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Abstract

Let g be a finite-dimensional simple Lie algebra of rank / over an algebraically closed field of character-
istic 0. Let e be a nilpotent element of g and let g, be the centraliser of e in g. In this paper we study the
algebra S(g.)9 of symmetric invariants of g.. We prove that if g is of type A or C, then S(g,)9¢ is always
a graded polynomial algebra in / variables, and we show that this continues to hold for some nilpotent el-
ements in the Lie algebras of other types. In type A we prove that the invariant algebra S(g.)%¢ is freely
generated by a regular sequence in S(g.) and describe the tangent cone at e to the nilpotent variety of g.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Nilpotent elements; Symmetric invariants

Contents
0. IntroducCtion . .. ... .. .. it 344
1. Some general results . . . . . ... e 348

2. Slodowy slices and symmetric invariants of centralisers

* Corresponding author.
E-mail addresses: panyush@mccme.ru (D. Panyushev), sashap@maths.man.ac.uk (A. Premet),
yakimova@mpim-bonn.mpg.de (O. Yakimova).
1 Supported in part by RFBI Grant 05-01-00988.

0021-8693/$ — see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2006.12.026



344 D. Panyushev et al. / Journal of Algebra 313 (2007) 343-391

3. Regular linear functions on centralisers . . .. ......... ...ttt 358
4. Degrees of basic INVAIants . . .. ... ...ttt e 367
5. Thenull-cones intype A . . .. .. 383
6. Miscellany . .. ... ... 387
APPENdiX A, . 389
References . .. ... ... 390

0. Introduction

0.1. Let g be a finite-dimensional reductive Lie algebra of rank / over an algebraically closed
field K of characteristic zero, and let G be the adjoint group of g. Let A'(g) denote the nilpotent
cone of g, i.e., the set of all nilpotent elements of g. Given x € g we denote by gx and G, the
centraliser of x in g and G, respectively. It is well known that g, = Lie G, = Lie G§ (here and
in what follows H° stands for the identity component of an algebraic group H).

Inspired by a conversation with J. Brundan at the Oberwolfach meeting on enveloping algebras
in March 2005, the second author put forward the following conjecture.

Conjecture 0.1. For any x € g the invariant algebra S(gy)%* is a graded polynomial algebra
in [ variables.

In order to prove (or disprove) Conjecture 0.1 it suffices to consider the case where g is simple
and x € N (g). The conjecture is known to hold for some x € N (g). For example, when x = 0, it
is an immediate consequence of the Chevalley Restriction Theorem. At the other extreme, when
x € N'(g) is regular, the centraliser g, is abelian of dimension / and we have S(g,)% = S(gy) =
K[X1,..., X;] with deg X; = 1 for all .

Conjecture 0.1 is closely related to an earlier conjecture of A. Elashvili (initiated by a question
of A. Bolsinov). Recall that the index of a finite-dimensional Lie algebra s over K, denoted ind s,
is defined as the minimal dimension of the stabilisers of linear functions on s. In other words,
inds = min{dims/ | f € s*} where s/ = {x € s | f([x,s]) = 0}. Elashvili’s conjecture states
that

indg, =1l=1kg (Vxeg).

According to Vinberg’s inequality, ind g, > [ for all x € g (see [18, 1.6 and 1.7], but the equality
is much harder to establish.

During the last decade Elashvili’s conjecture drew attention of several Lie theorists. Similar to
Conjecture 0.1 it reduces to the case in which g is simple and x € N/ (g). For the spherical nilpo-
tent orbits, Elashvili’s conjecture was proved in [18] and [19] by the first author. For g classical,
Elashvili’s conjecture was recently proved in [29] by the third author. In 2004, J.-Y. Charbonnel
published a case-free proof of Elashvili’s conjecture applicable to all simple Lie algebras; see [6].
Unfortunately, the argument in [6] has a gap in the final part of the proof, which was pointed out
by L. Rybnikov. At present we are unable to close this gap. Answering a question of Elashvili,
W. de Graaf used a computer programme to verify the conjecture for all nilpotent elements in the
Lie algebra of type Eg (unpublished). Since there are many nilpotent orbits in the Lie algebras of
exceptional types, it is difficult to present the results of such computations in a concise way.
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To summarise, Elashvili’s conjecture holds for the Lie algebras of type A, B, C, D and G,
and remains a challenging open problem for the Lie algebras of type E and F4. We feel that it
would be very important to find a conceptual proof of Elashvili’s conjecture applicable to all
finite-dimensional simple Lie algebras.

0.2. The main goal of this paper is to prove Conjecture 0.1 for all nilpotent elements in the
Lie algebras of type A and C. Our methods also work for some nilpotent elements in the Lie
algebras of type B and D and for a few nilpotent orbits in the exceptional Lie algebras.

From now on, we fix a nonregular element ¢ € N'(g) \ {0} and include it into an sl,-triple
(e, h, f) of g. Let (-,-) denote the scalar multiple of the Killing form of g such that (e, f) =1,
and put x = (e, -). The map « from g to g* which takes x to (x,-) extends uniquely to a G-
equivariant isomorphism between the symmetric algebra S(g) and the coordinate algebra K[g]
of g. This isomorphism of graded algebras will be denoted by the same letter x and referred to as
a Killing isomorphism. The G-equivariance of (-,-) implies that g, = [e, g]*. On the other hand,
g=[e, g] ® gy by the sl,-theory. It follows that the Killing isomorphism « induces an algebra
isomorphism

Kke:S(ge) = Klgrl, x> (x,)1g,  (Vx €g0).

The coordinate algebra K[g 7] carries a natural Z-grading in which the linear forms on g have
degree 1. Each nonzero ¢ € K[g 7] is expressed uniquely as

¢ = @ + terms of higher degree,

where @y is a nonzero homogeneous element of degree k = k(). We say that ¢y is the initial
term of @, written ¢ = in(¢). For ¢ = 0 we set in(¢) = 0.

Let S, denote the Slodowy slice e + gy at e through the adjoint orbit G - e. The translation
map x — e + x induces an isomorphism of affine varieties 7:g; — S,. The comorphism 7*
maps the coordinate algebra K[S, ] isomorphically onto K[g r].

Let F' be a homogeneous element in S(g). Then «(F) € K[g] and «(F)s, € K[S,]. The
above discussion shows that t*(k (F)s,) € K[gr] and Ke_l(in(‘t*(K(F)|Se))) € 5(g.). We now
put

F o= (in(e* ( (F)i.).

Thus, to each homogeneous F € S(g) we assign a homogeneous element °F € S(g.). Roughly
speaking, °F is the initial component of Fj,(s,).

Proposition 0.1. If F is a homogeneous element of S(g)©, then °F € S(ge)%.
We give two proofs of Proposition 0.1. The first proof relies in a crucial way on some prop-
erties of the quantisation of the coordinate algebra K[S,] introduced in [20] (see also [12]). The

second (elementary) proof is given in Appendix A.

0.3. Of particular interest are those homogeneous generating sets {F1, ..., F;} C S(g)? for
which the resulting systems °Fp, ..., °F; are algebraically independent. In Section 2, we show
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that if Elashvili’s conjecture holds for g., then for any homogeneous system of basic invariants
Fy, ..., F; in S(g)? we have the inequality

l
> deg °F; < (dimg, + rkg)/2. (1)
i=1

Furthermore, °F 1, ..., °F; are algebraically independent in S(g.) if and only if the equality holds
in (1), that is Zﬁ:] deg °F; = (dim g, +rk g) /2. If this happens, we say that the system F1, ..., F
is good for e.

Given a linear function y on g, we denote by gJ the stabiliser of y in g, and set

(g’;)sing ={y eg}|dimg} > indg.}.

The complement g \ (g )sing consists of all regular linear functions of g.. We prove in Section 2
that if Elashvili’s conjecture holds for g, then for any good generating set {Fi, ..., F;} C S(g)?
the differentials d,, (°F1), ..., d, (°F;) are linearly independent at y € g} if and only if y is reg-
ular in g}. When e = 0, this is a classical result of Lie theory often referred to as Kostant’s
differential criterion for regularity (note that any homogeneous generating system in S(g)? is
good for e = 0 and Elashvili’s conjecture is true in this case). When e is regular nilpotent, the
statement follows from another theorem of Kostant saying that the restriction of the adjoint quo-
tient map to the Slodowy slice S, is an isomorphism of algebraic varieties. Beyond these two
extreme cases our result seems to be new. It should be stressed, however, that if g is not of type A
or C, then there may exist nilpotent elements in g which do not admit good generating systems
in S(g)?. One such element in g = s017 is exhibited in Example 4.1. Quite surprisingly, the root
vectors in Lie algebras of type Eg provide yet another example of this kind.

0.4. Our proof of the above results relies on some geometric properties of Poisson algebras
of Slodowy slices (established in [20] and [12]) and a theorem of Odesskii, Rubtsov [16] on poly-
nomial Poisson algebras with a regular structure of symplectic leaves. All necessary background
on polynomial Poisson algebras is assembled in Section 1.

Let A =K[xy, ..., x,] be a polynomial algebra in n variables. For g1, ..., g, € A, we denote
by J(g1,---,&n) the Jacobian locus of gi, ..., gm, i.e., the set of all & € Specm.A for which
the differentials dg g1, . .., dg g are linearly dependent. Suppose A is a Poisson algebra and let

7 € Hom 4(£2%(A), A) be the corresponding Poisson bivector. Let Z(A) denote the Poisson cen-
tre of A. The defect of the skew-symmetric matrix ({x;, x;})1<;, j<n With entries in A is called
the index of A and denoted ind A. It is well known (and easily seen) that tr.degg Z(A) < ind A.
We denote by Singm the set of all & € Specm A for which tk7(§) < n — ind A. A subset
{01,...0;} C Z(A) is said to be admissible if | = ind A and the Jacobian locus J(Q1, ..., Q1)
has codimension > 2 in A”. We say that (A, 7) is a quasi-regular Poisson algebra if Z(A)
contains an admissible subset and Sing 7 has codimension > 2 in Specm A.

Assume now that A = K[xy, ..., x,] is graded and each x; is homogeneous of positive de-
gree. Let f1, ..., fs be a collection of homogeneous elements in .4 such that the Jacobian locus
J(f1, .., fs) has codimension > 2 in Specm 4, and denote by R the subalgebra of A generated
by fi,..., fs. Inspired by Skryabin’s result [24, Theorem 5.4] on modular invariants of finite
group schemes we prove that if an element f € A is algebraic over R, then necessarily f € R.
This has the following consequence.
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Theorem 0.2. Let A =K][xy, ..., x,] be a quasi-regular Poisson algebra of index | and suppose
that A = @k>0 A(k) is graded in such a way that x; € A(r;) for some r; > 0, where 1 <i < n.
Suppose further that Z(A) contains an admissible set {Q1, ..., Q;} consisting of homogeneous
elements of A. Then Z(A) =K[Q1,..., O;].

0.5. In this paper, we mostly apply Theorem 0.2 to the pair (A, 7) = (S(g.), JTeP L) where
nf L is the Poisson bivector of S (ge) induced by the Lie bracket of g.. In this situation Z(A) =
S(ge)%e. (One noteworthy application of Theorem 0.2 to quantisations of Slodowy slices can
be found in Remark 2.1.) Of course, before applying Theorem 0.2 to the pair (S(g.), 721) we
have to make sure that our nilpotent element qualifies. That is to say, we must check that e
admits a good generating system Fi, ..., Fj, that Elashvili’s conjecture holds for g., and that
JEFy,...,%F)) = (gj)sing has codimension > 2 in g¥. Our main result is the following theorem.

Theorem 0.3. Suppose e admits a good generating system Fy, ..., F; in S(g)% and assume
Sfurther that Elashvili’s conjecture holds for g. and (g} )sing has codimension > 2 in gj. Then
S(g.)9% = S(g.) is a polynomial algebra in °F, ..., °F).

Suppose g is of type A, or C,,, where n > 2, and let e € N/(g). By [29], Elashvili’s conjecture
holds for g. In Section 3, we show that the singular locus (g} )sing has codimension > 2 in g7,
whilst our results in Section 4 imply that in types A and C the invariant algebra S(g)? contains a
homogeneous generating set which is good for all nilpotent elements in g (this is no longer true
in types B and D). Applying Theorem 0.3 we are able to conclude that Conjecture 0.1 holds for
all nilpotent elements in g.

Apart from the above-mentioned results, we show in Sections 3 and 4 that the conditions
of Theorem 0.3 are satisfied for some nilpotent elements in Lie algebras of types B and D.
Section 3.9 illustrates the behavior of the simple Lie algebras g of types other than A and C by
producing a nilpotent element e € g for which (g})sing has codimension 1 in g.

0.6. 1In Section 5, we study the null-cone A (e) of g%, that is the subvariety of g consisting
of all linear functions & such that ¢ (&) = 0 for all ¢ € S(g,.)% with ¢(0) = 0. Here we have to as-
sume that g = gl,,. Working with the good generating set {F1, ..., F,} C S(g)? mentioned in 0.5
we show that the zero locus N (e) of the ideal (°F1, ..., °F,) has codimension 7 in g5 and hence
°F1,...,°F, is aregular sequence in S(g.). As a consequence, we describe the tangent cone at
e to the variety of all nilpotent n x n matrices over K; see Corollary 5.5. Although the variety
N (e) is irreducible in some interesting cases, in general it has many irreducible components. The
problem of describing the irreducible components of A (e) for g = gl,, is wide open.

0.7. Lete € Onpin, Where Opip is the minimal (nonzero) nilpotent orbit in g. The element e is
G-conjugate to a highest root vector in g. Recall that outside type A the orbit Oy is rigid, i.e.,
cannot be obtained by Lusztig—Spaltenstein induction from a nilpotent orbit in a Levi subalgebra
of g. We put Conjecture 0.1 to the test by investigating the invariant algebra S(g;)9¢. Here our
result is as follows.

Theorem 0.4. Suppose rk g > 2. Then the singular locus (g )sing has codimension > 2 in g%. If g
is not of type Eg, then e admits a good generating system in S(g)9 and the invariant algebra
S(gz)% is isomorphic to a graded polynomial algebra in tk g variables. The degrees of basic
invariants of S(g;)% are given in Table 1.
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Table 1

Type of g Degrees of basic invariants
Ap,n>1 1,2,..., n

B,,n>3 1,3,4,...,2n -2
Cyp,n=>2 1,3,..., 2n —1

D,,n>4 1,3,4,....2n—4,n—1
Eg 1,4,4,6,7,9

E; 1,4,6,8,9,11, 14

F4 1,4,6,9

Gy 1,4

In order to prove Theorem 0.4 for Lie algebras of types E7 we have to use the explicit system
of basic invariants for the Weyl group of type E; constructed in [15]. In type Eg, we reduce Con-
jecture 0.1 for g; to a specific problem on polynomial invariants of the Weyl group of type E7;
see Theorem 4.14. In principle, this problem can be tackled by computational methods.

We adopt the Vinberg—Onishchik numbering of simple roots and fundamental weights in sim-
ple Lie algebras; see [27, tables]. The ith fundamental weight is denoted by ;.

After posting this paper on the arXiv we have learned from Jonathan Brundan that he and
Jonathan Brown also proved, for g = gl,,, that the invariant algebra S(g.)¥ is free for any nilpo-
tent element e € g; see [2]. The approach in [2] is different from ours; it relies on the earlier work
of Brundan and Kleshchev [3] and employs an argument in the spirit of [23]. The main goal of [2]
is to construct an explicit set of elementary invariants that generate the centre of the universal
enveloping algebra U (g, ). Using this generating set it is not difficult to confirm Conjecture 4.1
of this paper.

1. Some general results

1.1. Our goal in this section is twofold: to prove an extended characteristic-zero version of
Skryabin’s theorem [24] on invariants of finite group schemes and to obtain a slight generalisation
of a result of Odesskii, Rubtsov [16] on polynomial Poisson algebras. We first recall some basics
on the classical duality between differential forms and polyvector fields.

Let A" = Aj be the n-dimensional affine space with the algebra of regular functions
A = Kl[xq,...,x,]. Let W denote the derivation algebra of A. This is a free .A-module
with basis consisting of partial derivatives 91, ..., d, with respect to xi,...,x,. Let ! =
Hom 4 (W, A) and let £2 = @}_, £2* be the exterior A-algebra on £2!. The exterior differential
d:A— 21, (df)(D) = D(f), extends uniquely up to a zero-square graded derivation of the
A-algebra 2. We identify £2° with A and regard 2! as the .A-module of global sections on the
cotangent bundle 7*A". Note that 22K is a free A-module with basis {dxi, Aoondxg 1<y <
s < < nb.

We view the exterior powers 28 = /\]j4 2! and /\]j4 W as dual A-modules by using the
nondegenerate A-pairing

(@1 Ao Aag, Dy AL A D) =det(a; (D).

For i € 2%, set n(Dy A...ADy) := (0, D1 A...ADg).For D e Ny W, set D AL A ey) =
(@1 A... Aag, D). Then for D € A" W = (2P)* and D' € \) W = (£29)* we have
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(D A D')(ay A oA Aprg) = (g A...Aaerq,D/\D/)
= Z(SgnU)D(Ota(l), e U () D (@ (pr1)s - - U (prg))s

where the summation runs over the set of all permutations o of {1, ..., p + ¢} which are increas-
ingon{l,...,pland {p+1,...,p+q}.

For X € A\ AW and & € A", the specialisation X¢ is a well-defined element of the exterior
algebra /\ Tz (A,) on the tangent space Tz (A"). For X € W, the left interior product ix is the
unique A-linear endomorphism of degree —1 on £2 such that

ix(NDIA ... AD)=n(XADIA...ADy) (Yne k).

For w € ', the right interior product j, is the unique A-linear endomorphism of degree —1 on
/\.4 W such that

Jo(D)1 Ao Ahar) =D A ... A A ) (VDG/\];{’_IW).

Using the above discussion it is easy to observe that the endomorphisms iy and j, are graded
derivations (a.k.a. super-derivations) of £2 and /\ 4 W, respectively. More generally, given X €
/\f4 W and w € 27 one defines the right interior product ix and the left interior product j, to
be the unique endomorphisms of degree —p on £2 and /\ 4 W, respectively, such that

(ix(m.D)=(m. X AD) and (n,ju(D))=nAw, D) (YDeN}W, Vne).

