: line-of-sight inhi-

bition and inhibition across depth but within cyclopean

Fig. 2. (a) The same-sign hypothesis: only edges that have the same

contrast polarity can be stereoscopically fused to produce a percept of

depth. (b) As it is traversed, the boundary of the ellipse changes its

contrast polarity relative to the background, thereby illustrating the

need for object boundaries to be represented in a contrast-invariant

manner. See text for details.

Fig. 1. Model circuit diagram.
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position, to encourage unique matches, as described in

more detail below.

(4) Combines monocular and binocular information to

form depth percepts. Although Panum�s limiting case

seems to be a laboratory curiosity at first, there are

many naturally occurring situations where there is only

one edge in one eye and two possible edges with which
to match it in the other eye. For example, due to the

lateral displacement of the eyes, an object�s edge that is

seen by one eye may be occluded in the other eye, as

occurs during da Vinci stereopsis (Nakayama & Shim-

ojo, 1990). Despite this lack of binocular information,

the monocularly viewed region has a definite depth

conferred to it by the binocularly viewed parts of the

scene. The brain can thus utilize monocular informa-
tion to build up seamless 3D percepts of the world. In

fact, in experiments involving Panum�s limiting case,

varying the relative contrast of the bars alters the per-

ception of depth in a manner that reveals clear monoc-

ular–binocular interactions (Smallman & McKee, 1995).

Dichoptic masking, where an object presented to one

eye is obscured (i.e., masked) by one presented to the

other eye, illustrates a third way in which monocular
and binocular information may interact (McKee et al.,

1994).

Once monocular information is included, the prob-

lem immediately arises about how to combine mon-

ocular and binocular boundaries. This is a problem

because monocular boundaries do not have a definite

depth associated with them. How, then, can we decide to

which depth they should be assigned? A proposed ap-

proach to this monocular–binocular interface problem

was suggested in Grossberg (1994, 1997) in order to
explain data about 3D figure-ground perception. Here

the same hypothesis is shown to play a crucial role in

explaining many other data about 3D surface percep-

tion. Namely, the model assumes that the outputs of the

monocular boundary cells are added to all depth planes

in the pale stripes of cortical area V2 along their re-

spective lines-of-sight, possibly in layer 4 (see Figs. 1 and

4a). The disparity filter, which helps to solve the corre-
spondence problem, also solves the monocular–binocu-

lar interface problem by automatically eliminating most

of the monocular boundaries that are not at the correct

depths.

(5) Forms 3D surface percepts. So far we have con-

sidered only how the brain constructs a 3D boundary

representation of an object. There is considerable evi-

dence that boundary representations on their own do
not give rise to visible percepts, which rather are a

property of surface representations (Grossberg, 1994).

In the present model, surface representations derive

from a filling-in process whereby lightness and color

mark the depths at which the surfaces occur. Filling-in is

needed to recover lightness and color estimates in re-

gions where they have been suppressed by the process of

discounting the illuminant (Grossberg & Todorovi�cc,
1988). Boundaries control the depths at which particular

lightnesses and colors can fill-in, a process that we call

Fig. 3. The V2 disparity filter. The V1 binocular boundaries network

matches an edge in one retinal image with every other edge in the other

retinal image whose relative disparity is not too great, that has the

same contrast polarity and whose magnitude of contrast is not too

different. In response to this image, the V1 boundary network creates

four matches, with the two not in the fixation plane being false matches

between edges that do not correspond to the same object. As described

in the text, these false matches are suppressed by the disparity filter in

V2, wherein each neuron is inhibited by every other neuron that shares

either of its monocular inputs (i.e., shares a monocular line-of-sight

represented by the solid lines) or is directly in front of or behind it (i.e.,

is connected to it by a dashed line). Note in particular that the solid

lines that represent the monocular lines-of-sight also represent the al-

lelotropic shifts: an edge in the left retinal image is shifted to the right

for matches increasingly further away whereas an edge in the right

retinal image is shifted in the opposite direction.

Fig. 4. (a) Open and connected boundaries. (b) Filling-in of surface

lightness is contained or not depending on the connectedness of the

boundary. Note that the monocular boundaries (i.e., two horizontal

boundaries and the right vertical boundary) have been added to all

depth planes whereas the binocular boundary (i.e., the left vertical

boundary) is present only in the near depth plane, thereby creating a

connected boundary, and thus containment of filling-in, only in the

near depth plane.
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3D surface capture. The present article considers only

the filling-in of achromatic lightness.

How does the brain ensure that lightness fills-in at

only the correct depths? Grossberg (1994) proposed

properties of this boundary–surface interaction that

helped to explain many data about 3D figure-ground

perception. Here, one of these properties proved essen-

tial to explain 3D surface percepts that arise in stere-
opsis research. Namely, visible surfaces arise in cortical

area V4 only if they are enclosed by connected bound-

aries (see Fig. 4). In particular, a rectangular connected

boundary may be composed of one vertical binocular

boundary, one vertical monocularly viewed boundary,

and two horizontal boundaries that code no disparity

information. This connected boundary can support a

visible surface percept at the depth corresponding to the
binocular boundary if all other constraints are satisfied.

Such a boundary can contain the filling-in process.

However, if the vertical binocular boundary is missing,

as it would be at a different depth plane, then the total

boundary is not connected, and a visible percept will

not be evident at that depth because filling-in can dis-

sipate out of the boundary gap. This example illus-

trates how the monocular–binocular interface problem
(item (4) above), and thus the correspondence problem

(item (3) above), influence visible percepts of 3D sur-

faces.

The present model refines aspects of the FACADE

model of 3D vision and figure-ground perception

(Grossberg, 1994, 1997). The FACADE model included

a (non-laminar) model of stereopsis and 3D planar

surface perception (Grossberg & McLoughlin, 1997;
McLoughlin & Grossberg, 1998) that modified and

generalized the disparity energy model of stereopsis

(Ohzawa et al., 1990). This generalization incorporated

rectification prior to binocular combination, absent

from the original disparity energy model, which has

recently received independent experimental support

(Cumming, 2002; Read, Cumming, & Parker, 2002). It

also proposed that positional shifts between left and
right eye cortical inputs code disparities, rather than

phase shifts, which has also received experimental sup-

port (Tsao & Livingstone, in press). The FACADE

model also incorporated a disparity filter to help solve

the correspondence problem (Howard & Rogers, 1995)

as well as mechanisms for filling-in 3D surface percepts

from 3D boundary representations. In particular, the

FACADE model explained the fact that stereoscopic
fusion is generally impossible when the left and right eye

stimuli differ too much in contrast (Smallman & McKee,

1995). However, in the form developed by Grossberg

and McLoughlin, the FACADE model could not ex-

plain why stereoscopic fusion is always possible in the

special case where each eye sees only a single bar, re-

gardless of the contrast difference of the two bars

(McKee et al., 1994; Smallman & McKee, 1995).

The 3D LAMINART model overcomes this limi-

tation using identified cells in laminar circuits, and

resimulates all the data previously simulated by

McLoughlin and Grossberg (1998), in particular the

data on contrast variations of the correspondence

problem and dichoptic masking. In addition, the new

model can simulate still more psychophysical data than

its non-laminar predecessors, including: the Venetian
blind illusion, four different examples of da Vinci ste-

reopsis (Gillam, Blackburn, & Nakayama, 1999;

Nakayama & Shimojo, 1990), stereopsis with opposite-

contrast stimuli, the effect of interocular contrast dif-

ferences on stereoacuities and various lightness illusions.

In so doing, it demonstrates more of the roles that

boundary and surface representations play in depth

perception. The 3D LAMINART model also makes
neurophysiological predictions, including that there

exist: (1) In V1 cells that obey the ratio constraint on

binocular fusion. The model proposes that some bin-

ocular simple cells in layer 3B obey an obligate property

whereby they can be activated only if they receive ap-

proximately equal inputs from both left and right eye

monocular simple cells in layer 4. The constraints that

determine cell firing depend upon the ratios of left and
right monocular cell activity. This property explains the

ratio constraint on stereoscopic fusion that is illustrated

in Fig. 10 below. The obligate property is predicted to be

caused by a balance between excitatory inputs from

layer 4 monocular simple cells and inhibitory inputs

from layer 3B inhibitory interneurons. The interneurons

are themselves activated by layer 4 monocular simple

cells and mutually inhibit each other, in addition to in-
hibiting the binocular simple cells. (2) In V2 cells that

solve the correspondence problem using a disparity fil-

ter. (3) In V4 a filling-in mechanism that completes

visible 3D surface representations within connected

boundaries. These results were briefly reported in Howe

and Grossberg (2001).

2. Model description

The model consists of four component networks

which process: V1 binocular boundaries, V1 monocular
boundaries, V2 boundaries, and V4 surfaces. For a

mathematical description, the reader is referred to Ap-

pendix A. A description of the neurophysiological and

anatomical evidence that supports all the model pro-

cessing stages is found in Section 4.1. In order to reduce

the computational load, the model currently considers

only horizontal and vertical contours and five depth

planes. Even so, the model includes approximately
185,000–333,000 cells depending on the simulation. Al-

though model cells and cells in vivo will be clearly dis-

tinguished in the text, model cells will be referred to by
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physiological labels because their properties so closely

match those found in vivo.

2.1. V1 binocular boundaries

The network that processes the V1 binocular

boundaries is located in the V1 interblob region and

includes the binocular cells in layers 3B and 2/3A. It

carries out stereoscopic fusion of vertical contours, but

not of horizontal contours, which it assumes cannot be

stereoscopically fused. This network implements the

same-sign hypothesis (see Section 1, item (1)). As shown
in Fig. 1, inputs to the left and right eyes activate

monocular simple cells in layer 4 of the V1 interblob

regions. Left and right eye monocular simple cells con-

jointly activate binocular simple cells in layer 3B whose

depth sensitivity is determined by the relative retinal

disparity of the layer 4 monocular cells that project to

them. The model implements the same-sign hypothesis

by assuming that only layer 4 simple cells with the same
contrast polarity project to a single layer 3B simple cell.

These layer 3B simple cells are therefore selective for

binocular disparity and a prescribed contrast polarity.

Binocularly fused vertical contours that occupy corre-

sponding points on the two retinas are seen as a single

boundary in the fixation plane, whereas vertical con-

tours that are displaced relative to each other are seen as

a single boundary either in front of or behind the fixa-
tion plane, depending on their displacement, as detailed

in Appendix A (Eq. (A.10)).

There are also inhibitory cells in layer 3B. As is de-

scribed in Appendix B, these cells ensure that the bin-

ocular simple cells act like the ‘‘obligate cells’’ of Poggio

(1991): The activity of such a binocular simple cell is

suppressed by these inhibitory interneurons if the mag-

nitudes of the left and right eye inputs differ too much
(see Section 1, item (2)). In particular, these obligate

cells respond to binocular, but not to monocular, stim-

ulation. These obligate cells help to solve the corre-

spondence problem by ensuring that only similar stimuli

in the left and right eye retinal images are stereoscopi-

cally fused.

The next processing stage implements contrast-

invariant boundary detection (see Section 1, item (1)).
Layer 3B simple cells that are sensitive to the same po-

sition and disparity, but opposite contrast polarities,

pool their signals at layer 2/3A complex cells. These

complex cells therefore respond to both contrast polar-

ities and so can generate three-dimensional object

boundaries even if the object�s contrast polarity, with

respect to the background, reverses as the boundary is

transversed. In summary, the two layers 3B and 2/3A,
acting together, can realize the same-sign hypothesis and

also begin to compute object boundaries in front of

textured backgrounds.

These proposed interactions between layers 4, 3B and

2/3A are consistent with neurophysiological data, as

detailed in Section 4.1, and instantiate key operations of

the disparity energy model (Ohzawa et al., 1990), which

itself is strongly supported by physiological evidence; for

a review (see Ohzawa (1998)). As discussed in Section 1,

the need for preprocessing before the site of binocular

combination, such as that carried out by layer 4 of our
model, has recently been demonstrated by Cumming

(2002) and Read et al. (2002), who showed that pre-

processing was required to explain subtleties in physio-

logical data not captured by the original disparity

energy model.

2.2. V1 monocular boundaries

The network that processes the V1 monocular

boundaries comprises the monocular cells in layers 4, 3B

and 2/3A of the V1 interblob region. It is similar to the

binocular boundaries network, but represents both

horizontal and vertical boundaries whereas the binocu-

lar boundaries network represents only vertical bound-

aries. Binocular boundary cells preferentially represent a
particular depth plane, but this is not true of monocular

boundary cells. How, then, do monocular and binocular

boundaries interact? A proposed solution of this mon-

ocular–binocular boundary interface problem assumes

that the outputs of the monocular boundary cells are

added to all depth planes in cortical area V2 along their

respective lines-of-sight (see Section 1, item (4) and Fig.

3). Appendix A, Eqs. (A.12) and (A.13), describe this
process quantitatively.

As noted in Section 1 (item (4)), the V2 disparity filter

helps to solve the monocular–binocular interface prob-

lem, as well as the correspondence problem, by elimi-

nating most of the monocular representations that are

not at the correct depth. This previously unexpected

property of the disparity filter is crucial to understand-

ing the monocular–binocular interactions described in
this paper. It can best be understood by studying the

model simulations in Section 3.

