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Polygonal chains cannot lock in 4D✩
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Abstract

We prove that, in all dimensionsd � 4, every simple open polygonal chain and every tree may be straightened,
and every simple closed polygonal chain may be convexified. These reconfigurations can be achieved by algorithms
that use polynomial time in the number of vertices, and result in a polynomial number of “moves”. These results
contrast to those known ford = 2, where trees can “lock”, and ford = 3, where open and closed chains can lock.
 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Summary

A polygonal chain P = (v0, v1, . . . , vn) is a sequence of consecutively joined segmentssi = vivi+1 of
fixed lengths�i = |si |, embedded in space. A chain isclosed if the line segments are joined in cyclic
fashion, i.e., ifvn = v0; otherwise, it isopen. A polygonal tree is a collection of segments joined into a
tree structure. A chain or tree issimple if only adjacent edges intersect, and only then at the endpoint they
share. We study reconfigurations of simple polygonal chains and trees, continuous motions that preserve
the lengths of all edges while maintaining simplicity. One basic goal is to determine if an open chain
can bestraightened—stretched out in a straight line, and whether a closed chain can beconvexified—
reconfigured to a planar convex polygon. For trees, straightening permits noncrossing violations of
simplicity to allow the segments to align along a common straight line. If an open chain or tree cannot be
straightened, or a closed chain convexified, it is calledlocked. This terminology is borrowed from [3,4].1
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1 Straightening for trees is never defined in [4]. Instead they rely on mutually unreachable simple configurations.
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Table 1

Dimension Chains Trees

2 Cannot lock Lockable

3 Lockable Lockable

d � 4 Cannot lock Cannot lock

Most of the work in this area was fueled by the longstanding open problem of determining whether
every open (or closed) chain in 2D can be straightened (or convexified). This was recently settled [8] in
the affirmative: 2D chains cannot lock. In contrast it was earlier established that trees in 2D [4], and both
open and closed chains in 3D [3,5] can lock. In this paper we prove that, for all dimensionsd � 4, neither
chains (open or closed) nor trees can lock. We partition our results into four main theorems:

Theorem 1. Every simple open chain in 4D may be straightened, by an algorithm that runs in O(n2)

time and O(n) space, and which accomplishes the straightening in O(n) moves.

Here “move” is used in the sense defined in [3].2 Essentially each move is a simple monotonic rotation
of a few joints. We have implemented this algorithm for the case when the vertices are in general position,
when it is straightforward.

Nearly the same algorithm proves the same result for trees, within the same bounds:

Theorem 2. Every simple tree in 4D may be straightened, by an algorithm that runs in O(n2) time and
O(n) space, and which accomplishes the straightening in O(n) moves.

Closed chains require more effort:

Theorem 3. Every simple closed chain in 4D may be convexified, by an algorithm that runs in
O(n6 logn) time, and which accomplishes the straightening in O(n6) moves.

All these results easily extend to higher dimensions.

Theorem 4. Theorems 1–3 hold for all dimensions d � 4, i.e., neither polygonal chains nor trees can
lock in dimensions greater than three.

We summarize our results in the context of earlier work in Table 1.

1.2. Background

Before commencing with our technical arguments, we start with some background, with the intent of
providing intuition to support our results.

2 “During each move, a (small) constant number of individual joint moves occur, where for each a vertexvi+1 rotates
monotonically about an axis through jointvi , with the axis of rotation fixed in a reference frame attached to some edges.”
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Fig. 1. The “knitting needles” example, based on Fig. 1 in [3] (by permission).

No knots in 4D. In [3,5], the same example of a locked open chain in 3D is provided. The version in the
latter paper is shown in Fig. 1.

One proof (used in [3]) that this chainK is locked depends on closing the chain by connectingv0 to
v5 to formK ′, and then arguing thatK can be straightened iff the corresponding trefoil knotK ′ can be
unknotted, which of course it cannot. Thus there is a close connection in 3D between unknotted, locked
chains and knots. However, the following theorem is well known:

Theorem 5. No 1D closed, tame, 3 non-self-intersecting curve C is knotted in R
4.

See, e.g., [1, pp. 270–271] for an informal proof. Because proofs of this theorem employ topological
deformations, it seems they are not easily modified to help settle our questions about chains in 4D.
The rigidity of the links prevents any easy translation of the knot proof technique to polygonal chains.
However, it does suggest that it would be difficult to construct a locked chain by extending the methods
used in 3D.

No cages in 4D. A second consideration lends support to the intuition behind our main claim. This is
the inability to confine one segment in a “cage” composed of other segments in 4D. Consider segment
s0 = v0v1 in Fig. 1. It is surrounded by other segments in the sense that it cannot be rotated freely about
one endpoint (sayv0) without colliding with the other segments. LetS be the 2-sphere inR3 of radius
�0 centered atv0. Each point onS is a possible location forv1. Segments0 is confined in the sense
that there are points ofS that cannot be reached froms0’s initial position without collision with the
other segments. This can be seen by centrally projecting the segments fromv0 onto S, producing an
“obstruction diagram”. It should be clear thatv1 is confined to a cell of this diagram. Although this by
no means implies that the chain in Fig. 1 is locked, it is at least part of the reason that the chain might be
locked.

We now argue informally that such confinement is not possible in 4D. Again lets0 = v0v1 be fixed
at v0, and letS be the 3-sphere inR4 of radius�0 centered onv0 that represents the possible locations
for v1. Again we project the other segments ontoS producing an obstruction diagram. As in the lower
dimensional case, this diagram is composed of 1D curves, being the projection of 1D segments. But in
the 3-sphereS, v1 has three degrees of freedom, and cannot be confined by a (finite) set of 1D curves.
Our next task is to make this intuitive argument more precise.