The mappings X + ix and w > ji, then give rise to .A-algebra homomorphisms i : A\ 4 W —
End(£2)°P and j : £2 — End(/\ 4 W). In other words, we have iy oiy =iy x and jy 0 jg = junp
forall X,Y € A 4 W and all o, B € £2. Finally, ix(®) = j,(X) = (0, X) whenever X e /\f4 W
and w € £27.

The top components £2" and /'’y W are free modules of rank 1 over A generated by
dxi A ... ANdx, and 01 A ... A Oy, respectively. The mappings X +— ix(dx; A ... A dxy)
and w — j,(d1 A ... A 3y) induce canonical A-module isomorphisms /\il W= Q" P and

Qr= NP w.

1.2. Forgy,...,gm € A, the Jacobian locus J (g1, ..., g&m) consists of all £ € A" for which
the differentials dg g1, ..., dg g are linearly dependent. The set J (g1, ..., gm) is Zariski closed
in A" and it coincides with A" if and only if g1, ..., g, are algebraically dependent. Our inter-
pretation of Skryabin’s result [24, Theorem 5.4] will be based on the following theorem which is
of independent interest.

Theorem 1.1. Suppose A =K][xy, ..., x,] is graded in such a way that each x; is homogeneous
of positive degree. Let R be the subalgebra of A generated by homogeneous elements f1, ..., fs
and assume further that J(f1, ..., fs) has codimension > 2 in A". Then R is algebraically

closed in A. In other words, sz € A is algebraic over R, then f € R.

Proof. For r € K*, we denote by p(¢) the automorphism of .4 such that p(t) - f = 1k f for all
f € A(k), where A(k) is the kth graded component of .A. Let Q(R) be the field of fractions of R,
a subfield of K(x1, ..., x,), and denote by R the algebraic closure of R in A. Since R is nothing
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but the intersection of .4 with the algebraic closure of Q(R) in K(x1, ..., x,), it is a subalgebra
of A. Since all f; are homogeneous, the subalgebra R is p(K*)-stable. But then so is R. As
a consequence, R is a homogeneous subalgebra of A. Thus, in order to prove the theorem it
suffices to show that if a homogeneous element f € A is algebraic over R, then f € R.

We shall argue by induction on the degree of f . So assume that the statement holds for all
homogeneous elements of degree less than deg f (when deg f =1, this is a valid assumption).

(a) The grading of A induces that on the K-algebra 2 where we impose that deg dx; = deg x;.
Note that a € A is algebraic over R if and only if da A dfi A ... Adf; =0 in £2. Since
J(g1,...,8m) consists of all £ € A" for which de¢g1 A ... A degm = 0, our assumption on
fi,..., fs implies that for every subset {iy,...,ix} of {1,...,s} the locus J(f;,,..., fi;) has
codimension > 2 in A”. From this it follows that passing to smaller subsets of {fi, ..., fs} and
renumbering if necessary we can reduce our proof to the situation where for each i the polyno-
mials {f1,..., fi—1, fi+1...., fs, f} are algebraically independent. So let us assume from now
that this is the case, and put

T :=dfi A...Ndfs, Ti:=dfin...ANdfi_i Ndf Adfipi Ao ~dfs (1< <5s).

By our assumption, T and the 7; are nonzero homogeneous elements of £2. 3
(b)If £ ¢ T(f1,..., fs), then dt fi, ..., dg fy are linearly independent and dg f is a linear

combination of dg f1, ..., dg fs. It follows that the specialisation of T; at & is a scalar multiple of
de fi N ... Ndg fs. As £2 is a free A-module, this yields that 7 and T; are linearly dependent as
elements of the K(xy, ..., x,)-vector space K(xy, ..., x,) ® 4 £2. Combined with our discussion

in part (a) this implies that a; T; = b; T for some nonzero coprime a;, b; € A. As T (fi, ..., fn)
has codimension > 2 in A", the function ¢; must be constant. Thus, 7; = p;T where p; is a
nonzero homogeneous element of the graded algebra .A.

(c) Since d? =0, we have dp; AT =d(p;T) = dT; = 0. Our remarks in part (a) now show
that all p; are algebraic over R. Let

F=S5(X1,....X)Y £ S 1 (X1, XY o S0(X, .., X)

be a nonzero polynomial in K[Xy,..., X, Y] of minimal possible degree in Y such that
F(fi,..., fs, f) = 0. Assume further that Sy has minimal possible total degree in K[ X1, ..., X;]
and that all S;(fi, ..., fs) are homogeneous in the graded algebra A. Applying the exterior dif-
ferential we get 0 =d F(f1,..., fs, f) =V df + . ¥, df; where

U=k NS (s ) SIS fo)

Ny 1 0Sk— a8
S fO P fr e ) S (e S (U< m),

_ Fk
vi fax AX;

As ¥ # 0 by our choice of F, we have d f = — Y (y; /%) df;. This forces T; = —(y; /)T for
all i. Then v; = — p; ¥ by our concluding remark in part (b).

(d) Part (b) also shows that each p; is homogeneous with deg p; = deg f — deg f; < deg f.
Since all p; are algebraic over A by part (c), our inductive hypothesis implies that p; € R for
all i. We now look again at the formulae displayed in part (c), this time keeping in mind that
Yi+piv=0and p; K[ f1,..., f5].

If at least one of the partial derivatives dS;/9X; was nonzero, we would have a nontrivial
polynomial relation for f , f1, ..., fs with a smaller total degree of Si. Due to our choice of F
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this is impossible, however. So Sy is a nonzero constant, and there will be no harm in assum-
ing that Sy = 1. Note that each equality ¥; + p;¥ = 0 now induces a polynomial relation for
f , f1,..., fs of degree <k — 1 in Y. Since such a relation is trivial by our choice of F, the
coefficient (0Sk—1/0X;)(f1,..., fs) +kp; of f"’l in the relation has to be zero. In view of our
remarks in part (c) we thus obtain

dSk—l(flvafs)z_zkpldﬁ:_kdf
Then f: —Sk—1/k + A for some A € K, which shows thatfe R. O

1.3.  Now suppose that A possesses a Poisson structure {, }: A x A — A and let & denote the
corresponding Poisson bivector, the element of Hom A(.QZ, A) satisfying w(df Adg) =1{f, g}
for all f, g € A. In view of the duality described in 1.1 we may assume that 7w € /\34 W, that is

(df ndg,m)=1{f.g} (Vf,geA.

Let rk 7 (§) denote the rank of the skew-symmetric matrix ({x;, x;})1<;, j<n at§ € A". The index
of the Poisson algebra A, denoted ind A, is defined as

ind A:=n— maxrkm(§).
fEA"
Let Z(A) denote the Poisson centre of A and put Singw :={& € A" | rkw(§) < n — ind A}.
Clearly, Singr is a proper Zariski closed subset of A”. Note that (df Adg,m)=0forall f €

Z(A) and all g € A. Hence the linear subspace {dz f | f € Z(A)} lies in the kernel of 7 (¢) and
we have

tr.degig Z(A) <ind A.

We say that a subset {Q1,..., Q;} C Z(A) is admissible if | = ind A and the locus
J(Q1,..., Q) has codimension > 2 in A”. It is clear from the definition that any admissible
subset of Z(A) is algebraically independent.

Definition 1.1. We call a Poisson algebra (A, i) quasi-regular if the Poisson centre of A contains
an admissible subset and Sing 7 has codimension > 2 in A".

Given k € N we set

T =T ATA...AT,
k factors

an element of /\i’f W. The following is a slight modification of [16, Theorem 3.1].

Theorem 1.2. Let A = K[xy,...,x,] be a quasi-regular Poisson algebra of index | and let
{01,..., 01} C Z(A) be an admissible set in Z(A). Then
7D = jagin.ndoi @1 A A D)

for some nonzero A € K.
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Proof. Set w := jyg,a..rd0; (01 A...ADy), an element of /\2’4_1 W.Since j: 2 — End(/\A W)
is an exterior algebra homomorphism, it must be that

Jdo; (W) = jaoirnd0oin.nd0, 01 A ..AND) =0 (1 <i<]D).
Since Q; € Z(A), we also have
(df, jag: (M) =(df AdQi, ) ={f, Qi}=0 (Vf €A,

Hence jyp, () = 0. Since ju g, is a graded derivation of /\ 4 W, it follows that j ¢, (7¥) = 0 for
all k € N. As a consequence, jz0, (r=D/2y = Jdo;(w) =0forall i <I. Asl=ind A, we have
T n=D/2 £,

Given & € A" put Vi := ﬂﬁzl{v € T (A") | jaz 0;(v) = 0}. Suppose & ¢ J(Q1,..., Q).
Then d: Q1 A ... Ade Q; # 0 and dim V; = n — [. Since the exterior algebra A\ Tz (A") is a
free module over its subalgebra /\ Ve, it is straightforward to see that (}_, Ker Jde0i = /\ Ve.

As dim /\"_l Ve =1, our earlier remarks now imply that 7®=D/2 and w are linearly dependent
as elements of the vector space K(xy, ..., x,) ®4 (/\A w).

Since de Q1 A ... Adg Q) # 0, the above argument also shows that w # 0. It follows that
there exist nonzero coprime fi, f> € A such that f]ﬂ(n_l)/2 = fow. As the set {Q1,..., Q1}
is admissible, the function f; must be constant. As Singsw has codimension > 2 in A", the
function f> must be constant as well. Therefore, 7®=D/2 = ) for some nonzero A € K, as
stated. O

1.4. Next we are going to apply Theorem 1.1 to determine the Poisson centre of certain
quasi-regular polynomial Poisson algebras.

Corollary 1.3. Let A =K][xy, ..., x,] be a quasi-regular Poisson algebra of index | and suppose
that A = @k}O A(k) is graded in such a way that x; € A(r;) for some r; >0, where 1 <i < n.
Suppose further that Z(A) contains an admissible set {Q1, ..., Q;} consisting of homogeneous
elements of A. Then Z(A) =K[Q, ..., O;].

Proof. By our assumption, R :=K[Q1, ..., Q] is a graded subalgebra of .4 contained in Z(A).
Let z be an arbitrary element of Z(A). We need to show that z € R. Our discussion in 1.3 shows
that

I =tr.degg K(Q1,..., Q) <trdegg Z(A) <ind A =1,

implying that z is algebraic over R. Since J(Q1,..., Q;) has codimension > 2 in A", we can
apply Theorem 1.1 to complete the proof. O

1.5. Let A =D, >( Ax be a graded integral domain over a field F. Given a € A we denote

by a the initial (lowest) component of a. Given an F-subalgebra R of A we let R denote the
F-span of all 7 with r € R. Clearly, R is a graded F-subalgebra of A.

Proposition 1.4. Let A = @k}O Ay be an affine graded integral domain over a field F and
suppose that Ao = F. Then for any F-subalgebra R of A we have tr.degp R= tr.degy R.
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Proof. Since the fields of fractions of R and R are isomorphic to subfields of the field of fractions
of A, both tr.degy R and tr.degp R are finite. It follows from [30, Chapter II, Section 12, Corol-
lary 2] that the field of fractions of R contains a transcendence basis consisting of homogeneous
elements of R. From this it is immediate that tr.deg F R < tr.deg rR.

Put m := tr.degp R and assume for a contradiction that m < tr.degp R. As every alge-
braically independent subset of R is contained in a transcendence basis of R, our earlier re-
marks then show that there exist algebraically independent elements ay, ..., a,+1 € R such that
tr.degy F(ai,...,am+1) =m. Let J C F[X1, ..., Xm+1] be the ideal of all polynomial rela-
tions between ay, ..., dy+1. Since Flaj,...,au+1] C A is a domain of Krull dimension m,
one observes easily that J is a prime ideal of codimension 1 in the polynomial algebra
F[X1,..., Xm+1]. As a consequence, J is generated by one polynomial of positive degree,
say H.

Let Ry C R denote the subalgebra of initial components of Ry := Flay, ..., au+1]. We claim
that ﬁo is generated by the @;’s and the initial component hof H (ay,...,am+1). To prove the
claim we let f(ay,...,an+1) be an arbitrary element of Rg. If f = f(ay,...,am+1) is not
zero, then f is the initial component of f(ay,...,ams1). If f =0, then f € I implying that
f = foH for some polynomial fj of smaller degree. Since A is a domain, the initial component
of f(ay,...,am+1) is nothing but foﬁ, where fo is the initial component of fy(ay, ..., dm+1)-
Since deg fy < deg f, our claim follows by induction on the degree of f € F[Xy, ..., X;y+1].
As a result, the algebra Ry is finitely generated over F.

Next we note that the grading of A induces a descending filtration F = (/;)x>0 of Ry, where
Iy =RoN @i> « Ai for all k. Furthermore, Ry = grr Ry, the corresponding graded algebra. Con-
sequently, the algebra gr = R is Noetherian. Since Ag = F, we now apply [4, Theorem 4.4.6(b)]
to deduce that Ry = F[X1,..., X;u+1] and gre Ry = Iéo have the same Krull dimension. How-
ever, dim Ry = m + 1 whilst dim Ry = tr.degp Ry =m. By contradiction, the result follows. 0O

2. Slodowy slices and symmetric invariants of centralisers

2.1. Let x =(e,-) and r =dimg,.. The action of ad h gives g a graded Lie algebra structure,
g =@,z 00), where g(i) = {x € g | [h, x] =ix}. It is well known that g, is a graded Lie
subalgebra of the parabolic subalgebra p := @120 g(i) of g, that is g, = @i>0 g.(i) where
ge(i) = g N g(i). Choose a K-basis xi, ..., x, of p with x; € g(n;) for some n; € Z,, such
that x,...,x, is a basis of g, and x; € [f, g] for all i > r + 1. Such a basis exists because
g=g. D [g, f]and p contains g,.

Define a skew-symmetric bilinear form (-,-) on the subspace g(—1) by setting (x,y) =
(e,[x,y]) for all x,y € g(—1). As g, C p, this form is nondegenerate. Choose a basis
Z1y e+ Zss Zs+1s - - - » 225 Of g(—1) such that

(Zits» 2j) =0ij, (2is 2j) = (Zits» 2j+s) =0 (A <i, j<r)

and denote by g(—l)0 the linear span of z541, ..., z2s. Letm = g(—l)0 ® Zi<_2 g(i), anilpotent
Lie subalgebra of dimension (dimG - e)/2 in g.

Given a Lie algebra s over K denote by U (s) the universal enveloping algebra of s. As x
vanishes on the derived subalgebra of m, the ideal N, of U(m) generated by all x — y (x) with
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x € m has codimension 1 in U(m). Let K, = U(m)/N,, a one-dimensional U (m)-module, and
denote by 1, the image of 1 in K, . Set

0y, =U(9) Quim) K, and H, =Endg(Q,)".

According to [20] and [12] the associative algebra H, is a noncommutative filtered deformation
of the coordinate algebra K[S,] endowed with its Slodowy grading [25, 7.4].

2.2. Given (a,b) € Z7 x Z? we set x?z" = x{! ~-~x,‘f{"zl1" ---zg', an element of U(g). By
the PBW theorem, the monomials x?z° ® 1 x» Where (a,b) € Z'} x Z7, form a K-basis of the
induced U (g)-module Q. For k € Z we denote by Ql)‘( the K-span of all x?z? ® 1 x With

m N
(@b)|, =) aini+2)+) b <k
i=1 i=1

Any element h € H, is uniquely determined by its effect on the canonical generator 1,. We let
H)’(C denote the subspace of H, spanned by all h € H, with h(1,) € Q’)‘(. Then Hy =U;>o H)’(C

and H)"( . H){ - H;ﬂ forall i, j € Zy; see [20] or [12]. The increasing filtration {H)"( |i € Z4} of
the associative algebra H, is often referred to as the Kazhdan filtration of H, . The corresponding
graded algebra gr H, is commutative. The elements x from Q’)‘( \ Q’)‘fl and H)’(‘ \ H)’("1 are said
to have Kazhdan degree k, written deg, (x) = k.

According to [20, Theorem 4.6] the algebra H, has a distinguished generating set @1, ..., O,
such that

@k(lx)=<xk+ > xfjxin')@lX, 1<k<r,
1<IGdle<ni+2

where Afj €K and A{fj =0 if either |(i,j)|e =nx +2 and [i| + |jl =1 or j= 0 and i; = 0 for

t > r + 1. The monomials @]1” ~--@f’" and (gr@l)k1 ~--(gr@,)k’ with (ki, ..., k) € Z form
K-bases of H, and gr H, , respectively. Furthermore, [®;, ®;]=0;00; —©0;00; € H;i+n'i+2
forall 1 <1i, j <r (recall that the product in H, is opposite to the composition product).

As explained in [21, Section 2], there exists a linear map ® :g, — H,, x > ©, such that
Oy, = 0; for all i and

itn;
[Ox, @)1= Oxj1 +4ij(O1,...,0r)  (mod Hy' ™)

(A <i,j<r), 2
where ¢g;; is a polynomial in r variables such that deg,(g;;(®1,...,0,)) =n; +n; + 2 and
degin(g;;) = 2 whenever g;; # 0. Moreover, the map ® has the property that O, ) =[Oy, O]
for all x € g.(0) and y € g,. In particular, ®(g.(0)) is a Lie subalgebra of H, with respect to the
commutator product.

2.3. Let my,...,m; be the exponents of the Weyl group of g. By the Chevalley Restric-
tion Theorem, there exist algebraically independent elements Fi,..., F; € S (g)G such that
F; € S"itl(g) forall i and S(g)¢ =K[F1, ..., F/]. Let

p:g— AL x> (K(F)@), ..., k(F)(x)),
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be the adjoint quotient map of g, and let ¢, denote its restriction to the Slodowy slice Se =e+g;y.
Composing ¢, with the translation 7: gy — S, x = e + x, one obtains a morphism

}ﬁI:(peo‘L'ngﬁAl, X (wl(x),...,lm(x)).

According to [25, 5.2 and 7.4], the morphism v is faithfully flat with normal fibres, while in
[20, Section 5] it is proved that all fibres of i are irreducible complete intersections of dimen-
sion r — [. It should be mentioned here that each v; is homogeneous of degree 2m; + 2 with
respect to the Slodowy grading of K[g ] = K[S,].