2.3. V2 boundaries

The disparity filter network that processes V2
boundaries is located in the V2 pale stripes (see Section

1, item (3)). The V1 binocular boundaries network at-

tempts to match every vertical edge in one retinal image

with every other nearby vertical edge in the other retinal

image that has the same contrast polarity and approxi-

mately the same magnitude of contrast. Fig. 3 shows the

resultant matches if each eye sees two bars. V1 makes

four matches. Only the two in the fixation plane are
correct matches. The other two are false matches be-

tween retinal images that do not correspond to the same

object. Such false matches are known to occur in V1 but
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less readily in V2 (Bakin, Nakayama, & Gilbert, 2000;

Cumming & Parker, 2000). As they typically do not give

a veridical depth perception, these false matches must be

suppressed.

Fig. 3 illustrates how the disparity filter works. To

encourage unique matching, the model assumes that

each neuron inhibits all other neurons that share either

of its monocular inputs; that is, shares one of its mon-
ocular lines-of-sight. This is represented by the solid

lines between neurons in Fig. 3. This rule on its own

could ensure that only two of the four initial matches in

Fig. 3 survive, but it could not guarantee that it is the

false matches that are suppressed. A second form of

inhibition ensures this. This inhibition acts across depth

and within cyclopean position. It is represented by the

dashed line between each neuron with every other neu-
ron that is directly in front of or behind it. These two

types of inhibition work together to ensure that the two

matches in the fixation plane typically win, thereby

solving the correspondence problem. It should be

stressed that the disparity filter operates only on verti-

cally oriented cells, as the model assumes that horizontal

boundaries cannot be fused and therefore cannot give

rise to false matches. It will be shown in Section 3.1.4
how this filter is also able to explain how, in some sit-

uations, double matching can occur, as in Panum�s
limiting case, an example of stereopsis that many pre-

vious models (e.g., Grimson, 1981; Marr & Poggio,

1976) could not explain.

2.4. Surfaces

Boundaries help give rise to 3D surface percepts in

the manner summarized in Section 1 (item (5)). Al-

though our main goal is to explain percepts of surface

depth, percepts of surface lightness are also simulated to

show that our development of cortical depth perception
mechanisms are consistent with simulations in related

modeling studies of surface brightness and lightness

(e.g., Grossberg & Kelly, 1999; Kelly & Grossberg,

2000). Such a unified set of simulations supports the key

FACADE prediction that the same process fills-in

surface lightness, color, and depth (Grossberg, 1994).

Previous simulations of lightness often focused on

computing the relative lightnesses of surface regions (but
see Grossberg, Mingolla, & Williamson, 1995). Once

relative lightness is estimated, then absolute lightness

can be computed in many cases by assuming that the

lightest surface of the group is white and calculating the

absolute lightnesses of all other surfaces relative to that

one (Wallach, 1976).

Grossberg and Todorovi�cc (1988) computed the rela-

tive lightness of two surfaces by first discounting the
effects of a spatially non-uniform illumination (see Sec-

tion 1, item (5)). Discounting the illuminant can be

achieved by neurons that obey cell membrane equations

and that interact through on-center, off-surround cir-

cularly symmetric receptive fields. The present model

utilizes such model neurons, which are analogous to

those found in the LGN, as summarized in Section 4.1

and defined in Appendix A (Eqs. (A.1)–(A.3)). These

model neurons are excited by spots of light applied to

the center of their receptive fields but are inhibited by

those applied outside this central region. The excitatory
and inhibitory components of the receptive fields are

balanced so that cell responses are attenuated to spa-

tially uniform or slowly varying stimulation. The cells

therefore respond preferentially to luminance borders.

At a later processing stage, these border signals propa-

gate throughout those surface regions that are com-

pletely enclosed by boundaries to complete the lightness

representation. Propagation occurs via a filling-in pro-
cess that is akin to a diffusion process, as defined in

Appendix A (Eqs. (A.17)–(A.23)). Propagating signals

can dissipate across space unless the region is sur-

rounded by a connected boundary (see Fig. 4). As in

Grossberg (1994), the present model proposes that the

final stage of filling-in occurs in V4, where visible surface

percepts are predicted to occur. Section 3 summarizes

how such a filling-in process, when confined by the 3D
boundaries of the present model, can explain da Vinci

stereopsis, as well as many aspects of lightness percep-

tion, thereby linking the model�s explanations of surface
depth and lightness.

3. Model simulations

This section summarizes simulations that predict how

monocular and binocular information interact in the

visual cortex. We will consider, in turn, contrast varia-

tions of dichoptic masking, stereoacuity, Panum�s lim-

iting case, contrast variations of the correspondence
problem, the Venetian blind illusion, stereopsis with

opposite-contrast stimuli, da Vinci stereopsis, and the

Craik–O�Brian–Cornsweet lightness illusion. The main

aim of these simulations is to illustrate how the model�s
four component networks interact with each other to

explain the percepts reported by human subjects. These

explanations constitute testable predictions for linking

psychophysical percepts to their cortical mechanisms.
Like the model diagram shown in Fig. 1, the simulation

figures should be read from the bottom up, with the

bottom two rows representing the input and the V1

boundary representations, the next two rows represent-

ing the V2 boundary representations and the top row

representing the V4 surface representations. Further-

more for each of the top four rows, depth increases from

left to right, with the middle plot representing the fixa-
tion plane, the two leftmost plots representing the two

near depth planes and the two right plots representing

the two far depth planes.
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3.1. Dichoptic masking

3.1.1. The basic paradigm

In the basic paradigm considered by McKee et al.

(1994), the contrast threshold for the detection of a low

contrast bar presented to one eye was found to increase

radically when a high contrast bar was presented to the

other eye. Furthermore it was not necessary for the two
bars to be at retinal correspondence. The model expla-

nation of this percept is as follows. The high contrast

bar is presented to the left eye and the low contrast bar

to the right, as shown by the middle two plots in the

bottom row of Fig. 5. The outer two plots of the bottom

row show the simulated monocular boundary repre-

sentations. Since their contrasts differ greatly, these two

bars cannot be stereoscopically fused in V1 due to the
inhibitory circuit in layer 3B, as explained in Section 2.1.

This accounts for the absence of V1 binocular bound-

aries representations in the second row. As the monoc-

ular boundaries do not yet have a depth associated with

them, they are added to all depth planes in V2 along

their respective monocular lines-of-sight, as shown in

the third row of this figure. In this row, each of the five

plots represent a different depth, with those on the left
representing depth planes nearer than the fixation plane

and those on the right the converse. As we move across

this row the allelotropic shifts (cf., Fig. 3) cause the left

monocular boundaries to be added to locations further

to the right in successive depth planes, while the right

monocular boundaries are added to locations further to

the left. The left and right monocular boundaries coin-

cide in the near disparity plane represented by the sec-

ond plot of this row. The vertical boundaries in this

disparity plane are consequently stronger than those in

the other four depth planes, which they then suppress

via the line-of-sight inhibition of the V2 disparity filter

(cf., Fig. 3) to give the final V2 boundary representations

shown in the fourth row. Notice, in particular, that all

horizontal boundaries have survived since the disparity

filter only inhibits vertical boundaries. In contrast to the
horizontal boundaries, only the vertical boundaries in

the near disparity plane, represented by the second plot

of this row, have survived. As explained in Section 2.4,

lightness signals, originating at the location of the

boundaries, propagate throughout this disparity plane.

Because the near disparity plane contains a connected

boundary that completely encloses a bar-shaped region,

these boundaries can contain the filling-in of the light-
ness signals to cause the bar-shaped surface percept

shown in one plot of the top row. The other filling-in

signals dissipate and do not give rise to a conscious

surface percept (see Fig. 4). Because the bars in the left

and right eye inputs are perceived to occupy the same

position in 3D space, the high contrast bar masks the

low contrast bar. In summary, this simulation shows

how the left and right inputs can be fused to form a
single percept in V4 even though their contrasts are so

different that they cannot be fused by the binocular cells

in V1.

The fact that the V2 disparity filter can fuse bars

whose contrasts are too different to be fused in V1 has

ramifications for stereoacuity. In particular Schor and

Heckmann (1989) noted that increasing the contrast of

the image equally in both eyes increases stereoacuity,
but increasing the contrast of the image in just one eye

decreases stereoacuity. The model explanation is simply

that in the first case fusion could occur in V1 but in the

second only in V2. Since V1 cells in general have smaller

receptive fields than V2 cells that correspond to the same

region of visual space, the model is therefore able to

explain why stereoacuity is greater in the first case than

in the second.

3.1.2. Release from dichoptic masking

McKee et al. (1994) continued their study of dich-

optic masking by demonstrating that, for the particular

case where the two bars of Fig. 5 were in retinal corre-
spondence, the addition of a second high contrast bar to

the right input releases the low contrast bar from

masking. The model explanation is summarized in Fig.

6a. As before, the stimuli are shown in the middle two

plots of the first row and the monocular boundary

representations in the outer two plots. Now the high

contrast bar of the left input is able to binocularly fuse

with the high contrast bar of the right input to form the
vertical V1 binocular ‘‘far’’ boundary representations

shown in the fourth plot of the second row. As before,

the monocular boundaries are added to all disparity

Fig. 5. Model simulation showing that retinal correspondence is not

needed for dichoptic masking (McKee et al., 1994). The first row

represents the inputs and the V1 monocular boundaries, the second

row the V1 binocular boundaries, the third and fourth rows the V2

boundaries and the fifth row the V4 surface percepts. In the top four

rows depth increases from left to right for successive plots, with the

middle plot representing the fixation plane. All other simulation plots

use the same format. See text for details.
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planes in V2 along their respective monocular line-of-

sights (cf., Fig. 3) as shown in the third row. In addition,

the V1 binocular boundaries are also added to V2, co-
inciding with the right bar representation of the fourth

plot of this row. The vertical boundaries of this bar

representation are therefore stronger then the vertical

boundaries in the other depth planes, in particular those

of the fixation plane, which they consequently suppress

via the line-of-sight inhibition of the V2 disparity filter.

This then is the reason why the left bar of the right input

is not perceived to lie in the fixation plane even though it
is seen only monocularly. The vertical boundaries of the

left bar representation of the fourth plot are not sup-

pressed because they do not share any lines-of-sight with

the vertical boundaries of the right bar of this plot. The

final V2 boundary representations are shown in the

fourth row.

Only those vertical boundaries in the fourth plot have

survived. Consequently, only the fourth plot contains
regions that are completely enclosed by boundaries, and

so give rise to surface percepts in V4, as is shown in the

fourth plot of the top row. The high contrast bar of the

left input is no longer perceived to occupy the same 3D

position as the low contrast bar of the right input. The

low contrast bar is therefore no longer masked. This

simulation explains the observation of McKee et al.

(1994) that the addition of a high contrast bar to the

right input causes the low contrast bar of the right input

to be released from dichoptic masking.

In Fig. 6b, instead of placing a high contrast bar next

to the low contrast of the right input bar, as in Fig. 6a, a
low contrast bar is placed next to the high contrast bar

of the left input. The resultant simulation is very similar

to that shown in Fig. 6a. In particular, the two low

contrast bars binocularly fuse and the resultant allelo-

tropic shifts mean that once again the high contrast bar

of the left input is not perceived to cover the low con-

trast bar of the right input resulting in a release from

dichoptic masking.
Fig. 6a and 6b together show that the release from

dichoptic masking can be achieved by adding either a

high or low contrast bar to the original stimulus of Fig.

5. Since McKee et al. (1994) considered only the stim-

ulus configuration of Fig. 6a, Fig. 6b represents a novel

prediction.

3.1.3. Return to dichoptic masking

McKee et al. (1994) also observed that the release

from dichoptic masking observed with the stimulus

configuration of Fig. 6a did not occur when the addi-

tional bar in the right input had a low contrast. Fig. 7a

describes the model simulation of this property. The key
difference between Figs. 7a and 6a is that the right bar of

the right input no longer fuses with the bar of the left

input because, as explained in Section 2.1, their con-

trasts differ too greatly. This accounts for the lack of V1

boundary representations in the fourth plot of the sec-

ond row. The situation is now very similar to the basic

dichoptic masking paradigm, depicted in Fig. 5, thereby

explaining the return to dichoptic masking.
The monocular boundaries are added to all disparity

planes in V2, shown in the third row of this figure, in

exactly the same manner as in the previous section.

Because the left bar of the right input is in retinal cor-

respondence with the single bar of the left input, their

boundary representations overlap in the zero disparity

plane, thereby forming the leftmost bar representation

in the middle plot of this row. The vertical boundaries of
this bar representation are consequently stronger and so

suppress all the other vertical boundaries that share

either of their lines-of-sight. They do not, however, sup-

press the vertical boundaries corresponding to the right

bar representation of this plot because these boundaries

do not share any of their lines-of-sight. The final V2

boundary representations are shown in the fourth row.

Only the vertical boundaries in the fixation plane,
represented by the middle plot, have survived. These two

sets of boundaries completely enclose two bar-shaped

regions. As before, these boundaries confine the light-

Fig. 6. (a) Simulation of the release from dichoptic masking reported

by McKee et al. (1995). (b) Simulation of another way a release from

dichoptic masking may be achieved. See text for details.
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ness signals, which originate at the locations of
the boundaries, to generate the two bar-shaped surfaces

shown in the middle plot of the top row. The high

contrast bar of the left input coincides with, and there-

fore again masks, the left bar of the right input. In

summary, this simulation explains the observation

of McKee et al. (1994) that dichoptic masking returns

when the contrast of the right bar of the right input is

reduced.
A key difference between this simulation and that

shown in Fig. 6a is that in this simulation the monoc-

ularly viewed bars are perceived to lie in the fixation

plane whereas in the previous simulation the line-of-

sight inhibition of the V2 disparity filter prevented the

monocularly viewed bar of that simulation from being

perceived to lie in the fixation plane. Taken together

these two simulations show how the line-of-sight inhi-
bition of the V2 disparity filter can interact with the

spatial layout of the stimuli to determine the perceived

depth arrangement.