3 A curve istame if it is topologically equivalent to a polygonal curve [9, p. 5]. Any curve that is continuously differentiable,
i.e., in classC1, is tame.
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2. Straightening open chains in 4D

Let P be a simple, open polygonal chain in 4D withn � 2 vertices. Each vertexvi is also called a
joint of the chain. The segmentsi = vivi+1 we sometimes call alink of the chain. We say a jointvi is
straightened if (vi−1, vi, vi+1) are collinear and form a simple chain; in this case, the angle atvi is π .

We prove Theorem 1 by straightening the first jointv1, “freezing” it, and repeating the process until the
entire chain has been straightened. This is a procedure which, of course, could not be carried out in 3D.
But there is much more room for maneuvering in 4D. We have two different algorithms for accomplishing
this task. The first (Algorithm 1a) is easier to understand, but only establishes a bound of O(n4) on the
number of moves, and requires O(n4 logn) time. The second (Algorithm 1b) is a bit more intricate but
achieves O(n) moves in O(n2) time. Both follow the rough outline just sketched. We provide full details
for Algorithm 1a, but only sketch Algorithm 1b.

Define thegoal position vg for v0 (andsg = vgv1 the goal position fors0) as the unique position that
represents straightening of jointv1. Call the goal positionintersected if sg ∩ si �= ∅ for somei > 2; and
otherwise call itfree.

2.1. Algorithm 1a

A high-level view of the algorithm is as follows.

Algorithm 1a. Open chains
repeat until chain straighteneddo

1. if sg is free then
Construct obstruction diagram Ob(v0) on 3-sphere.
Apply motion planning to movev0 to vg.

2. else sg is intersected
Construct obstruction diagram Ob(v1) on 2-sphere.
Move v1 so that the goal position is not intersected.

2.1.1. Step 1: sg is free
Our argument depends on some basic intersection facts, which we formulate inR

d in a series of
lemmas before specializing to thed = 3 andd = 4 cases we need.

Geometric intersections in R
d . Let the coordinates ofRd bex1, x2, . . . , xd . A k-flat is the translate of a

subspace spanned byk linearly independent vectors. Flats fork = 0,1,2 are also called points, lines and
planes. Ak-sphere is the set of points in a(k + 1)-flat at a fixed radius from a point (itscenter) in that
flat. A 0-sphere is a set of two points, a circle is a 1-sphere, and the surface of a ball inR

3 is a 2-sphere.
When emphasizing the topology of ak-sphere, we will use the symbolS

k.

Lemma 1. The intersection of a 2-flat H (i.e., a plane) with a (d − 1)-sphere S in R
d is a circle, a point

or empty.

Proof. Translate and rotate the sphere and plane so that the sphere is centered on the origin, and the
plane is parallel to thex1x2-plane. The equations of the sphereS and the planeH are then:
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S: x2
1 + x2

2 + · · · + x2
d = r2, (1)

H : x3 = a3, x4 = a4, . . . , xd = ad, (2)

where theai are constants. LetA2 = ∑d
i=3a

2
i . Then

S ∩H : x2
1 + x2

2 +A2 = r2, (3)

x2
1 + x2

2 = r2 −A2. (4)

If r2 <A2, the intersection is empty. Ifr2 =A2, the intersection is the point(0,0, a3, . . . , ad). If r2 >A2,
the intersection is a circle inH with radius

√
r2 −A2 and center(0,0, a3, . . . , ad). ✷

Lemma 2. The intersection of a (1D) line, ray or segment with a (d − 1)-sphere S in R
d is at most two

points, i.e., it either contains one or two points or is the empty set.

Proof. Let s = ab be a segment, and let the sphere center bec. LetH be the 2D plane determined by the
three pointsa, b, c, i.e.,H is the affine span of{a, b, c}. Becauses ⊂H , we must haves = s ∩H . So

s ∩ S = (s ∩H)∩ S (5)

= s ∩ (H ∩ S). (6)

By Lemma 1,H ∩ S is a circle, and the claim for segments follows because a segment intersects a circle
in at most two points. Rays and lines yield the same result by selectinga andb sufficiently large. ✷

Let a, b andc be three distinct points inRd , such thatc does not lie on the segmentab. Call the set of
points that lie on rays that start atc and pass through a point ofab a triangle cone ∆c(a, b). If (a, b, c)
are collinear, the triangle cone degenerates to a ray.

Lemma 3. The intersection of a triangle cone ∆c(a, b) with a (d−1)-sphere S in R
d consists of at most

two connected components—and, if c is the center of S, of at most one component—each of which is a
circular arc or a point.

Proof. Let ∆ = ∆c(a, b), and letH be the 2D plane containing∆. Because∆ ⊂ H , ∆ = ∆ ∩ H . So
∆ ∩ S = ∆ ∩ (H ∩ S). By Lemma 1,H ∩ S is a circleC in the plane containing∆. So the problem
reduces to the intersection of a triangle cone with a circle. As illustrated in Fig. 2(a), this intersection
is at most one arc if the cone’s apexc is at the center of theC (∆1 in the figure), and at most two arcs
otherwise (∆2 in the figure). Any of the arcs illustrated could degenerate to points if the cone is a ray.
(Whenc is not the center ofS, the arc could be the whole circleC.) ✷

We will need a slight extension of this lemma. Define aquadrilateral cone Qc(a, b) to be the closure
of ∆c(a, b)\t , where t is the triangle determined by(a, b, c). ThusQc(a, b) is all the points on the
rays fromc at or beyondab. The next lemma says that the conclusion of the previous lemma holds for
quadrilateral cones as well.