Let U* be the kth component of the standard filtration of U (g). In view of the PBW theorem,
the corresponding graded algebra gr U (g) identifies with the symmetric algebra S(g). We let
Z(g) denote the centre of U (g). It is well known that there exist algebraically independent ele-
ments F1, .. Fl in Z(g) such that F e U™it! and ng F; for all i; see [9, 7.4] for example.
Moreover, the map taking each F; to F; extends uniquely to an algebra isomorphism between
S(g)¢ and Z(g). Given F € S(g)¢ we shall denote by F the image of F under this isomorphism.
Note that when F € $%(g)© \ {0}, we have F € U* \ U*1.

Each F € Z(g) maps into the centre of H, via F > I:“(IX). By [20, 6.2], this map is injective.
To keep the notation simple we shall identify the elements of Z(g) with their images in Z(H,).
Note that F € H, 2mi+2 \ Hy 2mi+l, ; see [20, 6.2]. For 1 <i < r, we denote by &; the restriction of
k(xj)togy, whrch we regard asa homogeneous polynomlal function of degree n; +2 on g . We
denote by ; the image of F; in the Poisson algebra gr H, . Clearly, each ¥; lies in the Poisson
centre of gr H, .

2.4. Let M denote the subspace of g spanned by z1, ..., zs and x1, ..., X,,. We say that the
monomial x2zP € S(M) has Kazhdan degree Zf" yai(ni +2)+ Y i_, bi. By [20, 6.3], the map
8" which takes gr & to x; + ZI Q) lo=ns+2 A i iz) for all 1 < k < r extends to a graded algebra
embedding gr H, — S(M). Let v:S(M) — S(ge) be the graded algebra epimorphism with the
property that z;,x; € Kerv for 1 <i <s, r+1<j<mand v(xg) =x; for 1 <k <r. Asin
[20, 6.3] we denote by §” the restriction of v o 8’ to gr H,, and set § :=k 08"

By [20, Proposition 6.3], the map 6 : gr H, — K[gs]is a graded algebra isomorphism satisfy-
ing 8(gr Oy) = & for all k < r and 8(y;) = y; for all i < [. This implies that 8" : gr H, = S(g.)
is a graded algebra isomorphism with the following properties:

W)=k W) (A<i<h; @)=k "'E)=x (A<i<r). 3)
We use 8” to transport the Poisson algebra structure of gr H, to the symmetric algebra S(ge).
Combining (2) and (3) we observe that the new Poisson bracket of S(g,) satisfies the following
condition:
{xi,xj} =[x, xj1+qij(x1,....,x) (A<i,j<r). “4)
Furthermore, each « '(¥,) is in the Poisson centre of S(g.).

2.5.  With these preliminaries at hand we are in a position to prove Proposition 0.1.

Proof of Proposmon 0.1. Let F = g(F}y, ..., F;) be a homogeneous element of S (g)G and let
(F I...., F)) bethe corresponding element of Z(g) — H,; see our discussion in 2.3. Since
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each ﬁ,- commutes with %, the definition of the Kazhdan filtration and (3) yield
8" (er F) =8"(g(t, ..., ¥n) = glicg ' W), oo (W) =i, (&, -, ),

see [20, 6.2] for more detail. Note that 8" (gr I:") = /ce_l (g1, ..., ¥y)) belongs to the Poisson
centre of S(g.), that is {x, 8”(gr F)} = 0 for all x € g.. Abusing notation we denote by ad x the
derivation of the algebra S(g.) induced by the inner derivation of x € g.. Then

0={x,8"(gr F)} = (adx)(in(8" (gr F))) + terms of higher standard degree,

in view of (4). (One should also keep in mind that g;; # 0 implies degin(g;;) > 2.) Since this
holds for all x € g, we deduce that in(8” (gr F)) € S(g.)%. But then

F =" (in(r*(x (F)1s,))) =k, (in(g1,...,v)) =in(8"(gr ﬁ)) € S(ge)¥.

We thus obtain °F € S(g.)% = S(g.)%.

Now let C, = G, N G . It is well known that C, is a reductive subgroup of G, and G, is
generated by C, and the unipotent radical R, G.; see [7, 3.7] for example. Clearly, both g and
S. = e+ gy are C,-stable, and the mappings « and «, are C.-equivariant. Since F € S (@)@, this
entails °F € S(g.)¢. But then °F ¢ S(ge)cf"Gg = S(g.)%, completing the proof. O

2.6. Theorem 1.2 will enable us to obtain a differential criterion for regularity of linear func-
tions applicable to a large class of centralisers in g. Recall that a linear function y € g} is called
regular if dim g} =ind g., where g} = {x € g. | y ([x, g.]) = 0} is the stabiliser of y in g,.

Theorem 2.1. Suppose ind g, = I. Then the following are true for any homogeneous generating
system F\, ..., F of the invariant algebra S(g)©:

() YI_,deg F; < (r +1)/2 where r = dim g,.
(i) The elements °F1,...,°F; are algebraically independent if and only if Zgzl deg °F; =
(r+10)/2.
(iii) Suppose Zi:l deg °F; = (r +1)/2. Then the differentials d, (°F 1), ..., d,, (°F) are linearly
independent at y € g} if and only if y is regular in gj.

Proof. We are going to apply Theorem1.2 to the Poisson algebra gr H, . Let 7, denote the Pois-
son bivector of gr H, and let neP L be the Poisson bivector of the polynomial algebra A := S(g.)
regarded with its standard Poisson structure. We identify gr H, with .4 by using the recipe de-
scribed in 2.4 and set f; := Ke_l(‘f*(K(F,')|Se)), 1 <i <. It follows from [20, Theorem 5.4]
that the ideal (fi,..., f;) C A is radical and its zero locus in g} is normal. This implies that
J(f1, ..., fi) has codimension > 2 in g}.

From the alternative description of the Poisson structure on gr H,, given in [12, Section 3] it
follows that

k7, (y) = dim(Ad G) (e + (¥) "' () — dim(Ad G)e  (Vy € g?).

Consequently, y € Sing . if and only if the adjoint orbit (Ad G)(e + (k) )~ 1(y)) is not of maxi-
mal dimension. By Kostant’s criterion for regularity, this happens if and only if e + (K;")’1 (y) €
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J (K (F1), ...,k (Fp)). Chasing through the definitions it is easy to see that the latter happens if
and only of y € J(f1, ..., f1). Thus, Singw, = J(fi, ..., f1). Our earlier remarks now show
that Singm, has codimension > 2 in g}. As ind(gr H,) = indg, we conclude that the subset
{f1, ..., fi} is admissible and the Poisson algebra (gr H,, 7.) is quasi-regular.

The standard grading of A (by total degree) induces gradings of the K-algebras £2 and /\ 4 W
where we impose that degdx; = 0 and deg d; = O for all i. Our assumption that ind g, =/ yields
(nf Ly(r=D/2 # 0 whereas (4) entails that in(,) = neP L Consequently,

. -0/2 -0/2
1n(rre(r )/ )= (nfL)(r )/ #0. )
As in(f;) = °F; for all i, we also have that

deg(in(dfi A ... Adfy)) =degd (Fi) A ... Ad(F)). (6)

Combining (5) and (6) with Theorem 1.2 we now conclude that

r—1

I
=deg((n/")"™""%) = deg(in(japin.nan @1 A ... A8))) =~ + Y deg Fi.
i=1

Statement (i) follows. Now “Fy, ..., °F; are algebraically independent in S(g.) if and only if
d(°F1) A ... Ad(°F;) # 0. Since the latter happens if and only if deg(in(df; A ... Adf;)) =
—I+ Zi: | deg “F;, the above argument also yields (ii).

Finally, suppose Zgzl deg °F; = (r +1)/2. Thenin(dfi A ... Adfy) =d(CF 1) N...ANd(°F)),
and Theorem 1.2 forces

)2 .
(TffL)(r 2= Maern.rdeEy @ A AY),  AeKX. @)

Since ind g, = I, the specialisation of (7r7%)"=)/2 at y is nonzero if and only if y a regular linear
function of g.. On the other hand, the right-hand side of (7) is nonzero at y if and only if the
differentials d, (°F 1), ..., dy, (°F) are linearly independent. This completes the proof. O

2.7. Suppose Elashvili’s conjecture holds for g.. Simple examples show that the sum of the
degrees of °F'1, ..., °F; depends on the choice of homogeneous generators Fi, ..., Fj of S(g)G.
We say that a homogeneous generating system {F1, ..., F;} C S(g)? is good for e if

1
> deg F; = (dimg, + rkg)/2.
i=1

For any generating system {Fi,..., F;} C S(g)® which is good for e the Jacobian locus
JCEF1,...,°F) is a proper Zariski closed subset of gJ; see Theorem 2.1. We say that a
homogeneous generating system {F1, ..., F;} C S(g)¢ is very good for e if the Jacobian lo-
cus J(°Fi,...,F;) has codimension > 2 in g}. It follows from Theorem 2.1(ii) that for
any very good generating system {Fj, ..., F;} C S(g)¢ we have the equality 25:1 deg °F; =
(dim g, 4 rk g)/2. This shows that very good systems are good.

We are now in a position to prove the main result of this section.
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Theorem 2.2. Suppose e admits a very good generating system {Fy, ..., F;} C S(g)¢ and as-
sume further that Elashvili’s conjecture holds for g., that is indg, = [. Then

S(8e)% = S(go) % =K[F1, ..., F1]-
In particular, S(g.)% is a graded polynomial algebra in | = rk g variables.
Proof. By Theorem 0.1, the elements °Fy,...,°F; are in S(g.)%. Since indg, = and
J(F1,...,°F) has codimension > 2 in g} by our assumption, the set {°Fy,...,°F;} is an
admissible for the Poisson algebra S(g.). Moreover, Theorem 2.1(iii) shows that the Poisson
algebra S(g,.) is quasi-regular. Applying Corollary 1.3 to the Poisson algebra S(g.) regarded

with its standard grading we now obtain that S(g.)% coincides with K[°F1, ..., °F|]. Since
K[F1,...,°F11 € S(g.)% C S(g.)%, the result follows. O

Remark 2.1. As explained in the proof of Theorem 2.1, the Poisson algebra (gr Hy, 7.) is quasi-
regular and {f1, ..., f;} is an admissible set for gr H, . Applying Corollary 1.3 to the Poisson
algebra gr H, (regarded with its Slodowy grading) we are able to deduce that the Poisson centre
Z(gr Hy) of gr H, is generated by f1, ..., f;. Inparticular, Z(gr H,) is a polynomial algebra in /
variables. This, in turn, implies that Z(H, ) = Z(g). We thus recover a result of Victor Ginzburg;
see the footnote in [21].

2.8. Let °Z denote the K-span of all F with F € S(g)¢, a subalgebra of S(g.)%¢. For later
applications we put on record the following consequence of Proposition 1.4.

Corollary 2.3. For any nilpotent element e € g we have the equality tr.degy (°Z) =1k g.
Proof. Recall that ¢Z coincides with the algebra of initial components of the subalgebra
K, Le* k(S (g)G)‘SE)) of S(g.), where the latter is regarded with its standard grading. Since
S(g)Y is spanned by homogeneous elements, Proposition 1.4 implies that

tr.degy (°Z) = tr.deg (k (S(g)G)ls)) = tr.degy S(g)¢ =rkg,
as stated (one should also keep in mind that S, is a slice to the adjoint orbit of €). O
Question 2.1. Is it true that °Z is always finitely generated over K?

3. Regular linear functions on centralisers

3.1. Given a finite-dimensional Lie algebra ¢ and a linear function y on q we let ¥ denote
the stabiliser of y in g. Recall that ind ¢ = min,, ¢4+ dim q¥. We set

Qs = {7 € 4% [ dimg” > indq}.

The set qi‘eg =q*\ q;‘ing consists of all regular linear functions of q. The main goal of this section
is to prove that (g} )sing has codimension > 2 in g} for any nilpotent element ¢ in g = gl,, and
g = sp,,, where n > 2. When dealing with g = gl,, we do not impose any restrictions on the
characteristic of K, whilst for g = sp,,, we require that char K # 2.



D. Panyushev et al. / Journal of Algebra 313 (2007) 343-391 359

3.2. Let V be an n-dimensional vector space over K and let e be a nilpotent element in
g =gl(V). Let k be the number of Jordan blocks of e and W C V a (k-dimensional) complement
of Ime in V. Let d; + 1 denote the size of the ith Jordan block of e. We always assume that the
Jordan blocks are ordered such that dy > dp > --- > di. Choose a basis wi, wa, ..., w; in W
such that the vectors ¢/ - w; with 1 <i <k, 0< j < d; form a basis for V, and put V[i] :=
span{e/ - w; | j > 0}. Note that e%*! . w; =0 for all i < k. When k = 1, the element e is regular
in g, so that g, is abelian of dimension 7 and (g} )sing = ¥. So we assume from now on that k > 2.

If& € g, then £(e’ - w;) = e’ - £E(w;), hence £ is completely determined by its values on W.
Each vector &(w;) can be written as

S(wi)=Zcij’Ses~wj, I’ eK. (8)
J.s
Thus, £ is completely determined by the coefficients cij ¢ = cij **(&€). This shows that g, has a

basis {Eij **1 such that

g (w) =e - wj,

) 1<i,j<k, and max{d; —d;,0}<s <d;.
]S .
& (w) =0 fort#i,

Note that £ € g, preserves each V[i] if and only if cij SE)=0fori #j.

3.3. Given a collection ay, ..., a; of scalars in K we consider the linear function @ on g,
defined by the formula
k
i
w@) =) aici (V& eg,), ©)
i=1
where cij ** are the coefficients of £ € g,. Let g% denote the stabiliser of « in g.. By aesthetic

reasons we prefer it to (g.)“.

Proposition 3.1. (See [29].) If the scalars ay, ..., ar are nonzero and pairwise distinct, then the
stabiliser of « = a(ay, ..., ax) in g. consists of all elements in g, preserving the subspaces V[i],
where 1 <i < k. In other words, g3 is the linear span of the basis elements Eil *, and dim g% = n.
In particular, a € (g} )reg-

A direct computation shows that the following commutator relation holds in g,:

(6. 6]=2_c" ©&" = 2 @8 e e 10

t,e tl

see [29] for more detail. To show that (g7 )sing has codimension > 2 in g7, for g = gl(V), we have
to produce more regular elements in g} .

Proposition 3.2. Define § € gi by setting f(§) = Y *_| C;fll () forall § € gc. Then dimgg =n,
so that B € (§})reg-
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i.dj—s zld,ls

Proof. From (10) and the definition of 8 it follows that B([§; J:s ,E] ) =c; j 1 &) —
for all £ € g.. Suppose (ad* )8 = 0. Then B([&, g.]) = O forcing c (5) =
all i, j €{l,...,k} and all s such that max(0,d; — d;) <s < dj.

We claim that c’j’s(é) = 0 for i < j. Suppose for a contradiction that this is not the case
and take the maximal j for which there are i < j and d; — d; <t < d; such that c;’t(é) # 0.
Recall that, according to our convention, d; > dj. Moreover, d;+1 > dj, because i + 1 < j. Set

s:=d; —t. Then 0 < s <d, andc'jilld’ Y(é)_c”j’ &) Asj+1>jandi+1<j+1,the

coefficients ci.ill'dj - (¢) and ci].’t (&) are both zero, hence the claim.
Now take &', € go with d; — dj11 < s <d;. Since B([§,£7,1) =0, we have ¢ T ~* () =

)
() for

lld,ls

”1 (&). Therefore, c’Jrl ) = ci "E) = ci (&) for 0 <t < dj41. In the same way one can
show that C;+z 1) = ’H Lgy = IH t(‘g‘) for 0 <t < d;ye. It follows that £ is completely
determined by its effect on wi. So d1m ge n s1mp1y because £(w1) € V. On the other hand,

dim geﬁ > ind g, > ind g = n by Vinberg’s inequality. The result follows. O

3.4. Let a:K* — GL(V), be the cocharacter such that a(r)w; = t'w; for all i < k and
t € K*, and define a rational linear action p : K* — GL(g}) by the formula

p(y =t(Ad*a@)) 'y (Vy egt, Vi e KX). (11)

Proposition 3.3. (Ko @ KB) N (g)sing = 0.

Proof. Since (Ada(1))(§") = 1t/71&/"", we have (Ad*a(1))(e) = o and (Ad*a(1))(B) = 1B.
Hence p(t)a =ta and p ()8 = B. So Ka KB is p (K*)-stable and the induced action of p (K*)
on this plane is a contraction to KA. Since dim(g.)?®” = dimg) and B € (92)reg, all linear
functions xo + yB with y # 0 are regular. The linear functions xo with x # 0 are regular by
Proposition 3.1. O

Theorem 3.4. Suppose dimV > 2 and g = gl(V). Then for any nilpotent element e € g the locus
(97)sing has codimension > 2 in g,.

Proof. Since (gj)sing is conical and Zariski closed, the assertion follows immediately from
Proposition 3.3. O

3.5. Using similar ideas we prove below a symplectic analogue of Theorem 3.4. Our ar-
gument in the symplectic case is more involved. We also provide an example showing that
Theorem 3.4 does not extend to all nilpotent elements in orthogonal Lie algebras. We begin
with some useful facts on Z;-graded Lie algebras.

Let g = qo @ q1 be a symmetric decomposition (i.e., a Zy-grading) of a Lie algebra q. Then
q*=q; @ qj. If a € g%, then & denotes its restriction to qo.

Proposition 3.5. Suppose o € q* and a(q1) = 0. Then (qo)* = q% N qo.

Proof. Take & € qo. Since [£, q1] C q1, we have that @([£, qo]) = 0 if and only if @ ([§,q]) =0
Hence (qo)“ (90)a > Where (qo)q is the stabiliser of « in qg. Clearly (qo)e =q* Nqo. O
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Each y € q gives rise to a skew-symmetric bilinear form 7 on q; by y (x, y) = y([x, y]) for
all x, y € q;. The following assertion is taken from [29].

Proposition 3.6. In the above notation we have ind q < ind qg + minyqu dim(Ker y).