3.1.4. Dichoptic masking in Panum’s limiting case

As described in the next section, the present model

solves the correspondence problem by using a disparity

filter that encourages unique matching, via line-of-sight

inhibition, but does not enforce it. One advantage of this

is that the model can simulate Panum�s limiting case,

where a bar in one eye is simultaneously fused with two

bars in the other eye (Gillam et al., 1995; McKee et al.,

1995; Panum, 1858; but see Frisby (2001) and Wang,

Wu, Ni, & Wang (2001) for variations where double

matching does not seem to occur). Fig. 7b shows the

model simulation where a bar in one eye masks equally
two bars presented to the other eye as reported by

McKee et al. (1995).

The left eye sees a single bar and the right eye sees

two bars as shown by the middle two plots of the first

row. The resultant monocular boundaries are shown by

the outer two plots of this row. Area V1 fuses the bar of

the left input with both bars of the right input, to form

binocular boundaries in both a near and a far disparity
plane, represented by the second and fourth plots of the

second row. The monocular boundaries are added to all

disparity planes in V2 along their respective lines-of-

sight, as shown by the third row. The left monocular

boundaries form the left bar representation in the first

two plots, the middle bar representation in the third

plot, and the right bar representation in the fourth and

fifth plots of the third row. Similarly, the right monoc-
ular boundaries form the two right bar representations

in the first two plot, the outer two bar representations in

the third plot, and the leftmost two bar representations

in the fourth and fifth plots of this row. The V1 binoc-

ular boundaries are also added to V2, coinciding with

the vertical boundaries of the left bar representation in

the second plot and the right bar representation in the

fourth plot. Those boundaries in V2 that receive bin-
ocular input are stronger than and consequently sup-

press, via the recurrent inhibition of the V2 disparity

filter, those V2 vertical boundaries that receive only

monocular input and that share one of their lines-of-

sight. The surviving V2 boundary representations are

shown in the fourth row. Those regions in V2 that are

enclosed by a connected boundary give rise to surface

percepts in V4. The model correctly predicts that the bar
of the left input is matched with both bars of the right

input, and so masks them both equally (McKee et al.,

1995).

3.2. Contrast variations of the correspondence problem

The previous simulations have demonstrated the

crucial role the disparity filter plays in explaining prop-

erties of dichoptic masking. However, as was discussed

in Section 1, the disparity filter also helps to solve the

correspondence problem by eliminating matches be-

tween edges that belong to different objects. The unique-

matching rule that various other models have imposed
cannot hold in general, since Panum�s limiting case

shows that, in certain circumstances, a feature in one

eye can be matched to two features in the other eye. This

Fig. 7. (a) Simulation of the return to dichoptic masking reported by

McKee et al. (1995). (b) Simulation of dichoptic masking in Panum�s
limiting case reported by McKee et al. (1995). See text for details.
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is why the disparity filter of the present model encour-

ages unique matching but does not enforce it. The model

will now be shown to simulate all the data from the

Smallman and McKee (1995) extensive study of the

correspondence problem even though it does not enforce

the uniqueness constraint. In so doing, it clarifies the

crucial role that monocular–binocular interactions play

in these percepts.

3.2.1. Control experiment

Smallman and McKee (1995) initiated their study by

performing a control experiment in which each eye was
presented with two bars, all four bars having the same

high contrast. Subjects reported seeing two identical

bars, both in the far disparity plane. Fig. 8a shows the

corresponding model simulation.

Since the left input is displaced leftwards relative to

the right input, the vertical edges of the two bars fuse in

the far disparity plane in V1, as is shown by the fourth

plot of the second row. In addition to this, there is a
false match in the near disparity plane of V1, shown in

the second plot of this row, which is caused by the in-

appropriate fusion of the right bar of the left input with

the left bar of the right input. As usual, the monocular

boundaries are added to all depth planes in the V2 dis-

parity filter along their respective monocular lines-

of-sight, as shown in the third row of this figure. In

addition, the binocular bar representations are also

added to V2, coinciding with the middle bar representa-
tion in the second plot and both bar representations of

the fourth plot. Those vertical boundaries that receive

binocular input, being stronger, quickly inhibit via the

V2 disparity filter all other vertical boundaries that

share their lines-of-sight and only receive monocular

input. The two sets of vertical boundaries in the fourth

plot, both of which receive binocular input, cooperate

via the disparity filter to inhibit the vertical boundaries
of the middle bar representation of the second plot,

which also receive binocular input. This happens be-

cause the middle bar boundaries receive binocular in-

puts that share monocular inputs with their inhibitors.

The final V2 boundary representations are shown in the

fourth row. The model correctly predicts that subjects

see both bars in the far disparity plane. In summary, this

simulation shows how the line-of-sight inhibition of the
V2 disparity filter ensures that the false match that is

present in V1 (second plot of the second row) is elimi-

nated. The V2 disparity filter is therefore the reason why

the model can solve the correspondence problem.

Fig. 8b shows a more complicated version of the

correspondence problem. Once again the false matches

are shown in the second plot of the second row and the

correct matches in the fourth plot. Since there are more
correct matches than false matches, the latter are again

suppressed by the former via the line-of-sight inhibition

of the V2 disparity filter. This simulation shows that the

model can be applied to more general versions of the

correspondence problem than that shown in Fig. 8a. In

Section 3.3 the model is applied to a particularly com-

plex version of the correspondence problem known as

the Venetian blind illusion. These simulations of the
correspondence problem, the Venetian blind illusion

(Figs. 11 and 12) and da Vinci stereopsis (Figs. 14 and

15), among others, clarify how the model will generalize

to natural images by showing how it deals with a variety

of potentially confusing matches within the fusion

range.

3.2.2. Contrast variations

After performing their control experiment, Smallman

and McKee (1995) then proceeded to study contrast

variations. They first considered the case where the left

bar of the left input had a much lower contrast than
the other three bars. They found that observers per-

ceived this bar to lie in the zero disparity plane while

also perceiving two high contrast bars, the left lying in a

Fig. 8. (a) Simulation of the control experiment Smallman and McKee

(1995) used for subsequent studies of the correspondence problem. (b)

Simulation of a more complicated version of the correspondence

problem. See text for details.
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near disparity plane and the right lying in a far dis-

parity plane, as depicted by plots in the top row of

Fig. 9a. The model simulation explains this percept as

follows.
The model asserts that the left bar of the left input

cannot be matched with either of the bars of the right

input because its contrast differs too greatly from theirs.

Instead, the right bar of the left input matches with both

bars of the right input, forming near and far disparity

vertical boundary representations in V1, as shown by

the second and fourth plots of the second row. As de-

tailed in Section 3.2.1, the monocular boundary repre-
sentations are added to all depth planes in the V2

disparity filter along their respective lines-of-sight, as is

shown by the plots in the third row of this figure. The V1

binocular boundary representations are also added to

the V2 disparity filter, coinciding with the middle bar

representation of the second plot and the right bar

representation of the fourth plot. These two sets of

boundaries, being stronger, then suppress, via the re-
current line-of-sight inhibition of the V2 disparity fil-

ter, those vertical boundary representations that share

their lines-of-sight. They cannot, however, suppress the

vertical boundaries of the leftmost bar representation of

the middle plot because these boundaries do not share

any of their lines-of-sight. The final V2 boundary rep-

resentations are shown in the plots of the fourth row.

After the surviving connected boundaries fill-in, three

surface representations form where humans see them.

Smallman and McKee (1995) then studied the inverse

situation where the left bar of the left input had a much
higher contrast than the other three bars, which all had

the same contrast, as depicted by the middle two plots of

the first row of Fig. 9b. They found that this situation

produced very similar results to the last situation with

the left bar of the left input being perceived to lie in the

zero disparity plane and the two bars of the right input

being perceived to lie in the near and far disparity planes

as before.
According to the model, the left bar of the left input

once again cannot fuse with either of the bars of the

right input, this time because its contrast is too high.

The situation is therefore virtually identical to that de-

picted by Fig. 9a, thereby explaining the similar percept

reported by the subjects.

3.2.3. The ratio rule

The only difference between the control experiment

and these last two experiments was that, in the latter, the

left bar of the left input had a significantly different

contrast from the other three bars. A key question is
how great this contrast difference must be to cause the

percept to change from that obtained in the control

experiment to that obtained in the last two experiments.

Smallman and McKee (1995) determined that this crit-

ical difference was best described in terms of a ratio

constraint on the magnitudes of the contrast of the in-

puts to the two eyes, where the exact value of the critical

ratio varied between subjects. Fig. 10 shows the maxi-
mum contrast difference between the two eyes that still

allows the model to perform stereoscopic fusion, plotted

on logarithmic axes. ‘‘�’’ designates a data point ob-

tained when the odd bar had a lower contrast than the

other three bars (i.e., the situation depicted by Fig. 9a)

and ‘‘+’’ the converse situation (Fig. 9b). The line of best

fit for the two sets of data combined is a straight line of

slope equal to 1, indicating that the model�s behavior is
consistent with the ratio rule reported by Smallman and

McKee (1995).

3.2.4. Exception to the ratio rule

Smallman and McKee (1995) also discovered one

notable exception to the ratio rule: When each eye sees

only a single bar, these bars match regardless of their

contrast difference. This situation was simulated as an

example of dichoptic masking without retinal corre-

spondence, and the reader is referred back to Section

3.1.1 (Fig. 5) for an explanation.

Fig. 9. (a) Simulation of a contrast variant of the correspondence

problem studied by Smallman and McKee (1995). (b) Simulation of

another contrast variant of the correspondence problem studied by

Smallman and McKee (1995). See text for details.
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3.3. The Venetian blind effect

We continue our discussion of the correspondence

problem by considering the Venetian blind effect. A
Venetian blind stereogram is shown in Fig. 7.21 of

Howard and Rogers (1995) and consists of two gratings,

a low frequency one that is presented to the left eye, and

a high frequency one presented to the right. When fused,

the frequency of the gratings are such that every second

bar of the left grating is in retinal correspondence with

every third bar of the right grating. The stimulus is

reproduced in the middle two plots of the first row of
Fig. 11.

According to Howard and Rogers, this stereogram

produces a percept of short ramps, each containing

three bars, sloping up from left to right interspaced with

steep returns. The total percept is that of a Venetian

blind. The model is able to correctly predict this percept,

as shown by the top row of Fig. 11. Numbering from left

to right, this row shows that the first bar of the percept is
in the zero disparity plane, the second in the near dis-

parity plane, then there is a step return to the third bar

which is located in the far disparity plane after which the

pattern repeats.

Although the model is able to correctly simulate the

percept, this simulation is too complicated to explain

simply. Instead, we will divide the stimulus into two

components and consider these separately.
First, we note that every second bar of the left input is

in retinal correspondence with every third bar of the

right input. We extract these bars to form the stimulus

shown in the middle two plots of the first row of Fig.

12a. Since the bars in the left and right inputs of this

figure are in retinal correspondence, the model correctly

predicts that they will appear in the zero disparity plane,

as shown by the middle plot of the fifth row.
We now consider the remaining bars, which are

shown in Fig. 12b. The right eye sees exactly twice the

number of bars as the left eye. This is therefore an ex-

ample of Panum�s limiting case that was considered

Section 3.1.4. As before, the model predicts that each

bar of the left input is fused with two bars of the right

input to generated the percept shown in the top row of

this figure.
Adding together the percepts shown in top rows of

Fig. 12a and 12b, we achieve the percept shown in the

top row of Fig. 11, thereby explaining the Venetian

blind effect. The insight that the model provides is that

the Venetian blind effect is just a complex version of the

correspondence problem and Panum�s limiting case,

when it is properly understood by combining early ste-

reo matching, later selection by a disparity filter, and
surface filling-in of those regions that are completely

enclosed by boundaries.

3.4. Stereopsis with opposite-contrast stimuli

Polarity-reversed stereograms are those stereograms

where corresponding elements in the two stereo half im-

ages have opposite luminances. In other words, for every

Fig. 10. Simulation of the ratio constraint on stereoscopic fusion. On

logarithmic axes the contrast of the higher contrast bar is plotted

against the minimum contrast of the low contrast bar that can still be

fused with it. Crosses (+) denote the situation where one bar has a

higher contrast than the other three bars (e.g., Fig. 9a) and circles (�)

the converse (e.g., Fig. 9b). The line of best fit for the total data set has

a slope of 1. The model thus obeys the ratio constraint on stereoscopic

fusion.

Fig. 11. Simulation of the Venetian blind effect (Howard & Rogers,

1995).
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white element in one stereo half image there is a corre-

sponding black element in the other stereo half image.

The model simulation of the depth percept induced by a

polarity-reversed stereogram is shown in Fig. 13a.
Here the left eye sees a black bar and the right eye a

white bar both on the same gray background. Since they

have the same contrast polarity, the left edge of the white

bar fuses with the right edge of the black bar to form a

vertical boundary in a far disparity plane of V1, shown

by the fourth plot of the second row. Even though they

have the same contrast polarity, the right edge of the

white bar cannot fuse with the left edge of the black bar
because they are too disparate. As always, the monocular

boundaries are added to V2 along their respective lines-

of-sight, shown by the plots in the third row. The vertical

binocular V1 boundary is also added to V2 and coincides

with the middle vertical boundary in the far disparity

plane represented by the fourth plot. This boundary,

being stronger, then suppress, via the line-of-sight inhi-

bition of the V2 disparity filter, the middle two vertical
boundaries in all other disparity planes of this row, re-

sulting in the final V2 boundary representations shown in

plots of the fourth row. Only the fourth plot of this row

contains regions completely enclosed by boundaries,

which is why surfaces are perceived only in this disparity

plane, as shown by the fifth row.