Lemma 4. The intersection of a quadrilateral cone Qc(a, b) with a (d−1)-sphere S in R
d consists of at

most two connected components—and, if c is the center of S, of at most one component—each of which
is a circular arc or a point.
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Fig. 2. (a) Intersections of triangle cones∆1 = ∆c1(a1, b1) and∆2 =∆c2(a2, b2) with a circleC centered atc1.
(b) Intersections of quadrilateral conesQ1 andQ2 with C.

Proof. As Fig. 2(b) makes clear,Qc(a, b) is just ∆c(a, b) intersected with a closed halfplane inH
containingab. Intersecting the components from Lemma 3 with a halfplane cannot increase their number,
and so the claim follows. ✷
Obstruction diagram Ob(v0). Let C0 be theconfiguration space for vertexv0 whenv1 is fixed: the set of
all possible positions forv0 that preserve the length ofv1v0. C0 is a 3-sphereS in R

4 centered atv1 with
radius�0. LetF0 be thefree space for vertexv0 with all other verticesvi of the chain fixed: the subset of
C0 for which the chain is simple, i.e., for whichs0 does not intersectsi, i > 1, ands0 intersectss1 only at
v1. We define theobstruction diagram Ob(v0) for v0 as the set such thatF0 = C0\Ob(v0). Our goal is to
describe, and ultimately construct, Ob(v0).

To ease notation, letj∆i =∆vj (vi, vi+1) be the triangle cone with apexvj determined by segmenti,
and definejQi ⊆ j∆i as the similar quadrilateral cone.

Lemma 5. The set of points Ob(v0)⊂ C0 in the 3-sphere S consists of at most n− 1 components, each
of which is a circular arc of a circle or a point.

Proof. Ob(v0) is the union of the obstructions contributed by each segmentsi, i > 1, plus the single
point disallowing overlap withs1. If s0 intersectssi , thenv0 lies in the set1Qi in R

4, for thenv0 lies on
a ray fromv1 alongs0, beyond the crossing withsi . (For example, in Fig. 2(b), we havec1 = v1, a1 = vi
and b1 = vi+1.) Thus 1Qi ∩ S is precisely the locus of positions ofv0 for which s0 intersectssi . By
Lemma 4, this intersection is a circular arc or a point. Unioning over alli > 1 establishes the claim.✷

The following lemma is now immediate.

Lemma 6. If v0’s goal position vg is free, then v1 may be straightened.

Proof. Becausevg is free,vg /∈ Ob(v0). Because the given chain is assumed simple, the initial position
v0 /∈ Ob(v0). The locus of possiblev0 positions forms the 3-sphereS. The obstacles Ob(v0) are a finite
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set of circular arcs and points. The removal of Ob(v0) from S3 cannot disconnectv0 from vg. This follows
from the fact thatRd cannot be separated by a subset of dimension of less than or equal tod − 2 [13,
Theorem 3-61, p. 148]. Neither then canS

d be so disconnected. For suppose setX disconnects two points
p andq of S

d . Then stereographically projectS
d to R

d , from a center not inX or at the two points. This
produces a setX′ that disconnectsp′ from q ′ in R

d , contradicting the quoted theorem.
Therefore there is a path inF0 = S\Ob(v0) from v0 to vg, which represents a continuous motion ofs0

that straightensv1. ✷
It is this lemma which justifies the claim made in Section 1.2 that there can be no cages in 4D. We will

defer to Section 2.1.3 construction of the path guaranteed by this lemma.

2.1.2. Step 2: sg is intersected
If sg is intersected, then rotatings0 to the goal position necessarily violates simplicity at the goal

position. In this case, we slightly movev1, the joint betweens0 ands1, so that the new goal positions′g
is no longer intersected. That we can “break” the degeneracy of an intersected goal is established by this
lemma:

Lemma 7. v1 may be moved to v′
1 while keeping all other vertices fixed, so that the chain remains simple,

and the new goal s′g is not intersected.

Proof. Fix the positions ofv0, v2, v3, . . . , vn. The 2-sphere

S = {
z ∈ R

4: |z− v0| = �0, |z− v2| = �1
}

represents all the possible positions forv1 that preserve the lengths of its incident links. Note thatS

consists of the intersection of two 3-spheres. Because we may assume that the angle atv1 is not already
straightened,S does not degenerate to a single point. ThusS is a 2-sphere.

Now we construct an obstruction diagram Ob(v1) on S that is a superset of all those positions ofv1

for which (1) the goal positionsg (of s0) is intersected, or for which (2) the chain(v0, v1, v2) intersects
the remaining, fixed chain(v2, . . . , vn). We construct a superset rather than the precise obstruction set
because the former is easier but equally effective computationally.
1. Intersected goal positionssg. A goal segmentsg lies on the ray fromv2 throughv1, for it is exactly

thosesg that are straight atv1. For sg to intersectsi , v1 must lie in2∆i , the triangle cone with apex
at v2 and delimited bysi . See Fig. 3. Not everyv1 ∈ 2∆i leads to intersection ofsg with si : sg must
reachsi . The relevant subset of2∆i , could be detailed, but because it has one curved edge, we content
ourselves with a supset of the obstructions by forbiddingv1 anywhere in2∆i .
Applying Lemma 3 shows thatS ∩ 2∆i contributes at most two arcs or points to Ob(v1), for each
i /∈ {0,1}.

2. Intersections betweens0 ands1 and the remainder of the chain. Ob(v1) also contains all the positions
of v1 that cause the two adjacent links to intersect any of the other segments. The linkv2v1 is clearly
covered by2∆i . The linkv0v1 can be handled by the analogous triangle cone0∆i with apex atv0 and
throughsi . Again these sets provide a superset of the obstructions, and Lemma 3 again applies.