Proof. Take any y € q;j and extend it to a linear function on q by setting y(q;) = 0. Then
97 = (q0)” @ (47 Nq1) = (q0)” @ Kery. There exists a nonempty Zariski open subset Uy C g
such that dim(qo)? = ind qo for all y € U C q;j. The linear functions y on qq for which Kery
has the minimal possible dimension form another nonempty Zariski open subset in qg, call it Us.
For each y € U N U, # @, the dimension of q¥ equals the required sum, hence the result. 0O

Lemma 3.7. Suppose « € q* is such that a(q1) = 0 and dim q* = ind q. Then dim(q)¥ = ind qo.
Proof. By Proposition 3.6 we have:

indqo > indq — min dim(Ker ) > dimq® — dim(Ker&) = dim(q* N qo).
YEag

Applying Proposition 3.5 yields the assertion. O

3.6. Let (,) be a nondegenerate symmetric or skew-symmetric form on V and let J be the
matrix of (,) with respect to a basis B of V. Let X denote the matrix of x € gl(V) relative to B.
The linear mapping x — o (x) sending each x € gl(V) to the linear transformation o (x) whose
matrix relative to B equals —J X’J~! is an involutory automorphism of gl(V) independent of
the choice of B. The elements of gl(V) preserving (, ) are exactly the fixed points of . We now
set g := gl(V) and let g = go @ §; be the symmetric decomposition of g with respect to o. The
elements x € g; have the property that (x - v, w) = (v, x - w) forall v, w € V.

Set g := go and let e be a nilpotent element of g. Since o (e) = e, the centraliser g, of e
in g is o-stable and (g.)o = g7 = g.. This yields the g.-invariant symmetric decomposition
ge = (@e)o @ (ge)l'

Suppose that dimV = 2n > 4 and our form is skew-symmetric. Then go = sp,,,. Since e is a
nilpotent transformation of V, we recycle the notation introduced in 3.2. Note that in the present
case if d; is even, that is if the dimension of V[i] = span{e/ -w; | j = 0} is odd, then the restriction
of (,) to V[i] is identically zero. By the same reason as in 3.2 it can be assumed that k > 2.

Lemma 3.8. (See [14, Section 1].) The vectors {w,-}i.‘:1 can be chosen such that the following
conditions are satisfied:

(1) ifd; is odd, then the restriction of (,) to V[i] is nondegenerate and (V[i], V[j]) = 0 for any
J#i;
(ii) if d; is even, then there is a unique i’ # i such that (V[i'], V[i]) #0.

We thus obtain a decomposition of the set of Jordan blocks of odd size (i.e., those with d; even)
into pairs {i, i’}. Note that d;; = d; necessarily holds and the restriction of (,) to V[i]&® V[i'] is
nondegenerate. For i < k such that d; is odd we put i’ =i.

Choose vectors {w,-}f.‘:1 according to Lemma 3.8. Since the form (,) is g-invariant,
(e% - w;,v) = (=% (w;, e - v) and e - w; is orthogonal to all e - w; with either j # i’
or s > 0. Since (, ) is nondegenerate, we also have that (e - w;, wir) # 0 for all i.
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3.7. Leta =alar,...,ar) € g be as in (9) and assume that {a¢;} C K are nonzero and
pairwise distinct. Assume further that a;; = —a; whenever i # i’. Then « vanishes on (§.)1;
see [29, Lemma 2]. By Lemma 3.7 and Proposition 3.1, & € (g:)reg. Unfortunately, the linear
function B defined in Proposition 3.2 does not always vanish on (g.);. For this reason, we need
a more sophisticated construction.

Renumbering the V[i]’s if necessary we may assume without loss of generality that i’ =i £ 1
for each pair {i,i'}. As d; = d;s, our assumption that d; > d > --- > di will not be violated.
Note thatif i’ i + 1,theni’ <iand (i +1) >i + 1.

For each i <k — 1 with i’ #i + 1 we now define a linear function y; on g, by setting

(Wig1, €4 Wit 1y) 11y
- Lt @) (v € ),
(e - w;, wyr)

i(§) ==

and put B/ := Zigk—l,i/;ﬁiﬂ y;. Recall from 3.4 that the map p gives us a rational action of K*
on §*. From Lemma 3.8 and the definition of 8 it is immediate that 8 + 8 # 0.

Lemma 3.9. For all i <k — 1 withi’ #i + 1 we have p(t)y; = t%iy; where s; > 2. Moreover,
B + B vanishes on (§.)1.

Proof. Recall that (w;, e% - w;r) # 0 for all i. Take any & € (g.)1. Then

() (e - wi, wir) = (E i), wir) = (Wit E@wi) = T @) (wig, e wiy).

For i’ # i + 1 this yields cl+1(“§) —v;(&). Suppose i’ =i + 1. Then also (i + 1)’ =i and
d; = d;41 is even, hence

@) (e - wi, wir) = @) (wigr, e wi) = =l @) (e - wi, wig).
So c;f’l (&) = 0 (recall that char K # 2). But then

B+BYE= > (hE +r©)=0.

i<k—1, i'#i+1

It follows from (11) that o (¢)y; = t%y;, where s; = (i + 1)’ — i’ + 1. Since i’ # i + 1, we have
i"<iand i +1)>i+1.Thens; >i+1—i+1=2. O

Combining Lemma 3.9 with [29, Lemma 2], we observe that any y € Ka @ K(8 + 8’) van-
ishes on (g.)1. Let E denote the K-span of & and 8 + B’ in g}.

Proposition 3.10. Under the above assumptions, dim E =2 and E N (g} )sing = 0.

Proof. Let y = xa + y(8 + B’) with x, y € K. By Lemma 3.9, p(¢)y; = t* y;, where s; > 2,
while in 3.4 it is shown that p(f)a = ta and p(1)B = B. Since a and B + B’ are nonzero and
p(K*) is diagonalisable, it follows that « and B + B’ are linearly independent. As both « and
B + B’ vanish on (g.)1, this yields that dim E = 2.



D. Panyushev et al. / Journal of Algebra 313 (2007) 343-391 363

The above discussion also shows that lim; .o po(#)y = yB. If y # 0, then Proposition 3.2
gives y € (§})reg. By Proposition 3.1, a € (g})reg as well. Then dim(g,)” = 2n = ind g, for
any nonzero y € Ko @ K(8 + B'). As any such y vanishes on (§.);, applying Lemma 3.7 we
now conclude that E \ {0} C (g})reg. Equivalently, E N (g})sing =0. O

The following is an immediate consequence of Proposition 3.10.

Theorem 3.11. Let e be a nilpotent element of g = sp,,, n > 2. Then (g})sing has codimen-
sion =2 in g}.

Proof. Straightforward (see the proof of Proposition 3.4). O

3.8.  We shall see in a moment that there are nilpotent elements e in the orthogonal Lie
algebra g = so(V) for which (g})sing has codimension 1 in g. But first we would like to give
two positive examples.

Suppose dimV is odd and let e be a nilpotent element in so(V) with 2m + 1 Jordan blocks
indexed by the integers ranging from —m to m, where m > 1. Similar to the symplectic case we
may assume that there is an involution i — i’ on the set of indices such that i’ =i if and only
if d; is even and (V[i], V[j]) = 0 whenever j #i’. Recall that d;; = d; necessarily holds.

Suppose that i’ = —i and d; < d; for i > j > 0. Then dj is even and the other d; are odd.
Choose K[e]-generators w; € V[i] such that (w;, ediw_;)=1"fori >0, and let & denote the
restriction to g, of the linear function « on gl(V), given by

m

a®) = Y hE) (YEeglV).).

i=—m+1
By [29, Section 4], this linear function is regular. Let g € GL(V) be such that
glwi))=w_; fori=>0, gw))=—w_; fori <0,
g(es . w,-) =(=D%*-w; fors>1.

Then g € O(V) and (Ad g)e = —e, i.e., g normalises Ke. Hence Ad g acts on g, as a Lie algebra
automorphism. Set 8 := (Ad* g)&. In coordinates,

m—1
&)= @) 2@ (v e go).
i=—m
Set E' := K& + KB, a subspace of g

Lemma 3.12. The subspace E' is 2-dimensional and E' N (g})sing = 0. The singular locus
(92)sing has codimension > 2 in g.

Proof. By [29, Section 4], the function & is regular in g}. Hence so is ﬁ = (Ad*g)a. In
particular, _both o and ,5 are nonzero. There exists a cocharacter a : K* — SO(V)e sugh that
a(t)w; = t'w; for all i. It has the property that (Ad* a(r))@ = ¢~'& and (Ad*a(¢))B = tB. This
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implies that dim E’ = 2. Since the Zariski closed set £’ N (g})sing is conical and (Ad* a(K*))-
stable and both & and E are regular, it also follows that E' N (9))sing=0. O

Suppose now that ¥ =V @ Kv is an even-dimensional vector space such that (V, v) =0 and
(v,v) = 1. Let e € 50(V) be the same nilpotent element as above (one with 2m + 1 Jordan blocks
and with i = —i for all ;). We regard e as a nilpotent element of 50(“7) by setting e(v) = 0. Then
ec 50(@) has 2m + 2 Jordan blocks. Assume that the new Jordan block of size 1 is indexed by
M with M > m and that v is its generator.

Lemma 3.13. For e as above, the singular locus (g})sing has codimension > 2 in g = 50(@)’:.

Proof. Note that so(V) is a symmetric subalgebra of g = 50(\7). Let 50(\7) =50(V) @ p be the
corresponding symmetric decomposition. Then we can identify the dual space of the centraliser
50(V), with the annihilator of p, :=p N g, in gJ. Let & and ,5 be the same linear functions as
in Lemma 3.12. We view them as linear functions of g, vanishing on p,. As O(V) — O(ﬂ’) and
SO(V)e = G,, we still have that 8 = (Ad* g)& and (Ad* a(r))a = 1~'a, (Ad*a(r))B =t p for
the same cocharacter a : K* — G, as in Lemma 3.12. Therefore, in order to prove the statement
it suffices to show that & € (g})reg. By construction,

dim g% = (dimV)/2 — 1 +dim{& € p. | &@([&, p.]) = 0}.

The linear space p, has a basis {EiM’O + e(i)é&i’d" | —m <i <m}where €(i) =—1 fori > 0and
€(i)=1fori <0. Using (10) we get

a([6"0 + ety 4 EM0 + (g ) =0 for j £ —i — 1

~ N e—1,d; . i+1,d; . .
a([M"0 + ey, &M +e(—i — gy M ]) =2e(), —m<i<m.

It follows that & induces on p, a skew-symmetric bilinear form of rank 2m. But then
dim{& € p, | &([€.p.]) =0} =1
and the statement follows. 0O

3.9. For any simple Lie algebra g of type different from A and C we provide in this subsec-
tion a uniform construction of e € A'(g) for which (9})sing has codimension 1 in g}. We assume
for simplicity that char K = 0. The Lie algebras s[,, and sp,, are distinguished by the property
that their highest root is not a fundamental dominant weight. This seemingly insignificant fact is
a source of many structural differences between sl, and sp,,, and the other finite-dimensional
simple Lie algebras. In our situation, it manifests itself as follows.

Let G - € = Onin be the minimal nilpotent orbit in g and {e, h, f } an sl,-triple. Consider the
Z-grading determined by A

2
g= P s0i).

i=—2
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Table 2
Data for the exceptional Lie algebras
g [ 4 w dim W 5 dim(W & W*) /K ind(e x (W @ W*))
Eg As 2A, o] + wl/ 9 T 4 6
E; Dg As ) 15 (Ap)? 4 7
Eg E; Eq @ 27 Dy 4 8
Fy Cs Ay 2w 6 0 4 4
Gy Ay 0 0 1 0 2 2
Table 3
Data for so,, n > 7
g [ 14 dim W 5 dim(WeW*)/K ind(¢x (WW*))
507 503 x5l t 2 0 3 3
50
(n>8) 50, _4 X5l 50,6 X1t n—5 50,8 4 [n/2]

Here g(2) = Ke and g(—2) = K f . Let G(0) denote the stabiliser of  in G. This is a Levi
subgroup of G which acts on g(1) with finitely many orbits. If g # sl,,, then the centre of g(0)
is one-dimensional and g(1) is a simple g(0)-module. Furthermore, if g # sp,,,, then the open
G (0)-orbit in g(1) is affine. Let e € g(1) be a point in this orbit.

From now on we assume in this subsection that g is not isomorphic to s[,, or sp,,. Our goal is
to prove that (g} )sing has codimension 1 in g}. Set [ = [g(0), g(0)] and let K denote the stationary
subgroup of e¢ in G(0). Then ¢ := Lie K is a Lie subalgebra of [ acting trivially on g(2). The
centraliser g, is graded and has the following structure. Its component of degree O is £ and
its component of degree 1 is isomorphic as a £-module to Ke @ W & W*, where W is a ¢-
module of dimension % — 1. The component of degree 2 is still Ke. Consider the hyperplane
H={y eg} | y(e)=0}. We wish to prove that H C (g}, )sing. Because ¢é acts trivially on H, the
representation of g./Ke in H is equivalent to the coadjoint representation of g,/Ke. That is,
we have to compute the index of this Lie algebra. Modulo the trivial direct summand Ke, this
algebra is the semi-direct product of £ and W @ W*, denoted ¢ x (W @& W*). For such semi-
direct products, one can use Rais’ formula for the index [22]. As the generic stabiliser for the
representation of £ on W @ W*, say s, is reductive, Rais’ formula yields

ind(t x (W & W*)) =rks + dim(W & W*) /K.

It turns out that in all cases of interest for us this number equals rk g. Taking into account the
direct summand Ke and the passage to H, we see that generic G.-orbits in H are of codimension
tkg+2in g}. On the other hand, it is straightforward to see that for any linear function y € g \'H
satisfying y|4,(1) = O one has dim(g.), = dim¢, + 2. As £ is reductive with tk€ =rk g — 2, this
implies that ind g, = rk g. Then H C (g)sing, as wanted.

In Tables 2 and 3, we provide the necessary information related to these computations. In
Table 2, W is always a simple €-module which is represented by its highest weight.

3.10. Adopt the notations and conventions of 3.9 and let e be an element in the minimal
nilpotent orbit Op;iy. Then ind g; = rk g by [18]. We now wish to investigate the singular locus
of g3.
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Theorem 3.14. If tk g > 2 and e € Opin, then (gz )sing has codimension > 2 in g’g.

Proof. In view of Theorems 3.4 and 3.11 the statement holds when g is of type A or C. So we
may assume in this proof that g is not isomorphic to sl,, or sp,,,. Then

ge=1dg(l) ®gQ).

Since dimg(2) = 1, we have a skew-symmetric bilinear form (-,-) on g(1) such that [x, y] =
(x, y)e for all x, y € g(1). This form is nondegenerate.
Given a subset X C g; we denote by Ann(X) the annihilator of X in g, that is

Amn(X) :={y e g} | y(X)=0}.

Then Ann(e) := Ann({e}) is a hyperplane in gz. We claim that Ann(e) ¢ (gz)sing. To prove the
claim we are going to argue in the spirit of 3.9.

Let L denote the derived subgroup of G (0). Since ¢ acts trivially on Ann(e), the representation
of g;/Ke in Ann(e) is equivalent to the coadjoint representation of g;/Ke. This Lie algebra is the
semi-direct product of [ and g(1), denoted [ x g(1). The generic stabiliser for the representation
of ['on g(1) is isomorphic to €. Since ¢ is reductive, Rais’ formula [22] yields

ind(I x g(1)) = rk &+ dimg(1) /L.

As the complement g(1) \ G(0) - e is a hypersurface in g(1) and the semisimple group L
has codimension 1 in G(0), the orbit L - e has codimension 1 in g(1). This implies that
dimg(1)/L = 1, whereas Tables 2 and 3 yield rk € = rk g — 2. Therefore, ind([ x g(1)) =rkg—1.
Each y € Ann(e) may be regarded as a linear function on [ x g(1). Moreover, it is easy to see
that gg =Ked (I x g(1))Y forevery y € Ann(e). This implies that for a generic y € Ann(e) we
have dim gg =rkg=ind g;. The claim follows.

It remains to deal with the affine open set ¥ := g7 \ Ann(¢). Set n := g(1) ® g(2) and
let N C G; be the connected subgroup of G with Lie N = n. The derived subgroup (N, N) is
1-dimensional with Lie(N, N) =Ke, and N/(N, N) = g(1) as varieties. Let « € Ann(I & g(1))
be a nonzero function. The set Ann(g(1)) NY is Zariski closed in Y and can be identified with
I* ® K*«a. Let y = B 4 aa be an element of Ann(g(1)) NY with 8 € [* and a # 0. Then

(Ad* N)y = {ﬁ + %(ad* v)2a + a(ad* v)a + aa ‘ ve g(l)}.

Since the form (-,-) is nondegenerate, it follows that the N-saturation of ¥ N Ann(g(1)) is equal
to Y, that each N-orbit (Ad* N)y is isomorphic to N/(N, N) = g(1), and that gg =g ®Keé.In
particular, the action morphism

T: (N/(N, N)) X (Ann(g(l)) N Y) —Y
is an isomorphism. Suppose g € N/(N, N) and y = B8 + a«, where 8 € [* and a # 0. Then

7((g, 7)) € (g7)reg if and only if B € (I")reg. Since (*)sing has codimension 3 in [*, the intersec-
tion (QZ)sing N Y is of codimension 3 in Y and also in gg. The result follows. O
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4. Degrees of basic invariants

4.1. From now on we assume that char K = 0. Let Q be a connected linear algebraic group
with Lie algebra q. Suppose we are given a rational linear action of Q on a vector space V. The
differential of this action at the identity element of Q is a representation of the Lie algebra g
inV.

Definition 4.1. A vector x € V (a stabiliser qy) is called a generic point (a generic stabiliser),
if there exists a Zariski open subset U C V such that x € U and q, is Q-conjugate to any q,
with y e U.

Let e be a nilpotent element in g = gl(V) and set G := GL(V). Leta = a(ay, ..., ar) € g, be
asin 3.3 and put b := gJ.

Proposition 4.1. (See [29].) Ifall a1, . . ., ax are nonzero and pairwise distinct, then by is a generic
stabiliser for the coadjoint representation of G.,.