This simulation suggests that the stereoscopic depth
perception induced by polarity-reversed stereograms is

mediated by the fusion of those edges in the two stereo

half images that have the same contrast polarity. In

particular, the model predicts that the degree of the in-

duced depth should be completely determined by the

disparity of these fused edges. An alternative prediction

would be that, since most of the display is perceived only

monocularly, and since monocular objects tend to be
perceived to lie in the fixation plane (Krol & van de

Grind, 1983), the depth perceived should be biased to-

wards the fixation plane. Howe and Watanabe (in press)

ran a series of psychophysical experiments to investigate

which of these two predictions were true, and found that

the prediction of the model was a better description of

the degree of depth experienced by subjects.

Suppose, however, that the subject�s vergence were to
change so that the stimulus became that shown in Fig.

13b. Now, because they have the same contrast polarity,

Fig. 12. (a) Simulation of one component of the Venetian blind effect.

(b) Simulation of the other component.

Fig. 13. Simulation of stereopsis with a polarity-reversed stereogram.

See text for details.
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the right edge of the white bar fuses with the left edge of

the black bar to form a boundary representation in the

far disparity plane of V1; see the fourth plot of the

second row. Also, the left edge of the white bar fuses

with the right edge of the black bar to form a boundary

representation in the near disparity plane of V1; see the

second plot of the second row. Unlike Fig. 13a, there are

now two boundary representations in V1. The monoc-
ular boundaries are added to V2 along their respective

lines-of-sight. The binocular boundaries are also added

to V2, overlapping with the middle vertical boundaries

in the second and fourth plots of the third row. These

two boundaries, being stronger, suppress all other ver-

tical boundaries via the recurrent inhibition of the V2

disparity filter. However, because they are equally

strong, they cannot suppress each other. The final
boundary representations are shown in fourth row. No

regions are completely enclosed by boundaries and so

the model predicts that there will be no stable depth

percepts.

This prediction is correct in as far as it goes, in that

subject do not achieve any stable surface percepts, but

in practice unstable surface percepts may form if sub-

jects experience binocular rivalry. Describing binocular
rivalry is beyond the scope of our simulations. However,

it has been qualitatively modeled in Grossberg (1987) in

a manner that is consistent with the present model

simulations.

The key point here is that whether or not an anti-

correlated stereogram induces a stable depth percept

depends on the vergence of the subject. One vergence

position enables the visual system to match the left and
right inputs only in a single way. Other vergence posi-

tions lead to two binocular boundaries in V1, and

consequently no stable depth percepts in V4, as dem-

onstrated by Fig. 13b. Subjects may also be able to use

attention to choose between the two possible ways of

matching the left and right inputs. Section 4.4 shows

how the model may be extended to incorporate atten-

tional effects.
Regardless of whether subjects use vergence or at-

tention to make sure their visual system can only fuse

the left and right inputs in one way, as more elements

are included in the left and right inputs, the harder it is

to ensure unambiguous fusion. The model suggests that

this is the reason why complex anticorrelated stereo-

grams (i.e., those anticorrelated stereograms that con-

tain many separate elements) induce little or no depth
perception whereas simple anticorrelated stereograms

do (Howard & Rogers, 1995; Julesz, 1971).

3.5. Da Vinci stereopsis

Da Vinci stereopsis describes those situations where a

monocular object has a definite depth conferred to it by

its relationship to a binocularly viewed object. Such

situations are often caused by each eye viewing the

world from a slightly different position, leading to par-

tial occlusions where part of a scene is visible to only one

eye. The model clarifies how the percept of depth caused

by such stimuli can be explained in terms of monocular–

binocular interactions.

3.5.1. Stimuli of Nakayama and Shimojo (1990)

In this set of experiments, a thick bar was presented

to both eyes and a thin bar only to the right eye, as

shown in the first row of plots of Fig. 14a. Subjects re-

ported perceiving the thin bar behind the thick bar, at a

depth that was consistent with the right edge of the thin

bar of the right input being fused with the right edge of

thick bar of the left input.

The model explanation is as follows. The vertical
boundaries of the thick bar are registered binocularly in

the near disparity plane in V1, as shown by the second

plot of the second row, and the right edge of the thin bar

is matched with the right edge of the thick bar to be

registered binocularly in the far disparity plane in V1, as

shown by the fourth plot. The left edge of the thin bar is

registered only monocularly because it cannot be mat-

ched with either of the edges of the left input. As usual,
the monocular boundaries are added to all depth planes

Fig. 14. (a) Simulation of the depth percept invoked by the conven-

tional da Vinci stereopsis stimuli of Nakayama and Shimojo (1990).

(b) Simulation of the depth percept invoked by the polarity-reversed

da Vinci stereopsis stimuli. See text for details.
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in the V2 disparity filter along their respective monoc-

ular lines-of-sight, as shown by the plots in the third row

of this figure. The vertical binocular boundaries are also

added to the disparity filter, overlapping with the ver-

tical boundaries of the thick bar representation in the

second plot and with the rightmost vertical boundary in

the fourth plot. These vertical boundaries, being stron-

ger, eliminate all other vertical boundaries that share
their lines-of-sight via the disparity filter�s line-of-sight

inhibition. However, they do not eliminate the vertical

boundaries originating from the left edge of the thin bar

because these do not share any of their lines-of-sight.

The final V2 boundary representations are shown in the

fourth row. As usual, V4 fills in surfaces in those regions

that are completely enclosed by a connected boundary.

This produces a percept of a thick bar in a near disparity
plane, represented by the second plot of the top row,

and a thin bar in a far disparity plane, represented by

the fourth plot. The very small squares seen in the top

row are artifacts of the implementation of the diffusion

process with a relatively small number of pixels and

have no physiological significance. In particular, they

disappear when the simulations are carried out at a

sufficiently high resolution, at a high computational
cost. The model therefore correctly predicts that the thin

bar will appear behind the thick bar at a depth that is

consistent with the right edge of the thin bar being ste-

reoscopically fused with the right edge of the thick bar,

as has been reported experimentally (Nakayama &

Shimojo, 1990).

Nakayama and Shimojo (1990) also showed that the

percept remained the same even when the monocular
and binocular bars had opposite luminance polarities:

specifically, the binocular bar being white and the

monocular bar being black. It might be thought that

the model could not simulate this observation, since the

model can only binocularly fuse edges that have the

same contrast polarity. The model�s successful simula-

tion is shown in Fig. 14b.

The only difference between this simulation and the
previous simulation is that in the previous simulation it

was the right edge of the thin bar of the right input that

fused with the right edge of the thick bar of the left input

whereas in this simulation it is the left edge of the thin

bar that fuses with the right edge of the thick bar of the

right input since these two edges now have the same

contrast polarity. This simulation then proceeds in the

same manner as the previous one, thereby explaining the
similar percept. Contrary to the claims of Nakayama

and Shimojo (1990), this simulation shows that the re-

ported percept can be generated without independent

knowledge of occlusion relationships (see Section 4.2).

3.5.2. Stimulus of Gillam et al. (1999)

In Fig. 15a the right eye sees two thin bars and the left

eye a single thick bar. Subjects report seeing two thin

bars, the left in the near disparity plane and other in the
far disparity plane. Gillam et al. suggested that, because

the right eye input contains a gap not present in the left

eye input, this display demonstrates that stereopsis can

be induced by monocular gaps. It should be stressed

that, although they are superficially very similar, this

display is quite different to that of Nakayama and

Shimojo (1990) (Fig. 14) which demonstrated an entirely

different point: that depth perception could be deter-
mined by the separation of a monocular bar from a

binocular bar.

The model explanation is as follows. The model

suggests that the left edge of the thick bar fuses with the

left edge of the left thin bar to appear in a near disparity

plane in V1, represented by the second plot of the sec-

ond row, while the right edge of the thick bar fuses with

the right edge of the right thin bar to appear in a far
disparity plane in V1, represented by the fourth plot of

this row, since in both cases these edges have the same

contrast polarity. The two other vertical edges of the

thin bars of the right input are registered only mon-

ocularly because they cannot be matched to either of the

edges of the left input. As usual, the V1 monocular

boundary representations are added to all depth planes

Fig. 15. (a) Simulation of depth percept invoked by the da Vinci ste-

reopsis stimuli of Gillam et al. (1999). (b) Simulation of a variant of the

original Gillam et al. stimuli.
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in the V2 disparity filter along their respective lines-of-

sight. This is why two thin bar representations and one

thick bar representation are seen in all disparity planes

of the third row, with the slight complication that in all

cases the thick bar representation overlaps with at least

one of the two thin bar representations. The V1 binoc-

ular boundary representations are also added to the V2

disparity filter, overlapping with the leftmost vertical
boundary in the second plot and the rightmost vertical

boundary in the fourth plot. These vertical boundaries,

being stronger, inhibit, via the recurrent line-of-sight

inhibition of the disparity filter, all the other vertical

boundaries that share any of their lines-of-sight. This

means that they do not inhibit those vertical boundary

representations originating from the two monocularly

viewed edges of the right input because these vertical
boundaries do not share any of their lines-of-sight.

The final V2 boundary representations are shown in the

fourth row. V4 fills-in surfaces in those regions that are

completely enclosed by boundaries, resulting in the

percept of a thin near bar and a thin far bar, as reported

by human subjects (Gillam et al., 1999).

In the previous display, at least one edge of each re-

gion could be binocularly fused. In contrast, in Fig. 15b
the middle bar of the right eye stimulus is perceived

entirely monocularly.

The model simulation is as follows. The left eye sees a

single bar while the right eye sees three separate bars. The

left edge of the bar of the left input again fuses with the

left edge of the leftmost bar of the right input to form a

binocular boundary in the second plot of the second row.

Similarly, the right edge of the bar of the left input again
fuses with the right edge of the rightmost bar of the right

input to form a binocular boundary in the fourth plot of

the second row. Again the monocular boundaries are

added to V2 along their respective lines-of-sight, as

shown by the third row. The binocular V1 boundaries

are also added to V2. The binocular boundary in the

second plot of the second row overlaps with the first

vertical boundary in the second plot of the third row.
Similarly, the binocular boundary of the fourth plot of

the second row overlaps with the last vertical boundary

in the fourth plot of the third row. The surviving V2

boundaries are shown in the fourth row.

Only those boundaries that completely enclose a re-

gion can contain the lightness signals that originate at

the location of the boundaries, and so only these regions

give rise to surface percepts in V4. The model therefore
correctly predicts that three surfaces will be seen, each at

a different depth as reported experimentally (Gillam

et al., 1999).

3.6. Lightness illusions

The filling-in mechanism utilized by the model V4

simulations is equivalent to that used by Grossberg and

Todorovi�cc (1988) to explain several lightness illusions. It

is therefore claimed that the present model can explain

the same large set of lightness illusions. (See Grossberg

and Kelly (1999), Grossberg and Pessoa (1998), Kelly

and Grossberg (2000) and Pessoa, Mingolla, and Neu-

mann (1995) for other articles that explain additional

lightness and brightness data using this filling-in mech-

anism.)
The Todorovi�cc–O�Brian–Cornsweet effect (COCE) is

simulated to illustrate this claim. In Grossberg and

Todorovi�cc (1988), the COCE was simulated using only a

monocular input. The simulation herein uses inputs to

both eyes and shows that the binocular model can also

simulate this percept. The stimuli are shown in the

middle two plots of the bottom row of Fig. 16. Both eyes

see the same stimulus, which consists of two abutting
regions of the same uniform lightness separated by a

lightness cusp. Subjects report perceiving both regions

as having uniform lightness, with the left region ap-

pearing darker than the right.

The model explains the COCE as follows. The input

is binocularly fused to form three vertical binocular

boundaries in the nearest disparity plane of V1, repre-

sented by the leftmost plot of the second row. As always,
both the V1 binocular and monocular boundaries are

added to the V2 disparity filter, with the monocular

boundaries being added to all depth planes along their

respective lines-of-sight, as shown by the plots in the

third row. The vertical boundaries in the nearest dis-

parity plane are stronger because they receive both

monocular and binocular inputs. They therefore inhibit

the vertical boundaries in the other disparity planes via
the recurrent line-of-sight inhibition of the disparity

filter. The final V2 boundaries are shown by the plots in

the fourth row. The boundaries in the nearest disparity

plane confine the V4 diffusion of the lightness signals

Fig. 16. Simulation of the Craik–O�Brian–Cornsweet lightness illu-

sion. See text for more details.
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that originate at the edges of the regions. Those lightness

signals originating from the left side of the cusp are

darker than those originating from the right side. This

lightness difference is propagated, by the V4 filling-in

mechanism, throughout the respective regions, causing

the left region to appear uniformly darker than the right,

as shown by the leftmost plot of the top row.

4. Discussion

4.1. Supporting physiological and anatomical data

This section shows that all the relevant physiological

and anatomical data of which we are aware support the

model. The model does not, however, consider cortical

areas V3, V3A and MT, even though there is evidence
that these areas play a role in depth perception (e.g.,

Backus, Fleet, Parker, & Heeger, 2001). These areas

were not needed to simulate the model�s targeted data.

The function of area V3A appears to be particularly

controversial, with studies suggesting that it is variously

concerned with relative disparity (Backus et al., 2001),

saccades (Nakamura & Colby, 2000a, 2000b) and pre-

hensile hand movements (Nakamura et al., 2001). As a
further complication, there is some evidence that the

function of macaque V3A differs from that performed

by human V3A (Tootell et al., 1997).