Summing over alli yields the obstruction superset Ob(v1) composed of at most 2· 3(n− 2)= O(n) arcs
or points onS. Thus Ob(v1) is an arrangement of O(n) arcs on a 2-sphere, with the initial position ofv1

lying on at least one arc (because by hypothesis,sg is intersected). Choosing any pointv′
1 ∈ S\Ob(v1)

interior to an arrangement cell on whose boundaryv1 lies suffices to establish the claim.✷
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Fig. 3. The triangle cone2∆i intersects the sphereS in at most two circular arcs.

Note that it is quite possible forv1 to be confined within a cell of the arrangement Ob(v1), but that this
“cage” is no impediment. We do not need a path fromv1 to an arbitrary point ofS; rather we only need
a path to any unobstructed pointv′

1. Although we could construct the arrangement Ob(v1) in O(n2α(n))

time and O(n2) space [10,12], for our limited goal of constructing just one point, we can do better.

Lemma 8. A move of v1 to the position guaranteed by Lemma 7 may be computed in O(n) time and
O(n) space.

Proof. Let Z = {a1, . . . , am} be the collection of arcs ofV that containv1. Z may be found by a brute
force check of each of the O(n) arcs. Pick two arcsa1 andaj angularly consecutive aboutv1 . This can
be accomplished in O(n) time by fixinga1, and lettingaj be the arc that makes the smallest angle with
a1. Let a be a circular arc ray (i.e., a directed great circle starting and ending atv1) that bisects this angle;
or if Z only contains one arc, leta be orthogonal to it; or ifZ only contains one point, leta be any ray
from v1.

Intersecta with every arc and point of Ob(v1), again in O(n) time. Letδ be the distance fromv1 along
a to the closest intersection. Finally, choosev′

1 as the pointδ/2 alonga. This point is guaranteed to be
off Ob(v1), and therefore unobstructed.

Moving (in one move)v1 to v′
1 establishes a new goals′g that is not intersected.✷

2.1.3. Motion planning
Now that we know we can perform Step 2 of Algorithm 1a in O(n) time per iteration, we return to

finding a path throughS3 for v0, as guaranteed by Lemma 6. Motion planning between two points of the
3-sphereF may be achieved by any general motion planning algorithm [18, Section 40.1.1]. For example,
Canny’s Roadmap algorithm achieves a time and space complexity of O(nk logn), wheren is the number
of obstacles andk the number of degrees of freedom in the robot’s placements. In our case,k = 3. His
algorithm produces a piecewise algebraic path throughF , of O(nk) pieces. Each piece constitutes a
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Fig. 4. The goal direction vectorw defines the direction thatw0 should be rotated to reachwg. The shaded triangle
cone1∆(v0, vg) is not crossed by any links of the chain ifw is unobstructed.

constant number of moves, with the constant depending on the algebraic degree of the curves, which
is bounded as a function ofk. Therefore each joint straightening can be accomplished in O(n3) moves.
Repeating the planning and straighteningn times leads to O(n4) moves in O(n4 logn) time. In the next
section we reduce the O(n3) moves per joint straightening to just 3 moves per straightening.

2.2. Algorithm 1b

We have now established Theorem 1, but with weaker complexity bounds than claimed. It is not
surprising that applying a general motion planning algorithm is wasteful in our relatively simple situation.
In fact a significant improvement over Algorithm 1a can be achieved by switching attention from the
absolute position ofv0, to the direction in whichs0 rotates. Let the vector alongs0 bew0 = v0 − v1, and
similarly letwg = vg − v1. Letw be thegoal direction: a unit vector orthogonal towg that represents the
direction in whichw0 should be rotated to move it to its goal position. See Fig. 4. Thusw is the unique
unit vector pointing in the direction of the component ofwg −w0 orthogonal towg:

a1wg + b1w =wg −w0 (7)

for some realsa1 > 0 andb1 > 0. The space of possible directionsw forms a 2-sphere rather than the
3-sphere we faced in Step 1 of Algorithm 1a. This permits replacing the O(n3 logn) moves per step from
motion planning, with at most two moves. We now proceed to describe this. Because this represents a
computational improvement only, the proofs are only sketched. More detailed proofs are contained in [6].

Algorithm 1b distinguishes three possibilities.
1. The goal position isintersected by some other link of the chain ( just as in Algorithm 1a).
2. The goal direction isobstructed in that rotation ofs0 in the directionw might hit some link of

the chain along its direct rotation to the goal position. We again define a direction to be obstructed
conservatively, working with a superset of the true obstructions:w is obstructed if the triangular cone
∆v1(v0, vg)= 1∆(v0, vg) is intersected by anysi, i > 1.

3. The goal direction isfree: it is not obstructed (and so the goal position is not intersected).
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A high-level view of our second algorithm is as follows.

Algorithm 1b. Open chains
repeat until chain straighteneddo

1. if w is free then
Rotates0 directly tosg.

2. else if w is obstructed then
Rotates0 to new position whose goal direction is free.

3. else if sg is intersected then
Move v1 so that the goal position is not intersected.

Step 3 is identical to Step 2 of Algorithm 1a, so we only discuss the first two steps.

2.2.1. Step 1: w is free
By our definitions,s0 may be rotated directly tosg without hitting any other segment of the chain.

Because the goal positionsg is not intersected, the chain remains simple even after the rotation has been
completed. Therefore, the links0 can be straightened in one move.