For 1 <i < n, let A; denote the sum of the principal minors of order i of the generic matrix
(xij)1<i, j<n- @ regular function on g, and set F; := k~1(A;). It is well known that {F}, ..., F,)}
is a generating set of the invariant algebra S(g)“. Recall from 0.2 the definition of °F1, ..., °F,.
Let(di+12>dy+12>--->di+ 1) be the partition of n corresponding to e and put dy = 0.

Theorem 4.2. Suppose dimV > 2 and let Fy, ..., F, be as above. Then {Fy, ..., F,} is a very
good generating system for e and S(ge)% = S(ge.)%¢ =K[F1, ..., °F,]. Moreover,

deg(Fayt+d+i+1) = - = deg(Faortditdp+i+1) =i +1 (0<i <k —1).

Proof. Let o be as in Proposition 4.1 and let ¢ be the linear span of all Eij * withi # j. Let t be the

span of all Si”o, a maximal toral subalgebra of g.. Then the centraliser h = cg, (t) is an abelian
Cartan subalgebra of g.. Moreover, g, = h @ v and [h, t] = ¢ (this follows from the formula
displayed in the proof of Proposition 2 in [29]). We identify h* with Ann(r) C g}. The above
implies that h* = {y € g5 | (ad* b))y = 0}. Since | is a generic stabiliser, we have G, - h* = gj.
Therefore, the restriction map ¢ — ¢+ induces an embedding K[gj]Ge — K[h*]. It follows
that each °F; |+ is nonzero and hence has the same degree as F;.

Let t- C g be the orthogonal complement to t with respect to ¥ and s := S, N vt. Then
s=e+ (/c;*)’1 (Annt), implying that °F; |y« = °Fj| ann+ i €qual to the component of minimal
degree of the restriction of A; to s. Let g[i] = gl(V[i]) be the subalgebra of g consisting of all
endomorphisms acting trivially on V[j] for j #i, and g := g[1]® - - - @ g[k]. Then § is a Levi
subalgebra of g and 5 C g.

For 1 < £ <dj+1 wedenote by Ay[j] the sum of all principal minors of order £ of the generic

matrix (xl(,{l))lgp,qujﬂ, a homogeneous element of degree £ in K[g], and put Ag[j] = 1. Since
the characteristic polynomial of a block-diagonal matrix is the product of the characteristic poly-
nomials of its blocks, it follows that

Agg= > Ayl Aglkl (1<L<n).
L ++le=L
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As epyy;] is a regular nilpotent element of gl(V[i]), for each ¢; > 1 we have the inequality
deg ¢(k ! (Ag,[i])) = 1. It follows that deg °F; > g, where

g:=min{s | =t +---+1t;, 0<t; <d; + 1}.
More precisely,

degFi=1 fori=1,...,d+1,
deg °F; 22 fori=d|+2,...,d +dy+2,
degF; >3 fori=di+dy+3,...,d +dr+d;+3,

and so on. Consequently, Y *_, deg °F; > Zle i(d;+1). On the other hand, using the formula
for dim g, in [14] we obtain

k k
dimg, = Z(Zi—l)(d,-+1) = ZZi(di+1) —n;
i=1 i=1

see also [5, p. 398]. In view of Theorem 2.1(i) we must have equalities throughout, forcing
Yo' deg °F; = (dimg, +n)/2.

As ind g, = n by [29], Theorem 2.1(i) yields that the generating set {F; | 1 <i < n} is good
for e. Combining Theorem 2.1(iii) with Theorem 3.4 shows that this set is actually very good
for e. But then S(g,)% = S(ge)Ge =KJ[¢F1,...,°F,] in view of Theorem 2.2. O

Remark 4.1. The degrees of °F(, ..., °F,, can be read off from the Young diagram of e, as shown
in Fig. 1.

4.2. In this subsection we give a description of °F; in terms of .§ij . No generality will be

lost by assuming that 7 - w; = —d;w; for 1 <i <k and f(ef-w;) € ]K(es_1 -w;). Then each Sl:""Y
is an eigenvector for ad &. More precisely, using our discussion in 3.2 it easy to observe that

(adh)(&/°) = (d; — d;j + 25)8]"". (12)
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Given a subset I C {1,..., k} we denote by |I| the cardinality of /. Given a permutation ¢ of
I ={iy,...,in} and a nonnegative function s : I — Z3( we associate with the triple (/, o, 5) the
monomial

E(I, o, 5) = E:(il)sl§(i1)%-lf;'(i2)>§(i2) . Eﬂ(lm) S (im) c S(ge)

Im

of degree m = |I|. If 5(i ;) does not satisfies the restriction on s given in 3.2, then we assume that
Ed(ij),i(ij)

i; =0. For every & = E (I, 0,5) we denote by A(/, o, 5) the weight of = with respect

to i. Obviously, A(1, o, 5) is the sum of the ad i-eigenvalues (h-weights) of the factors S oi-5Gp

Lemma 4.3. For each ¢ < n, we have

g, = Z all,o,5)&(,0,5)

|Il=m, L(I,0,5)=2(L—m)
for some a(l,o0,5) e K.

Proof. (1) Fix abasis {yi, ..., yu} ={wi,e-wi, ..., eh -wi, wz,...,wk,...,edk -wg} of V and
let E;; € gl(V) be such that E;;(yx) =k y; forall 1 <i, j,k < n. View Fy as a polynomial in
variables E;; and let T be a monomial of Fy for which deg “T = deg “F;. It can be presented as
aproduct T =T - - - Ty, where each T, involves only those E;; annihilating €, £q VI[t]. If E;; is
such a variable with j #i — 1, then the restriction of E;; to «(S,) is either zero or proportional
to some &, Note also that if y; = e% - wy, i.e., if y;i4+1 ¢ V[g], then the restriction of E; 41 to

K (S,) equals 5,1 Aot . So when we restrict T to «(S,), nonzero constants (terms of degree 0)

will arise only from those variables E; 11 ; with y;;1 € V[g]. But all such variables lie under the
main diagonal and the monomial T comes from a principal minor, hence 7;; cannot contain only
them. Thus, if deg 7, > 0, then either T4 1e(s.) is zero or deg ‘T, > 1.

On the other hand, ) deg 7, = deg °F¢ and each T, 4k is nonzero, by our assumption
on T. Let d(T) denote the cardinality of {g < k | degTj, > O} The above discussion shows
that deg “T > d(T). Since deg T, < d; + 1 and ) _deg T, = deg F, our discussion in 4.1 yields
deg’F¢ < d(T). Hence deg “T = d(T), forcing deg T ; < 1forall 1 < j < k This means that

each monomial of “/¢, when expressed via {§; J:s }, has no factors of the form é S,; L

(2)Let & éjl LSt El] ™M bhe a monomial involved in °F . In part (1) we have proved that all

indices iy, ..., i, are distinct. Let [ = {i1, ..., im}. Suppose there is j = j, with j ¢ I. Then &

has a positlve weight with respect to the semisimple element & j/ € g.. But °F, is invariant
under g., hence & must be of weight zero. This contradiction shows that j € I. Similarly, each i,
must be among ji, ..., ju. In other words, (ji, ..., ju) is a permutation of (i1, ..., iy)-

(3) Since all Ei] ** are eigenvectors for ad &, each monomial & involved in °F, has the same
weight as °F itself. Since Fy is h-invariant and f has weight —2, we see that each & has weight
2(€ — m). This completes the proof. O

Conjecture 4.1. Up to a nonzero constant,

Fo= > (sgno)E(l,0,5),

|I|=m, L(I,0,5)=2(L—m)

where m = deg °F .
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4.3. In this subsection we use the notation of 3.6 and consider a nilpotent element e of the
symplectic Lie algebra g = go (recall that go = g° where g = gl(V) and dimV = 2n). It is well
known that A»; g with 1 <i < n generate the invariant algebra K[g]® and the regular functions
Ao;y1 vanish on g. For 1 <i < n we denote by §; the component of minimal degree of the
restriction of Ay; to S, = e 4+ g. Since e 4 g is an affine subspace of e + g and g identifies
with the linear subspace ;) (g s) of g =« (g ), one observes easily that either deg §; = deg “F»;
or the restriction of “F'y; to g is zero and deg§; > deg F»;.

For 1 <i < n we denote by Fri € S(g)9 the preimage of Ap;|q € K[g]? under the Killing
isomorphism S(g) — K[g]. Note that deg Fo = degé; foralli < n.

Theorem 4.4. Suppose dimV = 2n > 4 and let F1, ..., Fy, be as above. Then {le | 1<i < n} is
avery good generating system for any e € g = sp,, and S(g0)% = 5(g0)% =K[Fa, ..., Fa]
Furthermore, deg °F,; = deg °F»; foralli <n
Proof. From Theorem 4.2 and the formula for dim g, given in [14, 3.1(3)] we deduce that
. |
dimg, = E(dlmge+ ' Z 1) Zdeg Fj—n+ Z 1.
i,d; even ii'=i+1
On the other hand, applying Theorem 4.2 to g, yields

> degFay= ) MT+1)+ > <d @+ l+2)
=1

i,d; odd i,i'=i+1

2n
:%(Zdege]’]) + Z
j=1 i,i'=i+1
To check this equality one takes the Young diagram of shape (d; + 1 > --- > diy + 1) with all
boxes in the jth column labelled j (as shown in Fig. 1) and then sums up all labels assigned to
the even boxes of the diagram (counted from bottom to top and from left to right). One should
also keep in mind that d; = dy for all i and d; + 1 is odd whenever i’ # i. Using the above
formulae one obtains

ZZdeger,-—dimgg: Z #-ﬁ- Z (di +1)=n.

i<k, i'=i i<k, i'=i+1

Since deg §; > deg °F; for all i < n, by our earlier remarks, we now derive
n _ n n
Zdeg Foi = Zdeg&- > Zdeg ‘Fy; = (dimg, +n)/2.
— — =

On the other hand, {F>; | 1 <i <n}isa generating system for S(g)%. As indg. =tkg=n
by [29], Theorem 2.1(i) shows that Y i deg °Fo; < (dimg, +n)/2. Hence deg “Fo; = deg “Fo;
for all i and {F; | 1 <i < n}is a good generating system for e. Combining Theorem 2.1(iii)
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Fig. 2.

with Theorem 3.11, we now see that the generating set {_le- | 1 <i < n}isvery good for e. Then
Theorem 2.2 yields S(g.)% = S(g.)% =K[F2, ..., F,], completing the proof. O

4.4. Now suppose g = s0(V). Recall that g is a symmetric subalgebra of g = gl(V). Let
Fi,..., F, beasin4.1 and set Fl = Fjg=. If n =dimYV is odd, then the set {in |0 <i<n/2}
is a basis of S(g)C. If n is even, then F, = P2, where P is the pfaffian. Clearly, (°P)> = °F,.
Similar to the symplectic case, we have deg Foi > deg °F»;. From [14, 3.1(3)] it follows that

1
dimgg=§<dim§;e— > 1). (13)

i,d; even

Note that / = rkg = [(dimV)/2]. In order to compute Zgzl deg °F»; we again consider our
labelled Young diagram (see Fig. 1) and sum up the labels assigned to the even boxes. It is
important to observe that in the present case neighbouring columns of the same odd size will
always have a different number of even boxes. This is illustrated in Fig. 2.

Taking into account (13) and the equality Z?:l deg °F ; = (dimg, + n)/2 we now arrive at
the following:

Lo, ditl d; i +2
;deg‘sz:Z(21+l)12 + Z zé—i—. Z 112

i'=i+1 i=i’, i odd i=i’, i even
1 n
:§<ZdegeFj— Z i+ Z i)
j=1 i=i’, iodd i=i’, i even
1/ . n 1 . .
=§<dlmge+§+'z DD ) (14)
i,d; even i=i’, i odd i=i’, i even

Lemma 4.5. Let e be a nilpotent element in g = so(V) such that

(1) d, is even;
(2) ifdi_1 is even for i odd, then d; is even.

Then either Fy, Fu,...,F,_y or Fo,Fa,...,Ey_n, P (depending on the parity of n) is a good
generating system for e € g.

Proof. Let 11, ...,t, be the indices of the odd-sized Jordan blocks of e. Recall that there is a
decomposition of the set of Jordan blocks of even size (i.e., those with d; odd) into pairs {i, i’}
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such that i’ #i and d;s = d;, see, for example, [14, Section 1]. Therefore ¢ j and j has the same
parity. Note also that ¢ and n have the same parity for any nilpotent element in gl,,.

First suppose n and ¢ are odd. Recall that deg °F; > deg “Fy; for all i. By Theorem 2.1, we
have 25:1 deg °F»; < (dimg, + rk g)/2. Due to (14) it suffices to prove that

n—1
2

+-—t+th—t3+--—ty=

S
SIS

By the assumptions of the lemma, 1 = 1,13 =12+ 1,15 =14+ 1, and so on. Thus, }_7_ (= 1)'t; =
—1 — (g — 1)/2, which is exactly what we wanted.

Now suppose n is even. Then g is also even, and deg °P > (deg °F,)/2. Moreover, since dy, +1
cannot be even and odd at the same time, we have 7, = k, that is the last Jordan block has odd
size. As above, tj 11 =t; + 1 forall even 1 < j < g. Therefore,

nj2—1

Z deg F2]+deg
j=1

l\)l"
NI»‘

(dlmge + % + Z( D' tz)

i=1

2
Gmwe I +k—k>

2 2

img, + )
2

Lemma 4.6. Suppose dimV = 2[ and let e be a nilpotent element in g = so(V) such that

va— NI"

and we are done. O

(1) dy is odd and dr» = d
(2) d; is even fori > 3.

Then e admits a good generating system in S(g)®.

Proof. Recall that deg °F; > deg “Fo; for all i and deg °P > (deg “F2;)/2. The even-sized Jor-
dan blocks of ¢ can be decomposed into pairs {i, i’} with i’ #i. Hence k is even and it follows
from (14) that

O - o1 k=2 k—2\ k 1
Zdeg Foi+degP > -|dimg, +/+ ——+ —— ) — - = =(dimg. + /) — 1.
— 2 2 2 2 2

Thus, the system F», ..., F,_o, P is “almost good.” Applying Lemma 4.3 we see that in the
present case

1,dy +2,d 2,d1s1,d
F2d1+2—al‘§1 léz *+a 51 lé '

for some aj, ax € K. Since “F'»4,42 is irreducible, being a generator of the polynomial algebra
S(§)9, it must be that ajas # 0. Both 52 A and él “©2 Vanish on ge and so does él i 52 N
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Therefore, F2d1+2 = alél ‘§2d2 For d = (d) 4+ 1)/2 we have Foy = Ell’dl, up to a nonzero
scalar. Consequently, °F 2y 42 = c(¢Faq)? for some ¢ € K*. B
If k > 2, then d; + 1 <, and we can replace F2d1+2 by d = F2d1 +2 — F§.+1' Since

deg F2d1+2 > deg F2d1+2 4+ 1, Theorem 2.1(i) implies that Fz, e F2d1+2,..., P is a good
generating system for e.

If k =2, then P = ¢y “Foq for some co € K*. In this case we can replace P by P/ := P —
COFd] +1. Then deg °P’ > deg °P + 1, implying that F, ..., F5,_», P’ is a good generating system
fore. O

Combining Lemmas 3.12, 3.13, and 4.5 we obtain the following result.

Theorem 4.7. Let V be an n-dimensional vector space over K, where n is odd, and let V=
Ve Kvbeasin3.8. Let (di+1>dy+ 1> --->di+ 1) be a partition of n such that

(1) dy isevenand k > 1,
(2) d;jisodd foralli >?2

Let e and ¢ be nilpotent elements in g = s0(V) and § = so(V), respectively, corresponding to
the partitions (dy + 1,...,dy + 1) and (dy + 1, ...,di + 1,1). Then e and e admit very good
generating systems in S(g)® and S(8)8, respectively, and the invariant algebras S(ge)% and
S(§,)% are free.

Remark 4.2. Conditions of Lemmas 4.5 and 4.6 are only sufficient for the existence of a good
generating system. But we conjecture that the other nilpotent elements in g = so(V) do not
possess good generating systems in S(g)?.

Example 4.1. Now we wish to exhibit a nilpotent element e in g = s0(V) without a good gener-
ating system in S(g)®. Some details will be left to the reader. Let e € s017 be a nilpotent element
with partition (5, 3,2, 2). Then dimg, = 18, ind g, = 6, but

Zdeg Fai + (deg F12)/2=11 < (18 +6)/2 = 12.

One can show that deg Fo = deg °F'»; and deg °P = 2. We have only two Fy;’s of degree one,
but the centre of g, is 3-dimensional and “Fg = a2, where a is a central element of ge linearly
independent of F> and °F4. Moreover, up to a scalar °Fjg = a - °P. We see that °F»;’s and °P
are algebraically dependent. On the other hand, computations show that there is no good way to
modify the system of generators F», Fu, F6, Flo, P of S(g)8.

4.5. Suppose that rkg > 2. Our next goal in this section is to attack Conjecture 0.1 for the
elements of the minimal nilpotent orbit Opi, = G - € in g. More precisely, we are going to
show that if g is not of type Eg, then ¢ admits a good generating system in S(g)?. Thanks to
Theorem 3.14 and Theorem 2.2 this will reduce verifying Conjecture 0.1 for the elements in
Omin to the case where g is of type Eg. Some partial results on the Eg case are obtained in 4.8
where Conjecture 0.1 for Opy is reduced to a computational problem on polynomial invariants
for the Weyl group of type E;.
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We adopt the notation introduced in 3.9 and 3.10, choose a Cartan subalgebra t of g contained
in g(0), and denote by @ the root system of g with respect to t. Choose a positive system @, in @
such that for every y € @ the root subspace g, = Ke,, is contained in the parabolic subalgebra
p:=9(0) & g(1l) d g(2). Note that @ = |_|72<i<2 ®; where @; :={y € @ | g, C g(i)}. Clearly,
@, = {@} where & is the longest root in @ . No generality will be lost by assuming that ¢ = eg
and f =e_g. Set t := Kera. It is well known (and easy to see) that t is a Cartan subalgebra in
gz and gz =t O D, o, 0 9y- For B €[], > P: we denote by &g the linear function on g; that
vanishes on t and has the property that £g(e, ) = dg, forall y € Ui>0 @®;. The dual space t* will
be identified with the subspace of g} consisting of all linear functions & such that &(e,,) = 0 for
all y € |_]l.>0 @;. Set b := t ® Ke, an abelian subalgebra of g;. We regard h* = t* § K&; as a
subspace of g3.