When the model diagram in Fig. 1 is compared to the

list of data below, it can be seen that the model makes

predictions concerning brain physiology and anatomy

beyond what is known. One prediction is that there is an

inhibitory circuit in V1 which causes the binocular cells
in layers 3B and 2/3A not to respond if the inputs to the

left and right eyes differ too greatly in contrast. Another

is that there is a disparity filter in V2 that employs line-

of-sight inhibition. A third prediction is that there is a

surface filling-in mechanism that leads to visible per-

cepts and is located in V4 (among other places; see

Grossberg, 1994). This section should be read in con-

junction with Fig. 1, which interprets each model stage
anatomically.

4.1.1. V1 binocular boundaries

Consistent with the model, the LGN contains circu-
larly symmetric on-center, off-surround receptive fields

(Kandel, Schwartz, & Jessell, 2000, pp. 529). LGN le-

sion studies have shown that the parvocellular, but not

the magnocellular, pathway is critical for fine stereopsis

(Schiller, Logothetis, & Charles, 1990a, 1990b). Just as

V1 layer 4 is the major recipient of this parvocellular

input in vivo (Callaway, 1998), it is also the input layer

of model V1. Also, in accord with the model, layer 4 is
known to output to layer 3B, but not to layer 2/3A, of

V1 (Callaway, 1998), a large proportion of it is mon-

ocular (Hubel & Wiesel, 1968; Poggio, 1972), and many

of its cells are simple (Hubel & Wiesel, 1968; Schiller,

Finlay, & Volman, 1976).

As discussed in Section 2.1, the model assumes that

polarity-specific binocular matching occurs in layer 3B.

This is consistent with observations that a significant

proportion of layer 3B comprises simple cells (Dow,

1974), that layer 3 contains a significant number of

binocular cells (Hubel & Wiesel, 1968; Poggio, 1972),
and that projections to it can be independent of ocular

dominance (Katz, Gilbert, & Wiesel, 1989).

The model suggests that binocular layer 2/3A cells

pool responses from layer 3B cells of both contrast po-

larities so that they can represent the boundaries of

objects whose contrast polarity, with respect to the

background, changes as the boundary is transversed. In

keeping with this suggestion, it is known that layer 3B
projects throughout layer 2/3A (Callaway, 1998), and

that layers 2 and 3 each contain significant numbers of

binocular and complex cells (Poggio, 1972).

The model further suggests that there is a group of

cells in layer 2/3A and 3B that respond only to binoc-

ular, and not to monocular, stimulation. Such ‘‘obligate

cells’’ are known to exist in macaque V1 (Poggio & Fi-

scher, 1977; Smith, Chino, Ni, & Cheng, 1997), with
about 40% of tuned excitatory neurons being obligatory

(Poggio & Talbot, 1981), including almost all ‘‘tuned

zero’’ neurons (Poggio, 1991). Obligate cells do not

appear to be as prevalent in cat (Anzai, Bearse, Free-

man, & Cai, 1995).

The model predicts that all these interactions occur in

the V1 interblob regions, which is in keeping with ob-

servations that V1 interblobs are highly selective for
orientation but relatively unselective for color (Merigan

& Maunsell, 1993).

4.1.2. V1 monocular boundaries

The model suggests that the V1 monocular bound-

aries are formed by a process that is a simplification of

that which forms the V1 binocular boundaries. Conse-

quently, much of the above data applies equally to the

monocular boundaries network. Additional support

for this network comes from observations that layer 3

(Hubel & Wiesel, 1968; Poggio, 1972) and layer 2

(Poggio, 1972) of V1 each comprise a large proportion
of monocular cells.

4.1.3. V2 boundaries

The model assumes that the V2 boundaries are lo-
cated in the V2 pale stripes. This is consistent with ob-

servations that the V2 pale stripes receive the major

projection from the V1 interblob regions, while receiving

no significant projection from the V1 blob regions, and

are highly orientationally selective (Roe & Ts�o, 1997),
while also containing a complete map of visual space

(Roe & Ts�o, 1995).
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The model is further consistent with data that V2 is

mainly binocular (Hubel & Livingstone, 1987; Roe &

Ts�o, 1997), is mainly disparity-sensitive (Poggio &

Fischer, 1977; von der Heydt, Zhou, & Friedman,

2000), contains many complex cells (Hubel & Living-

stone, 1987), receives input into layer 4 (Rockland &

Virga, 1990) and outputs to V4 (Xiao, Zych, & Fell-

eman, 1999), which itself is highly selective for disparity
(Merigan & Maunsell, 1993). In addition, the V2 pale

stripes are disparity-selective (Peterhans, 1997).

According to the model, an important function of V2

is to suppress false matches by utilizing a disparity filter.

This is consistent with observations that cells readily

exhibit false matches in V1 (Cumming & Parker, 2000),

but not in V2 (Bakin et al., 2000).

4.1.4. Surfaces

Surfaces are built up through interactions between

the V1 blobs, the V2 thin stripes, and V4, consistent with

the fact all these regions are linked by major projections

(Livingstone & Hubel, 1984; Xiao et al., 1999), that the

V2 thin stripes are the least orientationally selective area

of V2 (Peterhans, 1997) and contain a complete map of
visual space (Roe & Ts�o, 1995).

4.2. Comparison with other theories and models

One of the most popular explanations of monocular–

binocular interactions is the ecological optics hypothesis
of Nakayama and Shimojo (1990). This hypothesis

suggests that visual systems attempt to interpret un-

paired image points in terms of occlusion. For example,

in Fig. 14, both eyes see a thick bar but only the right

eye a thin bar. According to the ecological optics hy-

pothesis, the visual system interprets these stimuli by

assuming that the thin bar is located behind the thick

bar at the exact distance that would cause the thick bar
to hide it from the left, but not from the right, eye.

While this hypothesis is consistent with the percepts

evoked by the stimuli in Figs. 14 and 15, it cannot ex-

plain the percept evoked by the stimuli of Fig. 13, be-

cause this stimulus cannot be explained in terms of

occlusion. If we wish to understand the response of the

visual system to all possible stimuli, not just the ones

that can be interpreted in terms of occlusion, then it is
necessary to offer a mechanistic account that can deal

with a broader data set in a unified way, as the present

model does.

One of the most successful mechanistic models of

stereopsis is the disparity energy model (Ohzawa et al.,

1990). However, this model does not solve the corre-

spondence problem in that it may match vertical con-

tours in the two retinal images that correspond to
different objects. Fleet, Wagner, and Heeger (1996) have

proposed how the disparity energy model could be ex-

tended to avoid this problem. In their paper they note

that, at least for certain stimuli, binocular neurons that

are tuned to different spatial frequencies will respond to

different false matches. Consequently they argue that

false matches can be eliminated simply by pooling the

responses of several binocular neurons, each tuned to a

different spatial frequency. Although they demonstrated

the proficiency of their model when it was presented

with white noise stimuli, it is not clear how their model
could be extended to other stimuli, in particular those

situations were contrast affects the perceived solution of

the correspondence problem (Section 3.2) or where

monocular information contributes to depth perception

(Section 3.5).

Another way to solve the correspondence problem is

to utilize a disparity filter that implements the unique-

matching rule, which states that any given feature in one
retinal image is matched at most with one feature in the

other retinal image (Grimson, 1981; Marr & Poggio,

1976; for a review see Howard & Rogers, 1995, pp. 42–

43). As discussed in Section 1, this rule fails in Panum�s
limiting case (Gillam et al., 1995; McKee et al., 1995;

Panum, 1858).

This failure caused Grossberg and McLoughlin

(1997) and McLoughlin and Grossberg (1998) to design
a disparity filter that encouraged unique matching

without enforcing it. Their model forms the foundation

for our own and can simulate much of the same data,

including most of the dichoptic masking and the corre-

spondence problem data. Their model also makes an

incorrect psychophysical prediction: that if each eye sees

a single bar, then the ratio constraint on stereoscopic

fusion (Smallman & McKee, 1995) ensures that fusion
will occur only if the magnitudes of the contrasts of the

two bars do not differ too greatly. This is inconsistent

with experimental findings which indicate that the ratio

constraint does not apply to this special case (McKee

et al., 1994; Smallman & McKee, 1995).

The present model refines the Grossberg and

McLoughlin model to correct this short-coming. In

particular, for the purposes of the disparity filter, the
Grossberg and McLoughlin model assigned all unfused

boundaries to the fixation plane, whereas the present

model adds unfused boundaries to all fixation planes

and then lets the V2 disparity filter eliminate boundary

representations as necessary. As explained in Section

3.1.1, this procedure allows in the special case where

each eye sees only a single bar the two bars to be bin-

ocularly fused regardless of their contrast difference. The
present model has simulated all the data considered by

McLoughlin and Grossberg (1998), specifically the data

on contrast variations of dichoptic masking and the

correspondence problem, and has also simulated addi-

tional data including the Venetian blind illusion, four

different examples of da Vinci stereopsis (Gillam et al.,

1999; Nakayama & Shimojo, 1990), stereopsis with op-

posite-contrast stimuli, the effect of interocular contrast
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differences on stereoacuity and the Craik–O�Brian–
Cornsweet lightness illusion. Furthermore, unlike its

predecessor, it has been mapped onto known cortical

cells and laminar circuits within cortical areas V1, V2

and V4.

The model presented in this article and the Grossberg

and McLoughlin model both instantiated key aspects of

FACADE theory. Another model, which is also a sim-
plified version of FACADE theory, was used to explain

a series of experiments on the McCollough effect, an

orientation-sensitive, long-lasting, chromatic after-effect

(Grossberg, Hwang, & Mingolla, 2002). Unlike the

present model, the binocular cells in the McCollough

effect model did not exhibit the ‘‘obligate’’ property in

that they responded to monocular inputs, albeit less

strongly than to binocular inputs. Although, the
McCollough effect model did not make use of obligate

cells, inserting such cells into the model would not dis-

rupt its simulations. These obligate cells would merely

be unnecessary. Similarly, the addition of non-obligate

binocular cells into V1 of the present model, while un-

necessary, would not reduce its explanatory power. In

particular, such an addition would merely increase the

number of false matches that occur in V1. These false
matches would be eliminated by the V2 disparity filter,

in the manner outlined in Section 2.3, and so would not

contribute to the final percept. Taken together, these

two models help explain the differing roles of obligate

and non-obligate binocular cells in the broader context

of FACADE theory and help to functionally explain

why both obligate and non-obligate cells have been

found experimentally to exist (Poggio, 1991).

4.3. Model robustness and complexity

The model is robust in the sense that the absolute

values of the model parameters can be varied over large
ranges without disrupting its explanations of data; only

their values relative to each other are important. Fur-

thermore, there is considerable scope when choosing

individual parameter values, since no single parameter

proves to be critical in any simulation.

The model is minimally complex in the sense that each

of its four interacting networks, V1 binocular bound-

aries, V1 monocular boundaries, V2 boundaries, and V4
surfaces, are essential. The V1 binocular boundaries

network is needed to explain stereopsis and the contrast

ratio constraint observed in stereoscopic fusion (Small-

man and McKee, 1995). The V1 monocular boundaries

network plays a role in explaining da Vinci stereopsis

(Gillam et al., 1999; Nakayama & Shimojo, 1990),

dichoptic masking (McKee et al., 1994), contrast varia-

tions of the correspondence problem (Smallman and
McKee, 1995) as well as some examples of stereopsis

with opposite-contrast stimuli (e.g., Howe & Watanabe,

in press). The V2 boundaries network is needed to solve

both the correspondence problem and the monocular–

binocular interface problem by utilizing its disparity fil-

ter. The correspondence problem arises because V1

sometimes incorrectly fuses contours that belong to

different objects. The monocular–binocular interface

problem is caused because the V1 monocular bound-

aries, not having a definite depth association, are initially

added to all depth planes. Finally, the surface network
includes cells in V4, the V2 thin stripes and the V1 blobs.

It is necessary because it is surface percepts, not

boundary percepts, that subjects report in the experi-

mental studies considered by this paper and also because,

as illustrated by all of the simulations, not all boundaries

give rise to a percept of depth.

If anything, the model in Fig. 1 is too simple to ex-

plain all data about depth perception. Fortunately, the
analysis in this article has opened a clear path to gen-

eralize the model, as illustrated below.

4.4. Generalizing to natural images, 3D boundary com-

pletion and 3D attention

One of the long-term goals of this modeling work is

to extend the present model so that it can be applied to

natural images. The simulations already done show that

the model can resolve a wide range of potentially con-

fusing false matches. There remain, however, two im-

pediments that the model first needs to overcome.
First, the present model can represent only 3D planes

that are flat and perpendicular to the observer. To ana-

lyze natural images, the model needs to be extended to

represent slanted and curved surfaces in 3D. A parallel

line of research has begun to demonstrate how it can be

consistently generalized to explain such data (Grossberg

& Swaminathan, 2003; Swaminathan & Grossberg,

2001).
Second, the present model shows how boundaries can

be formed using bottom-up inputs from the outside

world. It does not, however, indicate how horizontal

interactions can be used to complete these boundaries

where pixels are missing either due to internal brain

imperfections, such as the blind spot in the retina, or due

to incomplete contours in external inputs, whether due

to noise, occluding surfaces, spatially discrete texture
elements, illusory contour stimuli, or even missing pixels

in impressionist paintings. Nor does it clarify how these

circuits can develop, be modified by learning, or mod-

ulated by top-down attention. This omission can be

overcome as follows.