Note that this is the generic situation, in that for a “random” chain, e.g., one whose vertex coordinates
are chosen randomly from a 4D box, each link can be straightened with Step 1 of the algorithm
with probability 1. Steps 2 and 3 handle “degenerate” cases. We exploit this in our implementation
(Section 2.3).

2.2.2. Step 2: w is obstructed (but sg is not intersected)
Detecting obstructions. Whenw is obstructed, we again rely on construction of an obstruction diagram.
First we describe the space in which the obstruction diagram is embedded.

Consider the space of possible directions from whichs0 might approachsg. In 3D, this set of unit
vectors forms a 1-sphere, a circle, which can be viewed as orthogonal tosg and centered atvg; see
Fig. 5(a). Similarly, in 4D, the set of possible approach directions towardsg forms a unit 2-sphereS,
which again we center onvg. Every point on this sphere represents a direction of approach tosg; see
Fig. 5(b).

Theobstruction diagram Ob(sg) is the set of vectorsw representing obstructed goal directions forsg.

Lemma 9. If the goal sg is not intersected, the obstruction diagram Ob(sg) consists of at most n arcs
on S.

Proof. Take an arbitrary segmentsi of the chain, and “project” it tos′i in the 3-flatΠ ⊃ S orthogonal
to sg; i.e., s′i = 1∆i ∩ Π . See Fig. 5(a) for the 3D analog. We first claim that the set of directionsw

obstructed bys′i is identical to those obstructed bysi . Next we determine this set of directions. Every
vectorw determined by a point onS and its centervg, is orthogonal tosg by our choice ofΠ . So the set
of w obstructed bys′i is just thosew determined by the intersection ofg∆(s

′
i ) with S. By Lemma 3, this

is at most one arc on the sphere. See Fig. 6.✷
Detection of obstruction therefore reduces to deciding ifw lies on one or more arcs of an arrangement

of circular arcs on a 2-sphereS, which can be accomplished in O(n) time and space as in Lemma 8.
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Fig. 5. (a) Directions approaching the goal position in 3D. (b)S is a 2-sphere inR4.

Fig. 6. In 4D,si projects tos′i in the 3-flat containingS, and produces an arc of the obstruction diagram determined
by the intersection of the triangle coneg∆(s

′
i ) with S.

Skirting obstructions. Our next task is to moves0 whenw is obstructed so that its new goal direction
is free. This task is similar to that handled in Lemma 8—stepping off the arcs meeting atw—with one
additional constraint: the move must maintain the simplicity of the chain. Note that Ob(sg) does not
record chain simplicity, but rather records free goal directions. So we need to find a∆w that will move
w to be free, while simultaneously maintaining simplicity during the motion ofs0.

Lemma 10. If w is obstructed, s0 can be moved, maintaining simplicity throughout, so that its new goal
direction w′ =w+∆w is unobstructed. ∆w may be computed in O(n) time and space.
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Proof. Because the chain is initially simple, there must exist aβ > 0 such that rotation ofs0 aboutv1 by
an angle less thanβ leaves the chain simple. Thisβ can be computed by finding the smallest distance
d from s0 to any other segment, and using the angle of a cone centered ats0 of radiusd/2. Now∆w is
selected just as in Lemma 8, but subject to this angle constraint.✷

Note that because we have based our analysis on a fixedsg, moving s0 does not alter the obstruction
diagram, which records obstructed directions of approach tosg.

2.2.3. Algorithm 1b complexity
The algorithm straightens one joint in at most three moves: one to movev1 so the goal is not intersected

(Step 3), one to movev0 so that the goal is not obstructed (Step 2), and one to rotate directly to the goal
(Step 1). The total number of moves used by the algorithm is then at most 3n = O(n). For each of
the n iterations, Lemma 10 shows that the computations can be performed in linear time and space.
This then establishes the total time complexity of O(n2) claimed in Theorem 1. Because each move is
performed independently, the obstruction diagram arcs may be discarded after each iteration. Thus the
space requirements remain at O(n).

2.3. Implementation

We have implemented Algorithm 1b for chains in “general position” in C++. The program accepts
a chain as input, and first checks if it is simple. If it is, the straightening process starts; otherwise the
program exits. The program then straightens the chain link-by-link using Step 1, one move per link. It also
detects whether the goal is obstructed (Step 2) or intersected (Step 3) by solving sets of linear equations,
but in those cases it simply halts; we have not implemented the obstruction diagrams, or avoiding
obstructions. For a chain whose vertex coordinates are chosen randomly, the program straightens it with
probability 1, for then the degenerate cases handled by Steps 2 and 3 (when a point,w or v1, hits an

Fig. 7. Snapshots of the algorithm straightening a chain ofn= 100 vertices, initially (0), and after 25, 50, 75 and
all 99 joints have been straightened (left to right). (a) Scale approx. 50:1; the entire chain is visible in each frame.
(b) Scale approx. 1:1; the straightened tail is “off-screen”. (The apparent link length changes are an artifact of the
orthographic projection of the 4D chain down to 2D.)
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arc on a 2-sphere, e.g., Fig. 6) are unlikely to occur. The output of the program is a set of Geomview
or Postscript files that animate the straightening process. Fig. 7 shows output for a chain whosen= 100
vertices were chosen randomly and uniformly in[0,1]4.

3. Straightening trees in 4D

It will come as no surprise that essentially the same algorithm as just described can straighten trees
in 4D. The reason is that each segment was considered a fixed obstruction in the chain straightening
algorithm, and whether those segments form a chain or a tree is largely irrelevant, as long as there is
a free end. There is one spot at which the difference between a chain and a tree does matter, however:
freeing up an intersected goal position. We concentrate on this difference in the description below.