Choose & € t* such that £&([g,, g—,]) # 0 for all y € @¢ and put 1 := &y + £, an element
of h*. Since n vanishes on g(1), it is immediate from our discussion in 3.10 that gg =bh. In
particular, n € (g:f)reg. Moreover, our earlier remarks show that

h*={cg|(ad"h)§ =0} and H*N(ad*gs)h* =0.

It follows that the differential of the coadjoint action morphism Gz x h* — g7 is surjective
at 1 x n. Then G; - h* = g7, implying that the restriction map ¢ > |5+ induces an embedding
K[ng]cf? < K[h*]. Hence, for every nonzero homogeneous F € S(g)? the regular function °F; Ih*
is nonzero and thus has the same degree as °F.

4.6. The Weyl group W = N (1)/Z¢ (V) is generated by the orthogonal reflections s, in the
hyperplanes Kery, where y € @. Let Cw (fi) be the stabiliser of 7 in W. It is well known that
Cw(h) = (s, | y(h) = 0). Obviously, Cy (h) preserves t. We denote by pg the corresponding
representation of Cw(h) and put Wy := 00(Cw (h)). Note that W, is a finite reflection subgroup
of GL(t). Since t = Ker@ and sg(7) = —h, any nonzero ¢ € S(H)W has the form

o= oD% (o eS®M, o™ #£0, v=1(p)). (15)
=0

For ¢ € S(t) we denote by ty, the set of all & € t such that ¥ (x +Ah) = ¥ (x) for all x € tand all
reK. If ¢ € S(HWY, then ty is a W-invariant subspace of t. As t is an irreducible W-module,
then for ¢ as in (15) we must have t, = 0. Consequently, v(¢) > 1.

Proposition 4.8. Let {¢1, @2, . . ., ¢} be a homogeneous generating set in S(H)W with degp; =2,
and v; = v(¢;). Then Zé:z v > % dimg(1) and ifo:z v =+ dimg(1), then (pém, . (pl(”’) are
algebraically independent and S(g)® admits a good generating system for e.

Proof. Consider the Levi subalgebra § = Kf @ t @ Ké of g and put ¢ := h? + 4&f, an ele-
ment of S(§). Since 3(5) =t and [5, 5] = K f & Kh @ Ké, we have that S(3)° = S(t) ®x K[c]
as algebras. We identify §* with K&_5; @ t* @ K&;. Then h* = t* @ K&; C §*. Since ¢ is
regular nilpotent in §, the restriction map F +— Fj¢ 4y induces an algebra isomorphism
1:S(E)® = S(h) such that ¢ =id and ((c) = 4é.
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By the Chevalley Restriction Theorem, there exists a homogeneous generating system
{F1,..., F1} C S(g)® such that Fy 3 = ¢ for all k. Since ¢y = Zvi%") (pk’)hzi by (15), it fol-
lows that Fyg« = Z”(‘p‘) (l)c But then ¢(Fy3+) = Z:.)L%") 4ig (l)e It is now immediate from
the definition of °F that

(°Fr) e = 4% PO (1 <k <D). (16)

Since deg °Fj, = deg(éFk)W by our concluding remark in 4.5, Theorem 2.1(i) in conjunction
with (16) gives

1 1
> dege™ + > v < (dimg; +1)/2.

i=1 i=1

On the other hand, (15) shows that

1 I I
Zdeggo(v’ +2Zv,~ = Zdeggo,- = ZdegF,- = (dimg+1)/2.
i= i= i=1

As dimg — dimg; =2 + dimg(l) and vi = 1 by our assumption on deg ¢, we are now able to
conclude that 2522 Vi = % dimg(1).
If 2522 v = 1 dim g(1), then the above shows that

I
Zdeg °F; —Zdegq)(”’ +Zv,~ = (dimg; +1)/2.

Hence {Fi, ..., F;} C S(g)? is a good generating system for &, implying that °F, °F», ..., °F;
are algebralcally independent; see Theorem 2.1(ii). As (p(”‘)
(1) ~ Vz

is a nonzero constant, our discus-

sion in 4.5 together with (16) shows that e, ¢, - (pl(v’ )& are algebraically independent

in S(gz). Then <p(”2), . <pl( ") must be algebraically independent in S(t). This completes the
proof. O

4.7. Proposition 4.8 in conjunction with Theorems 2.1(iii), 3.4, 3.11, 3.14 and 2.2 will enable
us to show that S(g;)9 is a graded polynomial algebra in rk g variables in all cases except when
g is of type Eg. We shall identify S(t) with S(t*) by means of the W-invariant scalar product
(-] -) used in [1] and [27]. Note that h =& identifies with a nonzero multiple of &. The basis of
simple roots contained in @, will be denoted by A.

(1) Suppose g is of type A,, n > 2. Then t* is spanned by &1, 2, ..., €,41 subject to the
relation &1 4+ &2 + - - - + &,41 = 0. The Weyl group W = G,, | permutes the ¢;’s. Put

Z Eo()€o () Eaky (2<hk<n+1).

0€6, 41

Since & = €] — g,41 and (& | &) =0 for 2 < i < n, it is routine that v(sg) =1 for 2 < k <
n+ 1. Now set ¢ := k41, 1 <k <n. Then {(pl, ©2, ..., ¢p} is a homogeneous generating set in
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SV with deg ¢ = 2. Since Yo ,degv(p)=n—1= %dimg(l), we derive that S(g;)% is
a graded polynomial algebra in n variables. The degrees of basic invariants are 1,2, ..., n. Since
g = sl,41 and the partition of e is (2, 1"=1Y, this is consistent with the combinatorial description
in Theorem 4.2.

(2) Suppose g is of type C,,, n > 2. Then & = 2¢1, and we can assume that ¢; = 5, where

Sei= ) ErEamy i Eegy (I<k<n). (17)

G€6n+]

As (& | &) =0 for 2 <i <n,itis clear that v(gr) = 1 for all k. Then Y}, degv(gi) =n—1=
% dim g(1), which shows that S(g;)% is a graded polynomial algebra in n variables. The degrees
of basic invariants are 1,3, ...,2n — 1. Since g = sp,,, and the partition of ¢ is (2, 12"_2), this is
consistent with our description in Theorem 4.4.

(3) Suppose gisof type B,,n > 3. Thena@ = ¢1 + . Fork € {1, 3, ..., n} put ¢} := 5k, where
Sk is as in (17), and set ¢ := 5> — }TE% As (a | &) =0 for 3 <i < n, it is straightforward to see
that v(¢2) =1 and v(gx) =2 for3< k <n.Then Y ! _,degv(y;) =1+2(n—2)= %dimg(l).
Hence S(g;)% is a graded polynomial algebra in n variables, and the degrees of basic invariants
are 1,3,4,...,2n — 2.

(4) Suppose g is of type D,,, n > 4. Then again & = €1 + €. For k € {1,3,...,n — 1} put
or := S and set @y := 3§ — i§12 Finally, set ¢, := p where p = [[/_, &. As in part (3) we
obtain v(gy) =1 and v(g) =2 for 3 <k <n — 1. Since v(g,) =1, we have > i, degv(g;) =
1420 —3)+1=Ldim g(1). Thus, S(gz)% is a graded polynomial algebra in n variables, and
the degrees of basic invariants are 1,3,4,...,2n —4,n — 1.

(5) Suppose g is of type G2 and assume that A = {c«, 8} where B is a short root. Then @ =
2a 4 3B and (B | @) = 0. The degrees of basic invariants in S(t*)" are 2, 6. There exists ¢; €
SV such that ¢ = @> 4 182 for some Ag € K. Since deg (pf = 6, we can find a basic W-
invariant ¢, in S®(*) such that ¢y = A1&@*B% + 1&?B* + A38° for some A1, A2, A3 € K. Then
V() <2 = %dimg(l). Applying Proposition 4.8 yields v(¢;) = %dimg(l). Then S(g;)% is a
graded polynomial algebra in two variables, and the degrees of basic invariants are 1, 4.

(6) Suppose g is of type Fy4. In this case & = & + &7 and basic invariants in S(t*)" have
degrees 2, 6, 8, 12. Let W’ denote the subgroup of W generated all reflections s, corresponding
to long roots in @. The reflection group W’ has type D4 and acts on the e-basis of t* in the
standard way. Therefore, S(t)"' = KI5}, 52, 53, p] where 51, 52, §3, p are as in part (4). Note
that W' is a normal subgroup of W and W/ W’ = G3.

Set @1 = §i. It is easy to see that ¢; € S(t)W. Since ¢ € S8V and v(¢?) = 3, there
exists a basic invariant ¢, € S®(¥)" for which v(¢,) < 2. Next observe that M := S*({T)V'
is a W/ W’-module with basis {5, p, §7}. We denote by M’ the submodule of M spanned by
all (w—1)-m with we W and m e M. Let 8 :=¢] and y := %(81 + & + €3 + &4), short
roots in @, and put p’ := ]_[?:1(8[ —y). Since p' =, (]_[?':1 &) = sy (p) and sg(p) = —p, we
have p, p’ € M. Since sg(52) = 5> and SHEHV = K§12, this shows that M’ is isomorphic to the
reflection module for W/ W' = &3, and p and p’ form a basis for M’.

The above discussion implies that there exist homogeneous polynomials g7, g3 € K[X, Y]
of degree 2 and 3, respectively, such that ¢>(p, p’) and g3(p, p’) generate the invariant alge-
bra KIM'1%3 c S®)Y. As (@ | y) = (@ | €1) = (@ | &2) = 1, one checks easily that v(p) =
v(p') = 1. Hence v(g2(p, p')) <2 and v(g3(p, p')) < 3. Since S®(E)V' is spanned by 53, 5152,

)W

)W
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f1p, 5%, there are A1, A2, A3, A4 € Ksuchthat g = A153+51(Aap+2A3p) +)\.4§13. As (M)W =0,
it must be that A1 # 0. From this it is immediate that

SE)Y =K1, p2] O KIM']

as W-modules. But then we can set @3 := g2(p, p’) and ¢4 := q3(p, p’) to obtain a generating
set {@1, 2, 93, @1} C SE)W with degg; =2 and Y 7_, v(¢;) <242+ 3 =7. Since in the
present case dim g(1) = 14, Proposition 4.8 shows that v(¢2) = v(p3) =2 and v(¢4) = 3. Hence
S(gs)9e is a graded polynomial algebra in four variables, and the degrees of basic invariants are
1,4,6,9.

(7) Now suppose g is of type E¢ and let o denote the outer involution in Aut(®) preserving A.
In the present case, the degrees of basic invariants in S (i*)W are 2, 5, 6, 8, 9, 12. The reflection
group Wy has type As and basic invariants in S(t*)"0 have degrees 2, 3, 4, 5, 6. We choose
a homogeneous generating system {1, ..., ¥s} C S(t*)"0 with degy; =i + 1 for 1 <i < 5.
Since o (@) = @, both Wy and t are o- stable Sett® :={tet|o(@)=t}and t° ;=1 Nt The
groups W% ={w e W |ow = wo} and WJ = W N Wy act on {° and t°, respectively, and we
shall denote by p and p the corresponding representations. It is well known that o(W?) and
p (W) are reflection groups of type F4 and Cs, respectively.

Note that £ = t° @ Kh. To make use of the results obtained in part (6) we shall restrict
functions from S(¥*)" to 1°. Let y; denote the restriction of ¥; to t°. Since p (W) is areflection
group of type C3, we have that 1}2 = 1}4 =0 and K[t"]WJ = K[xﬁl, 1}3, 1/_15].

Observe that dimS>(t)" = 1. Let @ be a nonzero element in S(t*)". By our remarks
in 4.6 we have v(¢,) > 1. Thus, it can be assumed that @» = &>y, + (p(o) where gZéO) e S3()Wo,
Clearly, v(@,) = 1. Next note that dim S°(t*)" = 2. As v(<p2(p12) =3, wecan find g5 € S2(#)"\
K(ngol for which v(@s) < 2. This element is a basic invariant of S(t*)".

Let {¢1, 2, 93, 04} C K[t"]W be the generating set obtained in part (6). Choose ¢ € &2 W
such that ¢; = @ + cZ)f where (p(o) e S2tHM. As @3 € SO(t*)V we can find a nonzero
@3 € SOV such that ¢3 = @*a + @%b + ¢ for some a, b, c e SE)Wo. Suppose a = 0. Since
v(¢3) = 1, we then have b # 0. Since b is a Wp-invariant of degree 4, it is a polynomial in
and vr3. Then by« # 0. Consequently, ‘/73&“ = Ay + /upf where either A # 0 or u # 0. Part (6)
now yields v(¢3) > 2 forcing a # 0, a contradiction. Thus, v(@3) = 2, and it can be assumed
without loss that a = 1.

Next we observe that dim S8(#)" = 3. Because v((ﬁf) =4 and v(¢3¢1) =3 by the above, the
set S8tV \ {K(Zl @® K@ @} contains an element of the form &*a’ + &%b’ 4 ¢’ witha’, b, ¢’ €
S(t)™0, say ¢,. The element @y is a basic invariant of S(t*)"W. As v(gZ) ) =6 and v((p3<p1) =35,
we can find a basic invariant g € S'2(£)" for which v(gg) <

Suppose for a contradiction that @’ = 0. In view of our remarks in (4.6) we then have b’ # 0
and v(@4) = 1. Consequently,

V(@) <1+2+1424+4=10.

M

i=2

Since in the present case dim g(1) = 20, Proposition 4.8 shows that we have equalities every-
where and the elements gb(v(‘”’)) with 2 < i < 6 are algebraically independent in S(t*)"o. But
then v(gs) = 2 and v(ge) = 4, which implies that go(v(‘“)) e Ky 1y @ Ky and go(v(‘p"))
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Ky? @ Kyrs. As v(g) = 1, we have 3" = 1195 + pavniyss + i3y + paysi for some
i € K. Because (ZJ;V@Z) ) Yy (ﬁév(%)) are algebraically independent, the above shows that
w1 # 0. In conjunction with our earlier remarks this yields that for (,54'{(, € K[{U]W" we have
v(<p~4|zg) = 1. On the other hand, <p~4|gg is a linear combination of @3, @192 and gof. Since
v(p3) =2, v(p1¢2) =3 and v(gaf) = 4, this is impossible. Therefore, a’ # 0 and v(@4) = 2.
Since a’ is a Wy-invariant of degree 4, we have a’ = A'y3 + ,u’wlz. Hence al’ta =Ay3 +
/L/I/_flz # 0. It follows that v(¢4)3) = 2. Then the above implies that (54&0 = n¢3 for some n € K*.

Since ¢§”(‘p3)) =n"'aj,, is algebraically independent of (pév(‘m) by part (6), we now derive that

A’ # 0. Since gﬁév(%)) e Kys @ lez, it follows that we can adjust ¢ by a suitable linear combi-
nation of (ﬁ%@; and (,532 to achieve v(¢g) < 3. Then

6

1
Dov@) < 142424243 = dimg().
i=2

Proposition 4.8 now shows that v(@s) =2, v(@g) = 3, and S(g)? admits a good generating sys-
tem for ¢. Hence S(g;)% is a graded polynomial algebra, and the degrees of basic invariants are
1,4,4,6,7,9.

(8) Finally, suppose g is of type E7. The degrees of basic invariants in S(H)W are 2, 6, 8, 10,
12, 14, 18, and our arguments in part (7) are not easily adapted to the present situation. Fortu-
nately, this will not be necessary because a suitable for us system of basic invariants in S(t)" is
already recorded in the literature. It has been constructed in [15] with the help of computer-aided
calculations.

We have to adopt the notation of [15]. Solet A’ = {vg, v1, ..., vg} be a basis of the root system
@ with the simple roots numbered as follows:

V1 V2 U3 V4 Us Vg

o, O l O O O (18)
Yo

Since all roots in @ are conjugate under W, we may (and will) assume that @ = v;. Let
{vg, v, ..., v¢} be the basis of T such that v,-(v;?) =¢;j forall 0 <i,j <6.As (v |v) =2,
it follows from (18) that & = 2vf — v3, whilst our choice of & ensures that v} € Kera for
i €{0,2,...,6}. For a root system type E7, the distinguished functionals t|,t2, ..., t7 are de-
fined in [15] by the following formulae:

2 2 2
tlz—gv(’)‘—i—vi‘, tzz—gv(’)"—vi‘—i—v;, t3:—§v6‘—v§‘+v§,

We are particularly interested in the basic invariants A, Ag, Ag, A0, A12, A4, A1g of S oOv
displayed in [15, Appendix 2]. These are presented as polynomials in the elementary symmetric
functions s1, 52, ..., s7 of the distinguished functionals #1, 2, ..., 7. The coefficients of these
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polynomials are of no importance to us, but we need to examine the monomials in s, $2, ..., 57
that occur in the Ag’s.

Note that a(r) = vi(t1) =1, @(t2) = —v1 (v]) = —1,and a(t;) = v () =0for 3<i < 7. 1t
follows that v(s1) = v(si(¢1,...,t7)) =0and v(s;) = v(s;(t1,...,t7)) =1 for 2 <i < 7. There-
fore,

v(s{'sf s )= o4 +j1 (Vjr€Zy, 1<k<T).

Taking this into account and using the explicit formulae for A;, Ag, As, A10, A12, A14, A1g in
[15, Appendix 2] one finds out that v(Az) = 1, v(Ag) < 2, V(Ag) < 2, V(A1) <2, v(A12) <3,
v(A1g) <3 and v(Ag) < 4. It follows that

V(Ag) +V(Ag) +v(A10) + v(A12) +v(A14) +v(A18) <2+2+2+3+3+4=16.