A parallel line of modeling has developed quantita-

tive explanations and simulations of how processes of

perceptual development, learning, grouping, and atten-
tion may be achieved by laminar cortical circuits

(Grossberg, 1999a, 1999b; Grossberg et al., 1997; Gross-

berg & Raizada, 2000; Grossberg & Williamson, 2001;
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Raizada & Grossberg, 2001). This LAMINART model

did not, however, investigate how these boundaries may

be completed in three-dimensions. We now show that

the LAMINART model of boundary completion is

consistent with the model of three-dimensional bound-

ary formation that is summarized in Fig. 1. In particu-

lar, we demonstrate below how the LAMINART model

be can generalized to cope with the positional dis-
placement, or allelotropia, that is characteristic of bin-

ocular fusion (cf., Fig. 3).

Fig. 17 summarizes some of the key LAMINART

interactions that govern perceptual grouping, and

attention, without regard to its three-dimensional re-

presentation. Fig. 18 shows how the LAMINART

perceptual grouping and attention circuit naturally

generalize to a 3D LAMINART model that is consistent
with the system interactions in Fig. 1. This extended

model clarifies how 3D boundaries can be completed

and how attention can be selectively paid to objects in

3D. The following new features in Fig. 18 show how

these properties obtain. First, layer 4 no longer directly

activates layer 2/3, as in Fig. 17. Instead, layer 4 simple

cells first activate layer 3B simple cells, which in turn

activate layer 2/3A complex cells, as shown in Fig. 1.
The layer 2/3A cells can then interact via horizontal

interactions, like those summarized in Fig. 17c and e, to

complete boundaries. Second, binocular cells in layer

2/3A can represent different disparities, and thus differ-

ent relative depths from an observer. Interactions be-

tween layer 2/3A cells that represent the same relative

depth from the observer can be used to complete

boundaries between object contours that lie at the same
depth.

Due to the binocular fusion that occurs in layer 3B,

the binocular boundaries that are formed in layers 3B

and 2/3A can be positionally displaced, or shifted, rel-

ative to their monocular input signals to layers 6 and 4.

Fig. 17c suggests that these layer 2/3 boundaries feed

signals back to layer 6 in order to select the winning

groupings that are formed in layer 2/3. How can the
positionally displaced binocular boundaries in layer

2/3A of Fig. 17 contact the correct monocularly acti-

vated cells in layers 6 and 4, so as to complete the

feedback loop 2/3A-to-6-to-4-to-3B-to-2/3A that can

select the winning three-dimensional groupings? In

particular, how can the feedback signal from a layer 2/

3A cell that is positionally displaced with respect to its

monocular inputs activate horizontal signals that can
activate the correct layer 6 monocular sources?

We propose that horizontal connections that are

known to occur in layer 5 (Callaway & Wiser, 1996)

accomplish this. Feedback signals from layer 2/3A

propagate vertically to layer 5, whose cells activate hor-

izontal axons in this layer that contact the appropriate

layer 6 cells. These layer 5-to-6 contacts are assumed to

be selectively formed during development. Grossberg

and Williamson (2001) have simulated how layer 2/3

connections and layer 6-to-4 connections may originate

during development. The selective layer 5-to-6 contacts

are proposed to form according to similar laws. In

summary, inward horizontal layer 4-to-3B and 2/3A-

to-2/3A connections are proposed to form binocular

cells and their groupings, while outward layer 5-to-6

Fig. 17. The LAMINART model: (a) The LGN directly activates V1

layers 4 and 6. Layer 6, in turn, sends a pattern of on-center, off-

surround inputs to layer 4. These layer 6 inputs can strongly inhibit

layer 4 through the off-surround, but the excitatory and inhibitory

inputs in the on-center are approximately balanced so that layer 6 can

modulate the excitability of layer 4 cells, but not fully drive them to fire

vigorously. The direct connections from LGN to layer 4 carry out this

driving function. (b) This layer 6-to-4 circuit can be used by top-down

signals from V2 layer 6 to attentionally modulate the excitability of V1

layer 4 cells. (c) Boundary completion can occur when layer 4 cells

activate layer 2/3 cells, which communicate with their layer 2/3

neighbors via long-range horizontal excitatory connections and

shorter-range inhibitory interneurons. The balance between these ex-

citatory and inhibitory interactions allows boundaries to form in-

wardly between properly oriented image contrasts, as in the case of

many illusory contours, but not outwardly from individual contrasts.

The strongest boundary groupings in layer 2/3 can support themselves

best through the positive feedback loop between layers 2/3-to-6-to-4-

to-2/3, even as their strong inhibitory signals in the layer 6-to-4 off-

surround can inhibit weaker groupings. (d) A top-down on-center,

off-surround from V1 layer 6 to the LGN acts like the top-down sig-

nals from V2 layer 6 to V1 layer 4. (e) The LAMINART system ar-

chitecture. Note that the horizontal interactions within V2 layer 2/3

can have a broader spatial extent than those in V1 layer 2/3. The

longer-range V2 interactions carry out the type of perceptual group-

ings that are familiar in illusory contours, texture grouping, comple-

tion of occluded objects, and bridging the blind spot. (Reprinted with

permission from Grossberg & Raizada (2000).)
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connections are proposed to close the feedback loops

that help to select the correct three-dimensional group-

ings.

Once the generalization to 3D boundaries is
made, top-down attentional modulation of these bound-

aries follows directly by using the same circuits as in

Fig. 17.

Appendix A. Model equations

To make the equations easier to read, capital letters

denote variables and lower case letters denote constants.

Appendix A is most easily read in conjunction with Fig.
1, which depicts the model. Each eye�s stimulus was

presented on a grid 55 units high and 70 units wide

except Figs. 11 and 12 which were presented on a 55 by

126 grid and Fig. 14b which was presented on a 55 by 85

grid. In all simulations, white had a luminance value, in

arbitrary units, of 2. In Figs. 5–9, 11, 12 and 15, the light

gray bars (if any) had a luminance of 0.85 and the dark

gray bars 0.68. In Figs. 13 and 14 medium gray was
represented by a luminance of 0.75, and black by 0.3. In

Fig. 16, the simulation of the COCE, there was a lu-

minance cusp which ranged from 0.4 to 0.9. Simulations

were performed using the Matlab� software package.

Analytical equilibrium solutions of the differential

equations were used in all cases except for the V2 dis-

parity filter equation (A.15) and the V4 diffusion equa-

tion (A.18), which could not be solved analytically, and
were instead solved using Euler�s method, and then

solved again using a different step size to verify the ac-

curacy of the original solution.

A.1. LGN

The LGN cells obey membrane, or shunting, equa-

tions that receive input from the retina and are assumed

to have circularly symmetric on-center, off-surround

receptive fields. When these fields are approximately

balanced, the network discounts the illuminant and

contrast-normalizes its cell responses (Grossberg &
Todorovi�cc, 1988). The LGN cell membrane potentials,

XL=R
ij , obey the following differential equation:

dXL=R
ij

dt
¼ �eXL=R

ij þ ða� XL=R
ij ÞIL=Rij � XL=R

ij

X
p 6¼i;q6¼j

gpqijIL=Rpq ;

ðA:1Þ

where L=R designates that the cell belongs to the left or

right monocular pathway, indices i and j denote the

position of the input on the retina, e is a constant (10�5)
that represents the rate of decay of the cell membrane

potential, a is a constant (9.9) that represents the max-

imum membrane potential, IL=Rij is the unnormalized lu-

minance of the left or right retinal image, and gpqij is

a Gaussian kernel that represents the inhibitory off-

surround:

gpqij ¼ exp

 
� ðp � iÞ2 þ ðq� jÞ2

2r2

!
; ðA:2Þ

where r represents the size of the kernel (1.5). The

steady-state cell membrane potentials of these cells are
given by:

XL=R
ij ¼

aIL=Rij

e þ
P

p;q gpqijI
L=R
ij

: ðA:3Þ

The steady-state equation (A.3) was used in the simu-

lations. Below all equations that were solved at steady-
state are given in their steady-state form.

A.2. V1 layer 4 simple cells

All cells in V1 layer 4 are modeled as monocular

simple cells that are sensitive to either dark-light or

light-dark contrast polarity, but not both, depending on

their receptive field structure. At steady-state the mem-

brane potentials, SH=V ;L=R;þ
ij , of simple cells that respond

to dark-light contrast polarity are given by:

SH=V ;L=R;þ
ij ¼

X
p;q

kH=V
pq X L=R

iþp;jþq

h iþ
; ðA:4Þ

where H=V designates that the cell responds to hori-

zontal or vertical boundaries, + indicates that the sim-
ple cell responds to dark-light contrast polarity,

½x
þ ¼ maxðx; 0Þ, and kH=V
pq is a Gabor function repre-

senting the simple cell receptive field kernel:

Fig. 18. A 3D LAMINART model, including 3D boundary comple-

tion and attention, as well as the binocular and monocular interactions

summarized in Fig. 1. See text for details.
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kH=V
pq ¼ / sin

2Pr
s

� �
exp

"
� 1

2

p2

r2
p

 
þ q2

r2
q

!#
; ðA:5Þ

where /, s, rp, rq are constants (4.4, 3, 0.6, 0.6) repre-

senting the amplitude and dimensions of this kernel;

r ¼ p for cells that respond to vertical boundaries; and

r ¼ q for those that respond to horizontal boundaries.

The cell membrane potentials of the simple cells with

light-dark contrast polarity are the inverse of the pre-

vious cell membrane potentials:

SH=V ;L=R;�
ij ¼ �SH=V ;L=R;þ

ij ¼ �
X
p;q

kH=V
pq X L=R

iþp;jþq

h iþ
: ðA:6Þ

A.3. Layer 3B monocular simple cells

At steady-state the membrane potentials, BH=V ;L=R;þ=�
ij ,

of the layer 3B monocular cells are given by:

BH=V ;L=R;þ=�
ij ¼ 2½SH=V ;L=R;þ=�

ij 
þ; ðA:7Þ

where the multiplicative factor of 2 compensates for the

fact that the monocular simple cells receive inputs from

only one eye whereas the binocular simple cells, dis-

cussed in the next section, receive input from both eyes.

A.4. Layer 3B inhibitory cells

The layer 3B inhibitory cells, all responding only to

vertical boundaries, receive excitatory input from layer 4

and inhibitory input from all other inhibitory interneu-

rons that correspond to the same position and disparity.

Their cell membrane potentials, QV ;L=R;þ=�
ijd , are deter-

mined at equilibrium by the following equations:

QV ;L;þ=�
ijd ¼ 1

c2
SV ;L;þ=�
ðiþsÞj

h iþ�
� b QV ;R;þ=�

ijd

h iþ�

þ QV ;R;�=þ
ijd

h iþ
þ QV ;L;�=þ

ijd

h iþ��
ðA:8Þ

and

QV ;R;þ=�
ijd ¼ 1

c2
SV ;R;þ=�
ði�sÞj

h iþ�
� b QV ;L;þ=�

ijd

h iþ�

þ QV ;L;�=þ
ijd

h iþ
þ QV ;R;�=þ

ijd

h iþ��
; ðA:9Þ

where c2 and b are constants (4.5, 4) representing the

decay rate of the membrane potential and the strength

of the inhibition, d is the disparity to which the model

neuron is tuned and s is the allelotropic shift that de-

pends on the disparity and is defined in Table 1.

A.5. Layer 3B binocular cells

The layer 3B binocular cells, all of which are verti-

cally oriented and receive excitatory input from layer 4
and inhibitory input from the layer 3B inhibitory cells

that correspond to the same position and disparity, have

membrane potentials BV ;B;þ=�
ijd . At equilibrium:

BV ;B;þ=�
ijd ¼ 1

c1
SV ;L;þ=�
ðiþsÞj

h iþ�
þ SV ;R;þ=�

ði�sÞj

h iþ
� a QV ;L;þ=�

ijd

h iþ�
þ QV ;L;�=þ

ijd

h iþ
þ QV ;R;þ=�

ijd

h iþ
þ QV ;R;�=þ

ijd

h iþ��
; ðA:10Þ

where c1 and a and are constants (0.29, 6) representing

the rate of decay of the membrane potential and the

strength of the inhibition. Appendix B proves that the

exact values of a and c1 are not critical. Under mild

constraints on these parameters, the binocular cells act

like the ‘‘obligate cells’’ of Poggio (1991), responding

only when their left and right inputs are approximately

equal in magnitude. Eq. (A.10) was solved at equilib-
rium, using the theorem described in Appendix B to

speed up the simulations. Fig. 19 shows that the calcu-

lated and simulated values are essentially identical.