Algorithm 2. Trees
repeat until straighteneddo

1. Identify a nodex with chain descendantsC.
2. Straighten each chain inC, formingC ′.
3. if rg is intersectedthen

Construct obstruction diagram Ob(x) on 2-sphere.
Movex so thatrg not intersected.

4. Rotate each segment inC ′ to rg and coalesce.

Algorithm 2 chooses a leafz of the given treeT as root, and then identifies some nodex all of whose
descendant subtrees are chains (Step 1). Call this setC, see Fig. 8(a). Each chain inC can be straightened
one at a time via Algorithm 1, leaving a set of straightened chains, or segments,C ′ (Step 2). Define the
goal ray to be the extension of the parent segmentyx incident tox; see Fig. 8(b). Ifrg is not intersected
by any segment ofT \C ′, then each segment inC ′ can be rotated torg, each lying on top of one another
(Step 4). We can view them as coalesced into a single link, reducing the degree ofx to 2. The process
then repeats.

If, however,rg is intersected (Step 3), we need to movex so that the goal ray becomes free. There are
several ways to achieve this; we choose to parallel Step 2 of Algorithm 1a. Let(v0, v1, . . . , vm) be one
of the chains ofC ′, with vm adjacent tox. We distinguish this chain from the others inC ′; call the set of
othersC ′

1. Let the 2-link chain(v0, x, y) play the role of(v0, v1, v2) in Algorithm 1a. In that algorithm
we argued that Ob(v1) is a set of arcs and points on a 2-sphere (Fig. 3). Here we will reach the same
conclusion for Ob(x) on the 2-sphereS of positions forx.

The only difference is that in the current situation, thestar of segmentsC ′
1 is attached tox, and we need

to augment Ob(x) to reflect its obstructions. We opt to translateC ′
1 asx moves; this gives rise to two sets

of constraints: (1) those caused by a segment inC ′
1 intersecting a segment ofT ′ = T \{C ′

1 ∪ xy ∪ xv0};
(2) those caused byxy or xv0 intersecting a segment inC ′

1. For the first, the locus of positions ofx that
cause somes ∈ C ′

1 to intersect somesi ∈ T ′ is a parallelogram, congruent to the Minkowski sums ⊕ si .
Analogous to Lemma 3, it is easy to see that this holds:

Lemma 11. The intersection of a parallelogram with a (d − 1)-sphere S in R
d consists of at most four

connected components, each of which is an arc or a point.
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Fig. 8. (a) TreeT rooted atz. (b) After straightening chainsC incident tox; C′
1 is the set of straightened chains

excluding one distinguished chain(v0, v1, . . .).

Thus the constraints (1) add O(n) arcs or points to Ob(x). Constraints (2) can be seen to consist of
O(n) points onS: translating the starC ′

1 to y determines the rays thatxy might align with to causexy
to intersectC ′

1; and similarly translatingC ′
1 to v0 determines rays for intersection withxv0. The two

placements ofC ′
1 therefore generate O(n) additional point obstructions.

With Ob(x) again a set of O(n) arcs and points on a 2-sphere, Lemmas 7 and 8 hold, leading to the
same time complexities claimed for Algorithm 1, and establishing Theorem 2.

4. Convexifying closed chains in 4D

Our algorithm for convexifying closed chains employs theline tracking motions introduced in [14].
Indeed our algorithm mimics theirs in that we repeatedly apply line tracking motions, each of which
straightens at least one joint, until a triangle is obtained (which is a planar convex polygon, as desired).
Although the overall design of our algorithm is identical, the details are quite different, for there is
a major difference with [14]: They permitted self-intersections of the chain, whereas we do not. This
greatly complicates our task.4

Let (v0, v1, v2, v3, v4) be five consecutive vertices of a closed polygonal chain. We allowv0 = v4.
A line tracking motion ofv2 movesv2 along some lineL in space, while keeping bothv0 andv4 fixed.
As long as the angle at jointsv1 andv3 (theelbows) are neitherπ (straight) nor 0 (folded), such a motion
is possible. Neither angle can be 0 because that would violate the simplicity of the chain. Straightening
one joint is precisely our goal, so we assume that neither joint is straight; and therefore a line tracking
motion is possible.

We will chooseL and a direction along it so that the movement increases the distance fromv2 to both
v0 andv4 simultaneously. This necessarily opens both elbow angles. The motion stops when one elbow
straightens. The only issue is whether this can be done while maintaining simplicity. Our aim is to prove
this theorem:

4 An alternative convexifying algorithm, again permitting self-intersections, is described in [16]. Sallee accomplishes the
same result by a different basic motion, involving four consecutive vertices rather than the five used in [14].
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Theorem 6. For a simple 4D chain (v0, . . . , v4), there exists a line tracking motion of v2 that straightens
either v1 or v3 (or both) while maintaining simplicity of the chain throughout the motion.

A high-level view of the algorithm is as follows:

Algorithm 3. Closed chains
repeat until chain is a triangledo

Compute a lineL along which to movev2.
Compute free pathsπ1 andπ3 for v1 andv3.
Move v2 alongL,v1 alongπ1, andv2 alongπ2.
Freeze the straightened jointv1 or v3.

4.1. Choosing L

To fix L, the ray along whichv2 moves, we choose a pointq ∈ R
4 different fromv2, and letL be the

ray fromv2 that containsv2q. We will chooseq so that it is itself the point where one of the two joints
v1 or v3 becomes straight while movingv2 alongL.

Lemma 12. A point q determining an appropriate L may always be found, and in time and space O(n4).