Since in the present case the derived subalgebra of g(0) has codimension 1 in g(0) and is isomor-
phic to so12, we have %dimg(l) = (dimg — dimsojy — 3)/4 = (133 — 66 — 3) /4 = 16. Propo-
sition 4.8 now shows that v(Ag) = v(Ag) = Vv(A19) =2, V(A12) =v(A14) =3 and v(Ag) = 4.
This implies that S(g;)% is a graded polynomial algebra in seven variables, and the degrees of
basic invariants are 1, 4, 6, 8, 9, 11, 14.

We summarise the results of this subsection.

Corollary 4.9. If g is not of type Eg, then S(Y)W contains a homogeneous generating system
Q1. 92, ..., @ such that deg g =2 and SO0 =K[@S"”, ..., o™ ] where v; = v(g)).

Proof. We have shown that under the above assumption on g there exists a homogeneous system

of basic invariants ¢1, @2, ..., ¢; in S(H)" such that deg ¢; = 2 and the elements goém, ey gol(vl)
are algebraically independent in S(t)0. So the result follows by comparing the Hilbert series of
the graded polynomial algebra S(t)0 and its graded subalgebra K [goém, ce (pl(”’ )]. a

Remark 4.3. If g is of type Eg, then one can show by using ad hoc arguments that S(gz)% con-
tains an element of degree 4 linearly independent of &*. Looking at the degrees of basic invariants
in S(g)¥ and taking into account (16) one can observe that this element is not of the form °F
with F € S(g)¥. It follows that in type Eg the elements in Oy do not admit good generating
systems in S(g)?. Combining this with Proposition 4.8 one obtains that for any homogeneous
generating system @1, ¢2, ..., ¢g in S(HW with deg ¢ = 2 the elements goév(m)), . go,(v(wl)) are

algebraically dependent in S(t)"0. This is in sharp contrast with Corollary 4.9.

4.8. In this subsection we assume that g is of type Eg, so that / = rkg = 8. We adopt the
notation introduced in 3.9 and 3.10. In particular, n = g(1) @ g(2). As before, we identify [* with
Ann(n) C g and g(1)* with Ann(I @ g(2)).

In the course of proving Theorem 3.14 we established that the principal open subset ¥ =
g; \ Ann(e) of g7 decomposes as ¥ = ((N/(N, N)) x (Ann(g(1)) NY). It follows that restricting
regular functions on Y to Ann(g(1)) N'Y we get algebra isomorphisms

(Stea)1/2)Y =SWIe, 171 and  S(ga)%[1/¢] = (S(ga)[1/¢])% = SML e, 1/].
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The standard Poisson bracket of S(g;) (induced by Lie product) gives S(gz)[1/¢] a Poisson
algebra structure. As n is a Heisenberg Lie algebra, the subspace S*(g(1))/é is closed under
the Poisson bracket of S(gz)[1/¢], i.e., S?(g(1))/é is a Lie subalgebra of S(g;)[1/¢]. This Lie
algebra acts faithfully on g(1) and is isomorphic to sp(g(1)). Since the bilinear form (-,-) is
(ad I)-invariant, [ acts on g(1) as a Lie subalgebra of sp(g(1)). From this it follows that for every
x € [ there exists a unique w(x) € S*(g(1)) for which x + w(x)/é € (S(gz)[1/¢])". Since the
restriction of w (x) to Ann(g(1)) is zero, x 4+ w(x)/é is the preimage of x in (S(gz)[1/e])V. It is
straightforward to see that the map w: [ — S? (g(1)) is linear.

Let x1, ..., x;; be a basis of [. Given an L-invariant H = Q(xy, ..., x;;) in S(I) we define

H:=0(x1 +0(x1)/2,...,%n + o (xn)/é).

Clearly, He S(ge)ge 1/e]. Let k = k(H) be the smallest integer for which e H e S(gz)%, and
set H:="H. Let t @ (H) denote the “constant term” of H with respect to ¢, so that w (H) equals
the restriction of H to Ann(é). Note that k < deg H and degw (H) = deg H= deg H + k.

Let {Hi,..., H_1} be a homogeneous generating set for S([)~. Then both {E, e, 171_\1}
and {171, e E_/l} generate the K[e, 1/¢e]-algebra (S(g;z)%[e, 1/e].

Lemma 4.10. The algebra S(g;)% is free if and only if S() contains a homogeneous generating
system Hi, ..., H_1 such that the elements w(Hy), ..., w(H;_1) are algebraically independent.

Proof. First suppose that S(I)* contains a required set of generators Hj, ..., H—1, and let H €
S(gz)%. Then H is a polynomial in H;, € and 1/e, hence can be presented as a finite sum
H=) pez e?Q,, where Q; are nontrivial polynomials in H;. Since w(H;) are algebraically
independent by our assumption, all Q; are coprime to €. This implies that H = ) p>0¢’Qp,
that is H is a polynomial in H;and é.

Now suppose that S(gz)9% is a free algebra generated over K by Ti,...,7;. Without
loss of generality we may (and will) assume that all 7; are homogeneous and 7; = e. As
(S(gz) 1/e])9e =SW*le, 1/¢], there exist Hy, ..., Hi—y € S(DE and by, ..., bj—1 € Z such that
T = b H for 1 <i <!—1.Moreover, Hy, ..., H_ generate S S(0)L. Because the producte H
is irreducible and regular, it must be that b; = k Hence 7; = H foralli <.

Assume for a contradiction that P(w(H1),...,w(H;—1)) = 0 for a nonzero polynomial P €
K[X1,..., X;—1]. Then H' := P(T\,...,Ti—1)/é is a regular gz-invariant. On the other hand,
H' is uniquely expressed as a polynomial in T1,..., Tj—; with coefficients in K[e, 1/¢], and
S(gz)% =K[Ty,...,Ti—1, €] by our assumption. But then H' ¢ S(gz)%. By contradiction, the
result follows. 0O

It is well known that in the present case L has type E; and the stationary subgroup K =
L N G, is a simple algebraic group of type E¢. Recall from 3.9 that e is a generic point of
the L-module g(1) and K is a generic stabiliser in L; see Definition 4.1. It is also known that
K is the derived subgroup of the intersection of two opposite maximal parabolics of L. More
precisely, K = (L™ N L™, LT N L™), where L™ (respectively, L™) is the normaliser in L of
the line spanned by a highest (respectively, lowest) weight vector of the L-module g(1). These
primitive vectors will be denoted by e™ and e~, respectively. Note that [e™, e™] is a nonzero
multiple of & (equivalently, (et,e™) # 0). Choose a maximal torus t in the Levi subalgebra
Lie(LT N L~) of [ and set ¢ := tNe Itis easy to see that t is a maximal torus in € =Lie K.
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It follows from the above description that g(1)X = Ke* @ Ke™. Hence it can be assumed
without loss of generality that e = e™ 4 ™. Since the nondegenerate skew-symmetric form (-,-)
is L-invariant, g(1) = g(1)* as L-modules. Set wy := (e",-), w_ := (7, ), and v := (e, -).
As explained in the proof of Theorem 3.14, the orbit (Ad L)e has codimension 1 in g(1) and
(AdL)(K*e) = (AdG(0))e is Zariski open in g(1). Hence the tangent space [ - v (at v) to the
orbit L - v has codimension 1 in g(1)* = g(0)-v =K-v+1[-v. As K is reductive and (g(l)*)K =
Kwy & Kw_ is t-stable, we have that [ - v = Khg - v @ Vj, where hg € t is orthogonal to £ with
respect to the Killing form and Vo = {{x, ) | (x,eT) = (x,e™) =0}.

As in 4.5, we regard the dual space t* as a subspace of [* C g;. We identify t* with the
subspace {y € t* | y (ho) = 0} and view v € g(1)* as a linear function on g; vanishing on [ @ Ké.
Set W := NL(%)/ZL(E) and Wé = Ng (t)/Zk (V) (these are reflection groups of type E; and
Eg, respectively).

Lemma 4.11. Let Hy, ..., H_| be a homogeneous generating set in S(I)~. Then the elements
w(H}),...,w(H_1) are algebraically independent if and only if their restrictions to t* @ Kv
are.

Proof. Recall that H € S(gz)% and w(H;) = ,|Am(e> for 1 <i <1 —1.1It follows that all
w(H;) are invariant under the coadjoint action of the semidirect product [ x g(1), where g(1) is
considered as a commutative Lie algebra.

By our earlier remarks, the L-saturation of Kv is dense in g(1)*. Also, for the same v, but
regarded as an element of (I x g(1))*, we have (ad* g(1))v = ([/€)*. Combining this two facts
we obtain natural embeddings

K[w(H)), ..., 0(Hi—1)] = K[I* @ Kv]* D — K[¢* @ Kv]* — K[t* & Kv].
As the composition of these embeddings is also an embedding, the result follows. O

Now we wish to express w(H;) in terms of polynomial invariants for W’. Let « € g} be such
that w(e) =1 and ([ ® g(1)) =0, and set

s5:=t* ®Kv®Ka.

Then the restriction of w(H;) to t* ® Kuv is equal to the “constant term” (with respect to e) of

H; ;. We thus need to describe the restrictions of H to 5. Let t+ C [ be the orthogonal com-
plement to t = t @ Kho with respect to the Killing form, so that [ = t & Kho @ t+. Since t* is
spanned by root vectors of [ with respect to { and e = e + ¢, it is straightforward to see that
[t el el =

Lemma 4.12. The following statements are true:

(@) (x+w(x)/e)s =0forall x € t

(b) x+w(x)/e)s =x forallx et;

(©) (ho+w(ho)/e)s =alet — e")?/é for some a € K*.

Proof. Let x e land let 8 =y + Av + puo € s, where y € t* and A, u € K. We shall calculate
the value of x + w(x)/e at B. Without loss of generality we may assume that both A and w are
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nonzero. Since x + w(x)/¢ is N-invariant, we can replace 8 by (Ad*(exp % ade))B. Because
v =(e,-) = —(ad* ) and [e, [e, t-]] = 0, we have that (Ad*(exp %L ade))B =y + 6 + no,

where § is a nonzero linear function on g; which vanishes on t ® o g(1) @ g(2) and has the
property that

)\'2
3(ho) = Ev([ho, el).

Thus, x + w(x)/é is zero on s for all x € £, proving (a). If x € t, then (x + w(x)/e)(B) =
x(y) =x(B), hence (b). Finally, (ho + w(hg)/e )(B) is a nonzero multiple of A/, showing that
the restriction of ko + w(hg)/é to s is a nonzero multiple of (et — e )? /e. One should keep in
mind here that (et —e~) =0forall ¥ € * ® Ko and v(e™ —e™) #0. O

For 1 <i <l -1, set ¢; := Hi|i*‘ Then ¢; is homogeneous element in S(E)W/. It can be
presented uniquely as

"
0= Z(pi(])h(]) ((pi(j) eSHM, <pl~(“) #0, n=pun(@)).
=0

Recall that /g spans the orthogonal complement to t in t with respect to the Killing form.
Corollary 4.13. For 1 <i <1 — 1 set ui = u(@;). Then in the above notation we have
o(H)eory =a" g/ (e* — ™) (A <i<i—1).
Proof. This follows from Lemmas 4.11 and 4.12. O
Summing up the material of this subsection we obtain the following result:

Theorem 4.14. The algebra S(g;)% is free if and only if there is a homogeneous generating

system @1, ..., 7 in S(OW such that the elements (pi“l)hgl, ...,(p;“7)hg7

independent.

are algebraically

In type E7 it is difficult to calculate Weyl invariants by hand, and the system of basic invariants
used in the final part of 4.7 is not very helpful in the present situation. Since this paper is already
quite long, we leave the Eg case open for the time being.

4.9.  Assume now that g is not of type A, or Eg. Let € be as before and put p := ngy(Ke).
Recall that p = g(0) @ g(1) & g(2) is a parabolic subalgebra of g. We are now going to apply
our results on S(gz)% to prove that the semi-centre of the universal enveloping algebra U (p) is
a polynomial algebra. This will confirm a conjecture of Joseph for the parabolic subalgebra p.

Corollary 4.15. Under the above assumptions, the semi-centre U (p)'P?) is a polynomial algebra
in | =rk g variables.
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Proof. Since g is not of type A, we have [p, p] = g; and p = Ki @ g;. Let v € S(p)!PP! and
write v = fzkvk +fzk_1vk_1 + -+ -4 vg with v; € S(gz). Since € € 3(g;) and e - hi = —2ihi=1¢ for
all i >0, we get 0=¢&-v=—Y*_ 2ih"~'év;. This yields S(p)!P-P) = S(gz)P?! = S(g;)%.
Arguing in a similar fashion we obtain

UmPP = U (gs)% = Z(g2).

where Z(g;) stands for the centre of U(g;). As S(gz)% is a polynomial algebra in [ vari-
ables, there exist algebraically independent homogeneous elements vy, ..., v; € S(p) such that
S P =Klvy,..., vl

Let r; =degv;, where 1 <i </, and let (U)o denote the standard filtration of U (p). Using
the symmetrisation map S(p) — U (p) it is easy to observe that there exist up, ..., u; € U (p)[P-P]
such that u; € U, and gr, (i) = vj for all i. Since the u;’s are central in U (g;), the standard
filtered-graded techniques now shows that U (p)[P-Pl = K[uy, ..., u;] is a polynomial algebra in /
variables. O

5. The null-cones in type A

5.1. 1In this section we assume that g = gl(V) where dimV > 2. Our goal is to prove that
for every e € N (g) the null-cone N(e) C g% has the expected codimension, i.e., dimN (e) =
dim g, — n. According to Theorem 4.2, the variety \ (e) is the zero locus of ¢F'1, ..., °F,, where
F; =k~ (A;). Thanks to the Affine Dimension Theorem, in order to compute dim .\ (e) it suf-
fices to find an n-dimensional subspace W C g} such that W N N (e) = 0. This will be achieved
in a somewhat roundabout way: first we shall construct a larger subspace V* C g} for which the
restrictions “F; |y« can be described more or less explicitly and then show that V* contains an
n-dimensional subspace transversal to N (e).

Form € {1, ..., k}, we partition the set {1, ..., m} into pairs (j, m — j + 1). If m is odd, then
there will be a “singular pair” in the middle consisting of the singleton {(m + 1)/2}. We denote
by V,, the subspace of g, spanned by all Sij * withi+j=m+1,andset V := EBm>1 Vin. Using

the basis {(Sij Y%} of g5 dual to the basis {Sij **}, we shall regard the dual spaces V* and V* as
subspaces of g}. Since K[V*] = S(V), the restrictions ¢; := °F;y~« are elements of S(V). For
§:=(51,...,8) withs; € Z>o we set [s| ;=51 + 52 + -+ 5¢.

Lemma 5.1. Suppose 0 < g < di. Then ¢, € S(Vi). More precisely,

Gng =Y a)Ey % gy T gL for some a(5) € K.
I51=q

Proof. (a) According to Lemma 4.3, °F,_, is a sum of monomials Sf(l)’t‘ e élf(k)’[", where o
is a permutation of {1, ..., k} and 71, ..., #; are nonnegative integers. Such a monomial does not
vanish on V*only if o (k) =1,0(k — 1) € {1,2} and o (j) <k + 1 — j for all j < k. Since o is
a permutation, we then have q(k —-1)=2, a(k'— 2) =3 and, in general, o (j) =k +1—j.

From (12) we see that *;‘;(_]H’dk_'m TSkt s,f’j:j has weight 2(d; +dg—j+1 —5j — Sk—j+1)
with respect to ad 4. As a consequence, the h-weight of

k,dy—si . k—1,dg—1—Sk—1 1,d;—s
g] k ké_—z %-k 1 1
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equals 2(n — k — |5|). Since deg F;, 4 =n — q and deg “F,,_, = k, this implies that only mono-
mials with |§| = ¢ can occur in °F;,_,. Because |5| = g < d; < d; and all s; are nonnegative, we
have that s; < d; for all i, j. This means that every E,if; :’ is a nonzero element of g,.

(b) We now prove by induction on k that every a(5s) is nonzero. If k = 1, then V = g,, ¢4 =
Fo_y =alg)E "7, and clearly a(q) #0. If k =2, then (ad*£]"") . V* C V*. From this it

follows that the Poisson bracket {e§1 , @n—q} is zero. On the other hand,

—_

g—
~ 2.d; 1,di—q+i+1

{6 dugl =) (alg—i,i) —alg—i— 1,i+ D)@ g, @700
i=0

As the monomials & 2,dy= lézl’d] LA with 0 <i < g — 1 are nonzero in S(g.), all coefficients

a(s) with |5| = g must be equal. If one of them is zero, then all are zeros. Assume that this is the

case. By Lemma 4.3, we then have

Fug= Y bEEEFET2 where b(5) € K.
Is|=¢
Let 57 be the largest integer with b(sy, 52) # 0. As 53 < g < d2, the element £ := &, Ldi=dats:
nonzero in g.. As °F,_, belongs to the Poisson centre of S(g.), we have {&, F,,_,} = 0. On the
other hand,

{6, Fn—q} =b(s1, Sz)f;'l slfz Ay (multiples of monomials of the form 521*522*)

Since the right-hand side is nonzero, we reach a contradiction, proving the lemma in case k = 2.
(¢) Now suppose k > 2, and set g’ := gl(V[1] ® V[k]) and g" := gl(V[2] ® - -- ®V[k—1]).
These are Lie subalgebras of g (embedded diagonally), and e = ¢’ + ¢” where ¢’ and ¢’ are the
restrictions of e to the e-stable subspaces V[1] & V[k] and V[2] & --- & V[k—1].
We adopt the notation introduced in the course of proving Lemma 4.3 and express F,_; as
a polynomial in the variables E;;. Let T be a monomial of F, , such that Tjy« is a nonzero

multiple of a monomial of degree k in Sk ; +1’ Then T = T'T”, where T’ and T" are poly-
nomials in the variables coming from g and g”, respectively. Suppose the restriction of 7’
to V* equals a’él o= S"él =5 \where @’ € KX. Then T’ is a monomial of Fz;/ € S(g)¥ for

p' =di+dy+2—51 —s2. Likewise, T” is a monomial of F)» € S@)¥ forp’=n—q—p.1t
follows that a(5) = a(sy, sy)a(sz, ..., Sy—1) where the coefﬁcients a(sy, sy) and a(sa, ..., ar—1)
are related to the nilpotent elements ¢’ € g’ and ¢” € g”, respectively.