A.6. Layer 2/3A monocular and binocular complex cells

V1 layer 2/3A consists of both monocular and bin-

ocular complex cells. These complex cells pool the cell

membrane potentials of monocular/binocular layer 3B

simple cells of like orientation and both contrast polar-

ities at each position. At steady-state their membrane
potentials, CH=V ;L=R=B

ijd , are given by:

CH=V ;L=R=B
ijd ¼ BH=V ;L=R=B;þ

ijd

h iþ
þ BH=V ;L=R=B;�

ijd

h iþ
: ðA:11Þ

A.7. V2 layer 4

In V2, virtually all cells are binocularly driven

(Hubel & Livingstone, 1987), consistent with the model

Table 1

The allelotropic shift (s) is the amount that the left and right monocular contours must be displaced to form a single fused binocular contour. It

depends on the disparity. It is zero for matches in the fixation plane because these matches are between contours at retinal correspondence

Disparity (d)

V. Near disparity Near disparity Zero disparity Far disparity V. Far disparity

Allelotropic shift (s) )8 )4 0 +4 +8

Fig. 3 illustrates the allelotropic shift and shows that a left monocular contour needs to be shifted more to the right for matches that are further from

the observer, whereas a right monocular contour needs to be shifted in the opposite direction.
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hypothesis that the left and right monocular inputs are

combined in V2. The model assumes that this is done in

layer 4. Since the monocular inputs do not yet have a

depth associated with them, they are added to all depth

planes along their respective lines-of-sight (cf., Section

2.3). At steady-state their membrane potentials, JH
ijd , are

given by:

JH
ijd ¼ CH ;L

ðiþsÞj

h
� h
iþ

þ CH ;R
ði�sÞj

h
� h
iþ

; ðA:12Þ

where h is a constant (1.42) representing the threshold of

the V1 layer 2/3A cells and s is the allelotropic shift

defined in Table 1. Similarly, at steady-state the cell

membrane potentials of the vertically oriented layer 4

complex cells are given by:

JV
ijd ¼ CV ;B

ijd

h
� h
iþ

þ b CV ;L
ðiþsÞj

h�
� h
iþ

þ CV ;R
ði�sÞj

h
� h
iþ�

;

ðA:13Þ
where b is a constant (0.21) representing the strength of

the monocular connections.

A.8. V2 layer 3B

Analogous to layer 4, at steady-state the cell mem-

brane potentials, NH
ijd , of the horizontally oriented layer

3B cells are given by:

NH
ijd ¼ JH

ijd

h iþ
: ðA:14Þ

V2 layer 3B contains the disparity filter (cf., Fig. 3) in

which each vertically oriented cell is inhibited by every

other vertically oriented cell that shares either of its

monocular inputs (represented by the solid lines) or

corresponds to the same 2D position but a different

depth (represented by the dashed line). The cell mem-

brane potentials of the vertically oriented layer 3B cells

are given by:

dNV
ijd

dt
¼ �NV

ijd þ JV
ijd

h
� dV

iþ
� g

X
d 0 6¼d

mdd 0 NV
ðiþs0�sÞjd 0

h iþ�

þ mdd 0 NV
ðiþs�s0Þjd 0

h iþ
þ l NV

ijd 0

h iþ�
; ðA:15Þ

where d and d 0 represent disparities; s and s0 are the

corresponding allelotropic shifts, defined by Table 1; dV

is a constant (0.15) that represents the threshold of a

vertically oriented layer 4 cell, g is a constant (0.38) that

scales the total inhibition that each cell receives, l is a

constant (0.1) that represents the inhibition from
boundaries directly in front or behind, and mdd 0 repre-

sents the inhibition from all other neurons that share an

input, as detailed in Table 2.

The disparity filter is robust in that its behavior is

stable across a range of parameter values. The key fea-

tures of the disparity filter, as illustrated in Table 2, is

that it is symmetrical about the fixation plane (i.e., the

near and far disparity planes equally inhibit and are
equally inhibited by the zero disparity plane) and that it

favors the zero disparity plane in that this plane inhibits

the near and far disparity planes more than they inhibit

it. Eq. (A.15) was solved using Euler�s method and then

resolved with a different step size to check the accuracy

of the solution.

A.9. V2 layer 2/3A complex cells

The V2 layer 2/3A cells receive input from V2 layer

3B. In the present model, they merely scale this input,
but see Grossberg (1999a, 1999b) for a discussion of

their function in perceptual grouping. Analogous to

layer 4, their steady-state cell membrane potentials,

T H=V
ijd , are given by:

Fig. 19. Output of a V1 layer 3B binocular simple cell using the pa-

rameter values of Appendix A (Eq. (A.10)). (a) Simulated and (b)

calculated.

Table 2

The inhibition coefficients mdd 0

V. Near Near Zero Far V. Far

V. Near – 3 5 3 2

Near 0.4 – 2.8 1.5 0.4

Zero 0.2 1.3 – 1.3 0.2

Far 0.4 1.5 2.8 – 0.4

V. Far 2 3 5 3 –

Each neuron is inhibited by every other neuron that shares either of its

inputs by an amount that depends on the disparities of the inhibited

and inhibiting neurons (cf., Fig. 3). See text for further discussion of

parameter choices.
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T H=V
ijd ¼ 50� NH=V

ijd

h iþ
; ðA:16Þ

where the multiplicative factor of 50 allows the V2 plots
in Figs. 5–9 and 11–16 to be plotted to the same scale as

the V1 plots.

A.10. V4

V4 receives lightness signals from the LGN via the V1

blobs and the V2 thin stripes, and boundary signals via

the V1 interblob regions and the V2 pale stripes. It
combines the monocular lightness signals from the two

eyes that correspond to the same 3D location. Its

lightness input, Zijd , is given by:

Zijd ¼ XL
ðiþsÞj

h iþ
þ XR

ði�sÞj

h iþ
; ðA:17Þ

where i, j are positional indices, d represents the dis-

parity to which the model neuron is tuned and s the

allelotropic shift defined in Table 1. The on-center off-
surround receptive field structure of the LGN ensures

that these lightness signals are only present at the bor-

ders of surfaces, where the lightness signals represent the

ratio of the luminances on either side of the border. In

V4, these lightness signals fill-in by a process whose

lateral spread is gated, and thereby contained, by

boundary signals. Following Grossberg and Todorovi�cc
(1988), the V4 cell membrane potentials, Wijd , are mod-
eled by a diffusion equation that is solved at steady-

state:

Wijd ¼
Zijd þ

P
p;q2nij WpqdPpqijd

1þ
P

p;q2nij Ppqijd
: ðA:18Þ

Eq. (A.18) was solved iteratively until equilibrium was

achieved. Diffusion of potential occurs between the

nearest-neighbor locations nij of ði; jÞ:
nij ¼ fði; j� 1Þ; ði� 1; jÞ; ðiþ 1; jÞ; ði; jþ 1Þg: ðA:19Þ
The gating coefficients, Ppqijd , in (A.18) represent the

inhibition of the diffusion by the boundary signals TH=V
pqd .

They are defined by:

Ppqijd ¼
f

1þhðTH
ði�0:5Þðjþ0:5Þd þT V

ði�0:5Þðjþ0:5Þd þTH
ði�0:5Þðj�0:5Þd þT V

ði�0:5Þðj�0:5ÞdÞ
;

if p¼ i�1 and q¼ j;
ðA:20Þ

Ppqijd ¼
f

1þhðTH
ðiþ0:5Þðjþ0:5Þd þT V

ðiþ0:5Þðjþ0:5Þd þTH
ðiþ0:5Þðj�0:5Þd þT V

ðiþ0:5Þðj�0:5ÞdÞ
;

if p¼ iþ1 and q¼ j;
ðA:21Þ

Ppqijd ¼
f

1þhðTH
ði�0:5Þðj�0:5Þd þT V

ði�0:5Þðj�0:5Þd þTH
ðiþ0:5Þðj�0:5Þd þT V

ðiþ0:5Þðj�0:5ÞdÞ
;

if p¼ i and q¼ j�1;

ðA:22Þ

Ppqijd ¼
f

1þhðTH
ði�0:5Þðjþ0:5Þd þT V

ði�0:5Þðjþ0:5Þd þTH
ðiþ0:5Þðjþ0:5Þd þT V

ðiþ0:5Þðjþ0:5ÞdÞ
;

if p¼ i and q¼ jþ1:

ðA:23Þ
As shown by these equations, the boundary lattice is

offset by [0.5, 0.5] relative to the lightness lattice, cor-

responding to the idea that these two processing streams

are spatially displaced with respect to one another in the

cortical map. Constants f and h (1000, 10000) represent

the diffusion rate and the strength of the gating inhibi-
tion. Spurious lattice edge effects were avoided by using

the wrap-round technique according to which the last

element of a row/column is adjacent to the first element

of the same row/column.

Appendix B. Proof of the obligate theorem

The obligate property is proved below. The proof

shows that binocular simple cells in layer 3B can be

activated only if they receive approximately equal inputs
from both left and right eye monocular simple cells in

layer 4. The constraints that determine cell firing de-

pend upon the ratios of left and right monocular cell

activity. This property explains the ratio constraint

on stereoscopic fusion that is illustrated in Fig. 10.

The proof also shows that the activities converge expo-

nentially to unique equilibrium activities in response

to any combination of constant monocular inputs.
The obligate property is caused by a balance between

excitatory inputs from layer 4 monocular simple cells

and inhibitory inputs from layer 3B inhibitory inter-

neurons. The interneurons are themselves activated by

layer 4 monocular simple cells and mutually inhibit each

other, in addition to inhibiting the binocular simple

cells.

The obligate property is proved below for layer 3B
binocular cells with dark-light contrast polarity (BV ;B;þ

ijd ).

By symmetry, the same proof holds for cells with light-

dark contrast polarity (BV ;B;�
ijd ).

Obligate theorem. Consider the system:

dBV ;B;þ
ijd

dt
¼ �c1B

V ;B;þ
ijd þ SV ;L;þ

ðiþsÞj

h iþ�
þ SV ;R;þ

ði�sÞj

h iþ�

� a QV ;L;þ
ijd

h iþ�
þ QV ;L;�

ijd

h iþ
þ QV ;R;þ

ijd

h iþ
þ QV ;R;�

ijd

h iþ�
; ðB:1Þ

dQV ;L;þ
ijd

dt
¼ �c2Q

V ;L;þ
ijd þ SV ;L;þ

ðiþsÞj

h iþ
� b QV ;R;þ

ijd

h iþ�

þ QV ;R;�
ijd

h iþ
þ QV ;L;�

ijd

h iþ�
; ðB:2Þ
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dQV ;R;þ
ijd

dt
¼ �c2Q

V ;R;þ
ijd þ SV ;R;þ

ði�sÞj

h iþ
� b QV ;L;þ

ijd

h iþ�

þ QV ;L;�
ijd

h iþ
þ QV ;R;�

ijd

h iþ�
; ðB:3Þ

dQV ;L;�
ijd

dt
¼ �c2Q

V ;L;�
ijd þ SV ;L;�

ðiþsÞj

h iþ
� b QV ;R;�

ijd

h iþ�

þ QV ;R;þ
ijd

h iþ
þ QV ;L;þ

ijd

h iþ�
; ðB:4Þ

and

dQV ;R;�
ijd

dt
¼ �c2Q

V ;R;�
ijd þ SV ;R;�

ði�sÞj

h iþ
� b QV ;L;�

ijd

h iþ�

þ QV ;L;þ
ijd

h iþ
þ QV ;R;þ

ijd

h iþ�
; ðB:5Þ

where SV ;L;þ
ðiþsÞj and SV ;R;þ

ði�sÞj are monocular simple cell activities
that are defined by (A.4) and (A.6), 0 < c1 and

0 < b < c2 < a < c2 þ b: ðB:6Þ
Under these conditions, the system converges expo-

nentially to the unique equilibria specified by (1)–(4)
provided that the inputs are constant.

(1) if 0 < SV ;L;þ
ðiþsÞj ; S

V ;R;þ
ði�sÞj ; S

V ;L;�
ðiþsÞj ; S

V ;R;�
ði�sÞj < 0;

b=c2 6 SV ;L;þ
ðiþsÞj=S

V ;R;þ
ði�sÞj ; and b=c2 6 SV ;R;þ

ði�sÞj=S
V ;L;þ
ðiþsÞj ,

then at equilibrium

BV ;B;þ
ijd ¼ 1

c1
1

�
� a

c2 þ b

�
SV ;L;þ
ðiþsÞj

�
þ SV ;R;þ

ði�sÞj

�
; ðB:7Þ

(2) if 0 < SV ;L;þ
ðiþsÞj ; S

V ;R;þ
ði�sÞj ; S

V ;L;�
ðiþsÞj ; S

V ;R;�
ði�sÞj < 0; and

SV ;R;þ
ði�sÞj=S

V ;L;þ
ðiþsÞj < b=c2,

then at equilibrium

BV ;B;þ
ijd ¼ 1

c1
SV ;R;þ
ði�sÞj

�
þ 1

�
� a

c2

�
SV ;L;þ
ðiþsÞj

�
; ðB:8Þ

(3) if 0 < SV ;L;þ
ðiþsÞj ; S

V ;R;þ
ði�sÞj ; SV ;L;�

ðiþsÞj ; S
V ;R;�
ði�sÞj < 0; and SV ;L;þ

ðiþsÞj=

SV ;R;þ
ði�sÞj < b=c2,

then at equilibrium

BV ;B;þ
ijd ¼ 1

c1
SV ;L;þ
ðiþsÞj

�
þ 1

�
� a

c2

�
SV ;R;þ
ði�sÞj

�
; ðB:9Þ

(4) for all other values of SV ;L;þ
ðiþsÞj , S

V ;R;þ
ði�sÞj , S

V ;L;�
ðiþsÞj , S

V ;R;�
ði�sÞj ,

at equilibrium BV ;B;þ
ijd 6 0: ðB:10Þ

Fig. 18a and b shows the simulated and calculated outputs
for the above system for the parameter values summarized
in Appendix A.

Proof. First note by (A.6) that, out of the four possible
inputs SV ;L;þ

ðiþsÞj , S
V ;R;þ
ði�sÞj , S

V ;L;�
ðiþsÞj , and SV ;R;�

ði�sÞj , at most only two

can be positive. This greatly simplifies the subsequent

analysis.