Proof. We chooseq so that it satisfies these conditions:
1. Movingv2 alongL increases the distance fromv2 to v0 and tov4.
2. Eitherv1 or v3 becomes straight, i.e.,|qv0| = |v0v1| + |v1v2| = r0, or |qv4| = |v2v3| + |v3v4| = r4.
3. (a) If |qv0| = r0, thenqv0 does not intersect any other segment of the chain than those to which it is

incident.
(b) If |qv4| = r4, thenqv4 does not intersect any other segment of the chain than those to which it is

incident.
4. v2q does not intersect a segmentsi, i > 4.
Condition 3 ensures that our “goal” is not itself intersected, in the sense used in Section 2.

Let Ri be the set of points (the “region”) ofR4 that satisfy condition 1 above.R1 is the intersection
of two closed half-spaces containingv2, orthogonal tov0v2 andv2v4, respectively. Note thatv2 ∈ R1. If
v0v2 andv2v4 lie on the same line,R1 degenerates to a 3-flat orthogonal to that line; otherwise it is a
4-dimensional set.5 See Fig. 9 for a lower dimensional analog of the situation.

The set of pointsR2 = S0 ∪ S4 in 4D that satisfy condition 2 is the union of two 3-spheres,S0 andS4,
centered atv0 andv4 and of radiusr0 andr4, respectively. Because|v0v2| < r0, v2 is inside the 4-ball
bounded byS0. Therefore,R1 ∩ S0 �= ∅. Similarly, R1 ∩ S4 �= ∅. SoR1 ∩ R2 �= ∅. The dimensionality
of this set depends on whether or not{v0, v2, v4} are collinear: if they are, the 3-spheres are intersected
by a 3-flat producing 2-spheres; if they are not, the 3-spheres are intersected by a 4-dimensional wedge,
producing 3-dimensional regions of the 3-spheres.

Consider condition 3(a); clearly 3(b) is analogous. We want all those pointsq such thatqv0 does not
intersect any other link of the chain. Clearly the points forbidden by segmentsi lie in the triangle cone
0∆i = ∆v0(vi, vi+1), just as in the proof of Lemma 7. Intersecting0∆i for all i with R1 ∩R2 marks the

5 Although we could remove this possible degeneracy by movingv2 in a neighborhood (while preserving simplicity) to
break the collinearity, this is not necessary, as the proof goes through regardless.
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Fig. 9. Choosingq ∈L. R1 ∩R2 =R1 ∩ (S0 ∪ S4).

set of points that must be avoided in our choice ofq: R3 ⊃ R
4\⋃

i 0∆i . It is easiest to concentrate on the
intersection of0∆i with the spheres inR2. By Lemma 3, we know this intersection is at most two arcs
or points, independent of the dimension of the spheres. So whether or not{v0, v2, v4} are collinear, the
intersection produces O(n) arcs or points. Similarly, condition 4 leads toR4 ⊃ R

4\⋃
i>4 2∆i , for v2q can

intersectsi only if q lies in 2∆i . Again, O(n) arcs or points need be avoided inR1 ∩R2. No union of arcs
and points can cover the setR1 ∩R2, which is either 2- or 3-dimensional. Thus

⋂
i Ri �= ∅. We need only

choose aq in this set.
There are a variety of ways to choose such aq algorithmically. A naive method is to first construct an

arrangement of 2-flats inR4 each containing a triangle0∆i or 2∆i . This computation could be performed
in O(n4) time and space [11]. Intersecting this arrangement with the halfspaces delimitingR1 and the
3-spheresS0 andS4 leave us cells bound by algebraic surfaces inside

⋂
i Ri . The centroid of any such cell

can be selected asq. ✷
4.2. Line tracking in 3D

We start by thinking about the analogous situation in 3D. This will both set notation, and ground
intuition by showing why Theorem 6 does not hold in 3D.

4.2.1. Topology of configuration space in 3D
Let R[0,1) be the interval[0,1) on the real line, open at 1. We will parameterize the location ofv2 along

L by t ∈ [0,1), with t = 0 the start, andt = 1 whenv2 reaches theq of Lemma 12, the first time at which
a joint, straightens. Let this joint bev1 without loss of generality. LetC′ be the configuration space of
the four-link system in isolation, permitting intersections between the links, the prime to remind us that
t = 1 has been excluded. We claim that

C′ = S
1 × S

1 × R[0,1). (8)

This can be seen as follows. Fix somet so thatv2 is fixed. Then each ofv1 and v3 is free to rotate
(independently) on a circle inR3 centered on the axisv0v2 andv2v4, respectively. Ast varies from 0 to 1,
these circles move in space, and grow and shrink in radius; see Fig. 10. Att = 1 thev1 circle shrinks to
a point.



R. Cocan, J. O’Rourke / Computational Geometry 20 (2001) 105–129 121

Fig. 10. In 3D, the circle on whichv1 may lie moves in space asv2 slides upL.

But for t ∈ [0,1), both circles retain a positive radius. Thus the configuration spaceC has the topology
of S

1 × S
1 for eacht , and the claim follows.

4.2.2. Obstruction diagram in 3D
As in Section 2, we incorporate the obstacles representing the other links via an “obstruction diagram”.

We start by ignoring the four moving links as obstructions, and only consider the remaining, fixed links of
the polygonal chain as obstacles. We develop the obstruction diagram first for fixedt , so that the relevant
configuration space isS1 × S

1. Because we are ignoring the moving links as obstructions, movement
on the two circles is independent, so it suffices to determine the obstruction diagram Ob(v1) on one
1-sphere/circleS1, that forv1. The following lemma will be key in 4D.