Note that e e ¢’ has two Jordan blocks of sizes di + 1 and d> + 1, and a(sy, si) is the co-
efficient of 51 =Sk 51 =S in the expression for @,/. This coefficient is nonzero by part (b).
The coefficient a(sy, ..., sx—1) arises in a similar way from the nilpotent element ¢” € g”. Since

I~

9" = gl,_4,—4,—> we can apply the inductive hypothesis to conclude that a(sz, ..., sk—1) # 0.
Therefore every a(s) is nonzero, as wanted. 0O

5.2. Our next goal is to describe the zero locus X = X% of @, @u_1, ..., Gn_ —g in V.

Denote by X the subspace of V' consisting of all y € V;* such that f;‘,i % :1 (y)=0for0< 1 <s;.

Let e; be the k-tuple whose ith component equals 1 and the other components are zero.



D. Panyushev et al. / Journal of Algebra 313 (2007) 343-391 385

Lemma 5.2. The variety X is a union of subspaces. More precisely, X = Ulﬂzdk 11 X5

Proof. Let X@ C V;* be the zero locus of @, $p—1,...,$n—q. We are going to prove by in-
duction on ¢ that X is a union of subspaces in V;* and the irreducible components of X @
correspond bijectively to the k tuples 5 with |s| = ¢ + 1. When g = 0, our set of functions is
a singleton containing ¢, = Ek d“g‘ 2. &f’dk. Therefore, X© is the union of k hyperplanes
in Vk defined by the equations 5k—i+1 =0, where 1 <i <k.

Assume that XD is a union of subspaces of V; parametrised by the k-tuples of size g.
Let § be a k-tuple of size ¢ — 1 and let X; be the irreducible component of X @~ corresponding
to 5. Now consider an arbitrary monomial f := ék = t"ék Lo1—he1 | ékl’d‘_" with Y, = ¢,
i.e., a typical summand of ¢,_,. If t=(t,...,1) # 35, then there exists an index i such that
t; < s;. But then E,i’d’l;tli,
to X5 coincides, up to a nonzero multlple with that of &;
consequence, the zero locus of @, Gp—1, ..., Pn— ¢ in X5 is the union of k linear subspaces Xjte;,
where 1 <i <k. Then X = UI Sl=q+1 X5, and the statement follows by inductionong. O

and hence f, vanishes on X;. This shows that the restriction of ¢,
k,di—si o k—1,dx—1—5r1 1,di—s;
&, & .As a

5.3. By Lemma 5.2, all irreducible components of the variety X %) c V¢ have dimension
equal to dim Vj — (di + 1). Hence there is a linear subspace Wy C V;* such that dim Wy = di + 1
and W, N X @0 = 0.

Proposition 5.3. There exists an n-dimensional linear subspace W = @m>1 Wy in V* such that
W C V.5 for all m and W NN (e) =

Proof. We argue by induction on k. If k = 1, then N (e) = 0 and there is nothing to prove. So
assume that k > 2, and set g := gl(V[k]) and g := gl(V[1]® - - - ®V[k—1]). These Lie algebras
are embedded diagonally into g, and we regard the dual spaces g* and g; as subspaces of g*.
Note that e = e 4+ ¢ where e and e are the restrictions of e to V[k] and V[1]®--- ®V[k—1],
respectively. Clearly, e is a regular nilpotent element in gy = gl; 1 ande € g=gl,_4_;isa

nilpotent element with Jordan blocks of sizes d; + 1,...,dx—1 + 1. For 1 <i <n —d; — 1, put
F; := Fj g+ Restricting the principal minors A; from g to g itis easy to see that the homogeneous
generating system F;, ..., Fy,_ dp—1 of S(g)8 is good for & € g.

Next we observe that gz is a Lie subalgebra of g, spanned by all EJ * with 1 <i, j < k. Hence
we may identify the dual space (g;)* with the linear span of {(é’ Y 11<i,j<k}in g;. For
every i € {1,...,n —dy — 1} the restriction of °F; to (gz)* equals °F;.

Note that Vi C (ge)* form < k and V;* N (gz)* = 0. By our inductive hypothesis, there exists
a subspace W = @fn;ll W; such that dim W =n —d; — 1 and W NN (€) = 0. Choose a (dy + 1)-
dimensional subspace Wy in V;* with W, N X @) = (. Such a subspace exists by Lemma 5.2.
Now set W := W @ Wy. Then dim W = n.

We claim that W N A (e) = 0. By Lemma 5.1, for n — di <i < n the restriction ¢; = °F; [V*
belongs to S(Vy). Therefore, the zero locus of ¢y, ..., ¢ — dk in V* coincides with (@k 11 V) x
X Since Wy N X@) =0, we obtain W NN (e) C @ V* C (§z)*. Butthen W NN (e) C
W NN() =0, and we are done. O

The following is the main result of this section.
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Theorem 5.4. Let e be an arbitrary nilpotent element in g = gl,,. Then all irreducible components

of the null-cone N (e) have codimension n in g& and hence °F 1, ...,°F, is a regular sequence
in S(ge).
54. Let X C Af{ be a Zariski closed set and let x = (x1,...,x4) be a point of X. Let [

denote the defining ideal of X in the coordinate algebra A = K[ X1, ..., X4] of Aﬁ’g. Each nonzero
f € A can be expressed as a polynomial in X| — xy,..., Xy — x4, 8ay f = fir + fee1 + -+,
where f; is a homogeneous polynomial of degree i in X1 — x1,..., Xg — x4 and fi # 0. We
set iny (f) := fr and denote by in, (/) the linear span of all in, (f) with f € I \ {0}. This is an
ideal of A, and the affine scheme TC, (X) := Spec A/ in,(I) is called the tangent cone to X at x.
Note that (I N mﬁ);@o is a descending filtration of /, and the scheme 7C, (X) is nothing but the
prime spectrum of the graded algebra gr, A/ gr/.Itis well known that the projectivised tangent
cone PTC,(X) C PT,(X) is isomorphic to the special divisor of the blow-up of X at x; see
[11, Exercise IV-24], for example. Consequently, for X irreducible, all irreducible components
of TC, (X) have dimension equal to dim X.

Corollary 5.5. Let N be the nilpotent cone of g = gl,, and F; = k~Y(A;) where 1 <i < n. Let
ec N and r =dimg,. Then TC,(N) = A]’I’é*r x SpecS(ge)/(°F1, ..., %F,) as affine schemes.

Proof. Since the map x — (x,-) takes e to x and N isomorphically onto the zero locus of
the ideal J = (Fi, ..., F,) C 8(g), the scheme TC,(N) is isomorphic to SpecS(g)/in, (J).
As x(f) =1, we have g = Kf @ e where e is the orthogonal complement to Ke in g. For
1<i<nwrte F; = f*Opo; + f4O=1py i + ... + pry.i, where pj; € S(et) and po; # 0.
According to Corollary A.2, we have pg ; = °F;. Since et and f — x(f) lie in the maximal ideal
of x in K[g*] = S(g), it follows that in, (F;) =“F; forall 1 <i <n.

By Theorem 5.4, °Fy,...,°F, is a regular sequence in S(g.). Therefore, it is also a regu-
lar sequence in S(g). Since J = (Fy, ..., Fy), it follows that the ideal in, (J) is generated by
°F1,...,°Fy; see [26, Proposition 2.1]. As a consequence,

TC.(N) = SpecS(@)/(F1, ..., Fn) = Ann(g.) x SpecS(ge)/(F1, ..., Fn)
as affine schemes. Since dim Ann(g,) = n? — r, the result follows. O
Conjecture 5.1. If g = gl,,, then for any e € N the scheme TC,(N') is reduced.

Remark 5.1. 1. It can be shown that in the subregular G, case the variety TC.(N (g))req is
isomorphic to an affine space, but the scheme TC, (N (g)) is not reduced. Thus, one cannot expect
Conjecture 5.1 to be true for any simple Lie algebra.

2.1t follows from Corollary 5.5 that for g = gl,, the affine variety TC, (N '(g))red is isomorphic
to Aff x N'(e) where m = dimg — dim g,. It is possible that this isomorphism continues to hold
for any reductive Lie algebra g. If this is the case, then the variety N (e) is always equidimen-
sional.

3. Although the variety N (e) is irreducible in some cases, in general it has many irreducible
components. Due to Theorem 2.1(iii), in order to prove Conjecture 5.1 it would be sufficient to
show that every irreducible component of N (e) intersects with (95)reg - Describing the irreducible
components of A/ (e) for g = gl,, appears to be an interesting combinatorial problem.
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6. Miscellany

6.1. In this section, Conjecture 0.1 will be verified in some special cases. The idea is that,
for some e € NV (g), we can prove that the algebra K[g.]% is graded polynomial. If, in addition,
it is known that g, > g} as g.-modules, then we conclude that Conjecture 0.1 holds for such e.

We briefly recall the structure of the centralizer g, of a nilpotent element e € g as described
by the Dynkin—Kostant theory; see e.g. [8, Chapter 4]. Let {e, i, f} be an sl,-triple and g =
@i <7, 8(i) the corresponding Z-grading. Then g, = @i>0 g0 (i) and g.(0) is a maximal reductive
subalgebra of g.. Moreover, g.(0) = 34(e, f) =34(e, h, f). The element e is called even if all
the eigenvalues of ad i are even, i.e., if g(i) = 0 for i odd. By a classical result of Dynkin, e is
even if and only if g(1) = 0; see [10, Theorem 8.3]. In this case the weighted Dynkin diagram
of e contains only labels 0 and 2.

In the following theorem, we use some concepts and results on (1) semi-direct products of Lie
algebras and (2) contractions of Lie algebras. All the necessary definitions can be found in [17,
Section 4] and [28, Chapter 7], respectively.

Theorem 6.1. Suppose that a principal nilpotent element in g.(0) is also principal in g(0) and
e is even. Then K[g.1% is a polynomial algebra and the degrees of basic invariants (= free
homogeneous generators) are the same as those for K[g (0)19O,

Proof. Associated to the triple (e, i, f) and the corresponding Z-grading, we have three Lie
algebras: g(0), g., and q := g.(0) X (@i>2 ge(i)). Here the sign x refers to the semi-direct
product of Lie algebras and the space @i>2 g.(1) in q is regarded as commutative Lie algebra.
Clearly, dim g = dim g.. The equality dim g(0) = dim g, is equivalent to the fact that e is even.
Thus, all three Lie algebras have the same dimension. Here we obtain the chain of Lie algebra
contractions:

g(0) ~ g.~ q.

The first contraction can be described as follows. Consider the curve e(t) :=e + tf € g,
t € K. For t # 0, the element e() is G-conjugate to h. Therefore, g.() is isomorphic to
gr = 8(0). Hence lim;_,0 ge(r) = ge yields a contraction of g(0) to g.. Using the terminology
of [17, Section 9], one can say that the passage g. ~ ¢ is an isotropy contraction of g.. By [17,
Theorem 6.2], the algebra of invariants of the adjoint representation of ¢ is polynomial. More-
over, if a regular nilpotent element of g, (0) is also regular in g(0), then by [17, Theorem 9.5] the
invariant algebras K[g(O)]g(O) and K[q]? have the same Krull dimension and the same degrees
of basic invariants. It is easily seen that the algebra of invariants of the adjoint representation can
only become larger under contractions. Since K[g(0)]19® and K[q]% appear to be “the same,”
the intermediate algebra K[g.]% must also be polynomial with the same degrees of basic invari-
ants. 0O

6.2. By aresult of Elashvili, Panyushev (Appendix to [13]), the assumptions on e in Theo-
rem 6.1 precisely mean that e is a member of a rectangular principal nilpotent pair. The general
theory of principal nilpotent pairs (to be abbreviated as pn-pairs from now) was developed by
Victor Ginzburg [13]. Because the general notion is not needed here, we only recall the definition
of a rectangular pn-pair.
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Definition 6.1. A pair of nilpotent elements e = (e, e2) is called a rectangular pn-pair if
dim(g., N ge,) = rk g and there are pairwise commuting sl-triples (eg, i1, f1) and (e, h2, f2).

We say that a nilpotent orbit G - e is very nice if e is a member of a rectangular pn-pair and
ge > g5 as g.-modules.

Corollary 6.2. Suppose G - e is very nice. Then Conjecture 0.1 holds for g, and S(g)? admits a
good generating system for e.

A classification of rectangular pn-pairs is obtained by Elashvili and Panyushev in [13, Appen-
dix]. From that classification one derives a description of very nice orbits. It is worth mentioning
that for a pn-pair (ej, e2) the condition that G - e is very nice does not in general guarantee that
sois G -e).

Although there are not too many very nice nilpotent orbits (especially in the exceptional Lie
algebras), this approach does provide new examples supporting Conjecture 0.1. The examples
for sl, and sp,, are not new; see Section 4.

6.3. Below we list the very nice nilpotent orbits in exceptional Lie algebras. For each such
orbit we give the Dynkin—-Bala—Carter label, the weighted Dynkin diagram, and the degrees of
basic invariants for S(g,.)%:

E D4 o—o—i—o—o 1,1,2,2,3,3
E; E¢ 0_2_012_2_2 1,1,1,1,2,2,2
0
A2 +A4 0_0_0_(%)_0_0 1’ 2; 2a 25 3’ 3’ 4’
As 0-2-0-(|2)-0-0 1,1,2,2,2,2,3

Let us give some details on the unique orbit for E¢. Here dim g, = 18 and g, is the direct sum
of the 2-dimensional centre and the Takiff Lie algebra s modelled on s(3. Namely, s is just the
semi-direct product sl3 X sl3.

6.4. The very nice nilpotent orbits in classical Lie algebras are described below.

1°. g = sl,. Here e is a member of a rectangular pn-pair if and only if the corresponding
partition of n is a rectangle (i.e., all the parts are equal). That is, we may assume that n = rs and
the partition of e is (7, ..., r), with s parts. We also write e ~ (r, ..., r) for this. It is harmless but

N
technically easier to work with g = gl in place of s[,,. Then g, is a generalised Takiff Lie algebra
modelled on gl,. More precisely, g, is the factor algebra of gl, ® K[z] by its ideal gl, ® t"K[¢],
where ¢ is an indeterminate. It is easily seen that g, > g}. (See [23] and [17, Section 11] for
more results on generalised Takiff Lie algebras.) The second member of the rectangular pn-pair
is given by the conjugate partition (s, ..., s), with r parts. This situation is symmetric and both
nilpotent orbits are very nice.
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2°. g = sp,,,. Here e is a member of a rectangular pn-pair if and only if the corresponding
partition of 2n is a rectangle whose sides have different parity. That is, we may assume that
2n = rs, where r is even and s is odd. The situation here is not symmetric. Only the orbit
corresponding to the partition (s, ..., s) with r parts is very nice.

3°. g = so,. Here we have to distinguish the series B and D.

e If n is odd, then the only suitable partitions are the rectangles whose both sides are odd. That
is,n =rs, where r and s are odd. Then e ~ (s, ..., s). Here both members of the rectangular
\q/—/
r
pn-pair give rise to very nice orbits.
e For n even, there are more possibilities for rectangular pn-pairs.
(1) If a partition of 7 is rectangle with both even sides, then neither of the respective orbits
is very nice.
(2) If n =rs + 1, where r, s are odd, the there is a rectangular pn-pair (e, e2) with ej ~
(s,...,s,1)and ex ~ (r,...,r, 1). Here both members of the rectangular pn-pair give
— N— —
r N
rise to very nice orbits.
(3) If n =r + s, where r, s are odd, then there is a rectangular pn-pair (e1, e2) with ey ~

(s,1,...,1)and e ~ (r, 1, ..., 1). Here neither of the respective orbits is very nice.
—_— —_—
r N
Acknowledgments

Part of this work was done at the Max Planck Institut fiir Mathematik (Bonn) and Manchester
Institute for Mathematical Sciences. We thank both institutions for hospitality and financial sup-
port. The third author is a Humboldt fellow. She is grateful to the Humboldt Foundation for
financial support and to the Universitéit zu Koln, and especially Peter Littelmann, for wonderful
working conditions. We are also thankful to the anonymous referee for very careful reading and
helpful comments.

Appendix A

Here we give an alternative (elementary) proof of Proposition 0.1, which is inspired by an
unpublished result of J.-Y. Charbonnel (private communication).

Let e C g be the orthogonal complement of Ke. Since (e, f) = 1, we have g=Kf @ e™.
Take a nonzero homogeneous F € S(g)® and express it as

F=ffpo+ " pi+--+ps,
where p; € S(e1) and pg # 0.
Lemma A.1. For any nonzero homogeneous F € S(g)G we have that pg € S(ge)Gf.
Proof. If g € G,, then (Adg)e C et and (Adg) f € f + e™*. Therefore,
F=g-F=(@ po)f+ f'pi+-+pi

for some p; € S (e1). Since g - pg € S(e1), this shows that pg is G,-invariant.
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Recall that g = g, @Imad f. Choose a basis y, ..., y; of e NImad f. If py is not an element
of S(g.), then renumbering the y;’s if necessary we may assume that

po=q0+ vy ‘g1 +-+qs,

where s > 1, g; € S(ge)[y2, ..., y1], and gg # 0. Since the Killing form of g induces a non-
degenerate pairing between Imade and Imad f, there is a z € g such that ([e, z], y1) # O,
(le, zl, f) =0 and ([e, z], y;) = 0 for all i # 1. Note that ([z, y1],e) = (y1,[e, z]) # 0 and
([z, yil,e) =0 forall i ## 1. Also, ([z, x],e) = —(z, [e, x]) =0 for all x € g,.

Rescaling z if need be, we may assume that ([z, y1], e) = 1. Then [z, y1] € f+eL and [z, fle
e*, implying

{z, F} = (syf_lqo +(s— l)yf_qu + 4 ql)fk+] + (terms with smaller powers of f)

(here {-,-} stands for the Poisson bracket of S(g) induced by the Lie product in g). This, however,
contradicts the equality {z, F}=0. O

Corollary A.2. For any homogeneous F € S(g)° we have that °F = po and °F € S(g.)%¢.
Proof. In view of Lemma A.1 we have F = i, ' (k (po)) =k ~' (kk(po)) = po, as stated. O
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