Case 1

0 < SV ;L;þ
ðiþsÞj ; S

V ;R;þ
ði�sÞj ; SV ;L;�

ðiþsÞj ; S
V ;R;�
ði�sÞj < 0;

b
c2

6

SV ;L;þ
ðiþsÞj

SV ;R;þ
ði�sÞj

; and
b
c2

6

SV ;R;þ
ði�sÞj

SV ;L;þ
ðiþsÞj

: ðB:11Þ

Under these conditions, (B.4) and (B.5) imply that, for

sufficiently large t,

QV ;L;�
ijd ;QV ;R;�

ijd 6 0: ðB:12Þ

By (B.12), and recalling for this case 0 < SV ;L;þ
ðiþsÞj ; S

V ;R;þ
ði�sÞj ,

(B.2) and (B.3) can be approximated at large times:

dQV ;L;þ
ijd

dt
¼ �c2Q

V ;L;þ
ijd þ SV ;L;þ

ðiþsÞj � b QV ;R;þ
ijd

h iþ
ðB:13Þ

and

dQV ;R;þ
ijd

dt
¼ �c2Q

V ;R;þ
ijd þ SV ;R;þ

ði�sÞj � b QV ;L;þ
ijd

h iþ
: ðB:14Þ

Eqs. (B.13) and (B.14) are used to draw the phase-plane

plot shown in Fig. 20a. Eq. (B.11) implies:

0 <
SV ;R;þ
ði�sÞj

c2
6

SV ;L;þ
ðiþsÞj

b
ðB:15Þ

and

0 <
SV ;L;þ
ðiþsÞj

c2
6

SV ;R;þ
ði�sÞj

b
: ðB:16Þ

From these equations and where the nullclines intersect

the axes in Fig. 20a, it follows that the nullclines must

cross each other at a point where

06QV ;L;þ
ijd ;QV ;R;þ

ijd : ðB:17Þ

This allows us to remove the rectification in (B.13) and
(B.14) which in turn allows us to perform local analysis

on the linear system

J ¼ �c2 �b
�b �c2


 �
: ðB:18Þ

The eigenvalues are �c2 � b. By (B.6), b < c2, and so
both eigenvalues are negative. Thus the crossing of the

nullclines represents a unique equilibrium point to which

the system exponentially converges. This equilibrium

point can be found by adding (B.13) and (B.14) and

recalling that for this case QV ;L;þ
ijd and QV ;R;þ

ijd are non-

negative:

d

dt
QV ;L;þ

ijd

�
þ QV ;R;þ

ijd

�
¼ �ðc2 þ bÞ QV ;L;þ

ijd

�
þ QV ;R;þ

ijd

�
þ SV ;L;þ

ðiþsÞj

�
þ SV ;R;þ

ði�sÞj

�
: ðB:19Þ

The equilibrium point is:

QV ;L;þ
ijd þ QV ;R;þ

ijd ¼ 1

c2 þ b
SV ;L;þ
ðiþsÞj

�
þ SV ;R;þ

ði�sÞj

�
: ðB:20Þ
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By (B.12) and (B.20), and recalling for this case 0 <
SV ;L;þ
ðiþsÞj ; S

V ;R;þ
ði�sÞj , we see that at large times (B.1) is approx-

imated by:

dBV ;B;þ
ijd

dt
¼ �c1B

V ;B;þ
ijd þ 1

�
� a

c2 þ b

�
SV ;L;þ
ðiþsÞj

�
þ SV ;R;þ

ði�sÞj

�
:

ðB:21Þ

Eq. (B.21) then exponentially converges to:

BV ;B;þ
ijd ¼ 1

c1
1

�
� a

c2 þ b

�
SV ;L;þ
ðiþsÞj

�
þ SV ;R;þ

ði�sÞj

�
: ðB:22Þ

Case 2

0 < SV ;L;þ
ðiþsÞj ; S

V ;R;þ
ði�sÞj ; SV ;L;�

ðiþsÞj ; S
V ;R;�
ði�sÞj < 0; and

SV ;R;þ
ði�sÞj

SV ;L;þ
ðiþsÞj

<
b
c2
:

ðB:23Þ
First note that (B.12)–(B.14) apply to this case, allowing

us to draw the phase-plane plot shown in Fig. 20b. From
where the nullclines intersect the axes and from (B.23),

we see that the nullclines must cross each other at a

point where

QV ;R;þ
ijd < 0 ðB:24Þ

and

QV ;L;þ
ijd > 0: ðB:25Þ

Eqs. (B.24) and (B.25) imply that (B.13) and (B.14) can

be rewritten as:

dQV ;L;þ
ijd

dt
¼ �c2Q

V ;L;þ
ijd þ SV ;L;þ

ðiþsÞj ðB:26Þ

and

dQV ;R;þ
ijd

dt
¼ �c2Q

V ;R;þ
ijd þ SV ;R;þ

ði�sÞj � bQV ;L;þ
ijd : ðB:27Þ

Linear analysis of

J ¼ �c2 0

�b �c2


 �
ðB:28Þ

yields only a single eigenvalue, �c2. Because this eigen-

value is negative, the intersection of nullclines represents

an equilibrium point to which the system converges.

Solving (B.26) at equilibrium yields:

QV ;L;þ
ijd ¼

SV ;L;þ
ðiþsÞj

c2
: ðB:29Þ

By (B.12), (B.24) and (B.29), and recalling that for this

case 0 < SV ;L;þ
ðiþsÞj ; S

V ;R;þ
ði�sÞj , it follows that at large times, (B.1)

is approximated by:

dBV ;B;þ
ijd

dt
¼ �c1B

V ;B;þ
ijd þ 1

�
� a

c2

�
SV ;L;þ
ðiþsÞj þ SV ;R;þ

ði�sÞj ; ðB:30Þ

which has the equilibrium solution:

BV ;B;þ
ijd ¼ 1

c1
1

��
� a

c2

�
SV ;L;þ
ðiþsÞj þ SV ;R;þ

ði�sÞj

�
: ðB:31Þ

Case 3

0 < SV ;L;þ
ðiþsÞj ; S

V ;R;þ
ði�sÞj ; 0 < SV ;L;�

ðiþsÞj ; S
V ;R;�
ði�sÞj ;

and
SV ;L;þ
ðiþsÞj

SV ;R;þ
ði�sÞj

<
b
c2
: ðB:32Þ

By symmetry with Case 2:

BV ;B;þ
ijd ¼ 1

c1
SV ;L;þ
ðiþsÞj

�
þ 1

�
� a

c2

�
SV ;R;þ
ði�sÞj

�
: ðB:33Þ

Case 4

SV ;L;þ
ðiþsÞj ; S

V ;R;þ
ði�sÞj < 0 and SV ;L;�

ðiþsÞj ; S
V ;R;�
ði�sÞj < 0: ðB:34Þ

From (B.1) we see that at equilibrium:

BV ;B;þ
ijd 6 0: ðB:35Þ

Fig. 20. Phase-plots used in Appendix B: (a) Case 1; (b) Case 2. In

both cases the dQV ;R;þ
ijd =dt ¼ 0 nullcline crosses the ordinate and the

abscissa at SV ;R;þ
ði�sÞj =c2 and SV ;R;þ

ði�sÞj =b, while the dQV ;L;þ
ijd =dt ¼ 0 nullcline

crosses them at SV ;L;þ
ðiþsÞj=b and SV ;L;þ

ðiþsÞj=c2.
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Case 5

0 < SV ;L;þ
ðiþsÞj ; S

V ;R;�
ði�sÞj ; SV ;L;�

ðiþsÞj ; S
V ;R;þ
ði�sÞj < 0;

b
c2

6

SV ;L;þ
ðiþsÞj

SV ;R;�
ði�sÞj

; and
b
c2

6

SV ;R;�
ði�sÞj

SV ;L;þ
ðiþsÞj

: ðB:36Þ

By analogy with Case 1, in particular (B.12) and (B.20),

at equilibrium:

QV ;L;�
ijd ;QV ;R;þ

ijd 6 0 ðB:37Þ

and

QV ;L;þ
ijd þ QV ;R;�

ijd ¼ 1

c2 þ b
SV ;L;þ
ðiþsÞj

�
þ SV ;R;�

ði�sÞj

�
: ðB:38Þ

Using (B.37) and (B.38), and recalling that for this case

0 < SV ;L;þ
ðiþsÞj and SV ;R;þ

ði�sÞj < 0, we see that at large times (B.1)

is approximated by:

dBV ;B;þ
ijd

dt
¼ �c1B

V ;B;þ
ijd þ SV ;L;þ

ðiþsÞj �
a

c2 þ b
SV ;L;þ
ðiþsÞj

�
þ SV ;R;�

ði�sÞj

�
:

ðB:39Þ
Its equilibrium solution is:

BV ;B;þ
ijd ¼ 1

c1
1

��
� a

c2 þ b

�
SV ;L;þ
ðiþsÞj �

a
c2 þ b

SV ;R;�
ði�sÞj

�
:

ðB:40Þ
Recalling that for this case ðb=c2ÞSV ;L;þ

ðiþsÞj 6 SV ;R;�
ði�sÞj , we

convert (B.40) into an inequality:

BV ;B;þ
ijd 6

1

c1
1

��
� a

c2 þ b

�
SV ;L;þ
ðiþsÞj �

a
c2 þ b

b
c2
SV ;L;þ
ðiþsÞj

�
:

ðB:41Þ
From (B.6) we see that c2 < a. This allows (B.41) to be

rewritten

BV ;B;þ
ijd <

1

c1
1

��
� c2

c2 þ b

�
SV ;L;þ
ðiþsÞj �

c2
c2 þ b

b
c2
SV ;L;þ
ðiþsÞj

�
:

ðB:42Þ

After factorization and cancellation we find:

BV ;B;þ
ijd < 0: ðB:43Þ

Case 6

0 < SV ;L;þ
ðiþsÞj ; S

V ;R;�
ði�sÞj ; SV ;L;�

ðiþsÞj ; S
V ;R;þ
ði�sÞj < 0; and

SV ;R;�
ði�sÞj

SV ;L;þ
ðiþsÞj

<
b
c2
:

ðB:44Þ
By analogy with Cases 1 and 2, in particular (B.12),

(B.24) and (B.29), at equilibrium:

QV ;L;�
ijd ;QV ;R;þ

ijd 6 0; ðB:45Þ

QV ;R;�
ijd < 0; ðB:46Þ

and

QV ;L;þ
ijd ¼

SV ;L;þ
ðiþsÞj

c2
: ðB:47Þ

Using these equations, and recalling that for this case

0 < SV ;L;þ
ðiþsÞj and SV ;R;þ

ði�sÞj < 0, we see that at large times (B.1)

is approximated by:

dBV ;B;þ
ijd

dt
¼ �c1B

V ;B;þ
ijd þ SV ;L;þ

ðiþsÞj �
a
c2
SV ;L;þ
ðiþsÞj : ðB:48Þ

This converges to:

BV ;B;þ
ijd ¼ 1

c1
1

�
� a

c2

�
SV ;L;þ
ðiþsÞj : ðB:49Þ

From (B.6) we see c2 < a. Thus (B.49) implies

BV ;B;þ
ijd < 0: ðB:50Þ

Case 7

0 < SV ;L;þ
ðiþsÞj ; S

V ;R;�
ði�sÞj ; SV ;L;�

ðiþsÞj ; S
V ;R;þ
ði�sÞj < 0; and

SV ;L;þ
ðiþsÞj

SV ;R;�
ði�sÞj

<
b
c2
:

ðB:51Þ
By analogy with Case 2, in particular (B.12), (B.24) and

(B.29), at equilibrium:

QV ;L;�
ijd ;QV ;R;þ

ijd 6 0; ðB:52Þ

QV ;L;þ
ijd < 0; ðB:53Þ

and

QV ;R;�
ijd ¼

SV ;R;�
ði�sÞj

c2
: ðB:54Þ

Using these equations, and recalling that for this case
0 < SV ;L;þ

ðiþsÞj and SV ;R;þ
ði�sÞj < 0, we see that at large times (B.1)

is approximated by:

dBV ;B;þ
ijd

dt
¼ �c1B

V ;B;þ
ijd þ SV ;L;þ

ðiþsÞj �
a
c2
SV ;R;�
ði�sÞj : ðB:55Þ

This converges to:

BV ;B;þ
ijd ¼ 1

c1
SV ;L;þ
ðiþsÞj

�
� a

c2
SV ;R;�
ðiþsÞj

�
: ðB:56Þ

Recalling that for this case ðc2=bÞSV ;L;þ
ðiþsÞj < SV ;R;�

ði�sÞj , we

convert (B.56) into an inequality:

BV ;B;þ
ijd <

1

c1
1

�
� a

b

�
SV ;L;þ
ðiþsÞj : ðB:57Þ

From (B.6) we see that b < a. Thus (B.57) implies:

BV ;B;þ
ijd < 0: ðB:58Þ

Case 8

SV ;L;þ
ðiþsÞj ; S

V ;R;�
ði�sÞj < 0 and 0 < SV ;L;�

ðiþsÞj ; S
V ;R;þ
ði�sÞj : ðB:59Þ
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By analogy with Cases 5–7:

BV ;B;þ
ijd < 0: ðB:60Þ

Case 9

SV ;L;þ
ðiþsÞj ; S

V ;R;þ
ði�sÞj ; S

V ;L;�
ðiþsÞj ; S

V ;R;�
ði�sÞj ¼ 0: ðB:61Þ

By inspection, (B.2)–(B.5) imply that at equilibrium,

QV ;L;þ
ijd ;QV ;R;þ

ijd ;QV ;L;�
ijd ;QV ;R;�

ijd ¼ 0: ðB:62Þ

By (B.62) and (B.1) implies that at equilibrium,

BV ;B;þ
ijd ¼ 0: ðB:63Þ

As we have now considered all possible cases, the the-
orem is proved. �
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