Lemma 13. In 3D, if (v2 − v0) · (v1 − v0) �= 0 and (v2 − v0) · (v1 − v2) �= 0, then a single segment
contributes at most four points to Ob(v1). Otherwise, if either dot product is zero, a segment could
obstruct a finite-length arc of the S1 circle for v1.

Proof. We only sketch a proof, leaving details for the 4D case considered below. Spinningv1 along its
circle of freedom while maintainingv0 andv2 fixed traces out a “spindle” shape, which can be viewed
as the union of two cones. A segments that does not lie along a line through eitherv0 or v2 can intersect
each cone in at most two points, and so intersect the spindle in at most four points. See Fig. 11. These
four segment-cone intersection points correspond one-to-one with fourv1 positions onS1 at which there
is an intersection between the 2-link chain(v0, v1, v2) ands.

If the segments lies in the surface of the cone, then it contributes just one point to the diagram,
corresponding to the angle of spin that aligns one of the two links with the obstacle segment.

Finally, if either of the two linksv0v1 or v1v2 is orthogonal to the axis of the spindle, i.e., either dot
product is zero, then a segment obstacle could obstruct the entire circle, for one of the cones is then
degenerately flat. As Fig. 12 illustrates, here a segment might obstruct a range of rotations ofv1 − v2,
producing an arc in Ob(v1). ✷
4.2.3. Disconnected free space in 3D

Let v1(t) represent the position ofv1 on its circleS1 at a particular timet . The goal is for the links
(v0, v1, v2) to avoid all obstacles, which means thatv1(t) should avoid points of the obstruction diagram.
If we ignore for now the orthogonality case, then we have the situation that a finite set of links produce
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Fig. 11. One segments can contribute four
points to Ob(v1).

Fig. 12. (v2 − v0) · (v1 − v2) = 0 and
segments (which lies in the plane of the
circle) contributes an arc to the obstruction
diagram Ob(v1).

Fig. 13. Pointv1(t) is “captured” by two obstacle points in configuration space, the tube-like surface.

an obstruction diagram consisting of a finite set of points onS1. As t moves, these points wander around
the circle, disappear, enter, join or split. The moving links, previously ignored, just add a few more points
to the obstruction diagram, moving in a different manner. The diagram for the configuration space for
v1 then looks like arcs on the tube-likeS × R[0,1). It is clear that it is possible for the pointv1(t) to be
“captured” between two points of the obstruction diagram which move together and squeezev1(t) into a
collision. See Fig. 13. In this case, the free space for the pointv1 is not connected fromp1(0) to p1(1).
And indeed, it is easy to “cage in” the moving links by the fixed links so that no straightening is possible.
Our next task is to show that such caging-in is impossible in 4D.

4.3. Line tracking in 4D

4.3.1. Topology of configuration space in 4D
Turning now to 4D, exactly analogous to the situation in 3D, an elbow at the join of two links has a

space of possible motions in 4D that is topologicallyS
2, for it is the intersection of two 3-spheres. Thus

the configuration spaceC′ of our four-link chain fort ∈ [0,1), ignoring self-intersections, is

C′ = S
2 × S

2 × R[0,1). (9)

At t = 1 at least one of the 2-spheres shrinks to a point.
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4.3.2. Obstruction diagram in 4D
As in 3D, we analyze the obstruction diagram on one 2-sphereS1, that forv1, at a fixed value oft :

Ob(v1). Let v1(t) represent the position ofv1 on its sphereS1 at timet . We seek the set of points Ob(v1)

for which the links(v0, v1, v2) intersect some other segment of the chain,s4, s5, . . . , sn. Just as in 3D,
Ob(v1) is (in nondegenerate situations) a finite set of points. This claim relies on how a line may intersect
a cone.

Define a(d − 1)-cone C(a, b, θ), for apex pointa, axis pointb and cone angleθ ∈ [0, π/2], to be the
set of pointsp ∈ R

d that form an angleθ with respect to the axis, i.e., which satisfy

(p− a) · (b− a)= |p− a||b− a|cosθ. (10)

For the extreme values ofθ , C(a, b,0) is a ray froma throughb, andC(a, b,π/2) is a (d − 1)-flat
containinga and orthogonal toab. Note that a 1-cone is not the triangle cone from Section 2.1.1; rather a
1-cone is the union of two rays froma. In 3D,C(a, b, θ) is the surface of a right circular cone whose axis
is the ray froma throughb, and which form the angleθ with the axis ata (cf. Fig. 11). Its intersection
with a plane orthogonal toab is a circle. In 4D,C(a, b, θ) is a “right spherical cone”, whose intersection
with a 3-flat orthogonal toab is a 2-sphere. Note that it is no restriction to insist thatθ ∈ [0, π/2], for we
can ensure this forθ > π/2 by selecting an axis pointb′ for the cone to be on the other side of the apex
a, on the line containingab, thereby “reflecting”θ to π − θ .

Lemma 14. The intersection of the (d− 1)-cone C(a, b, θ), θ �= π/2, with a line, ray or segment whose
containing line does not include the apex a, is at most two points: two points, one point or empty.

This claim can be seen intuitively as follows. LetC be the cone ands a segment inRd . If s is contained
in a (d − 1)-flatΠ orthogonal toab, then becauseΠ ∩C is a sphere, the result follows from Lemma 2.
Otherwises is contained in a flat whose intersection withC is an ellipsoid, and the result follows because
an ellipsoid is affinely equivalent to a sphere [17, p. 95].

Proof. Let |ab| = 1 without loss of generality. Translate and rotateC so thata = (0,0, . . . ,0) and
b= (1,0,0,0, . . . ,0). For a pointp = (x1, . . . , xd), Eq. (10) reduces to

p · b= |p|cosθ, (11)

(x1, . . . , xd) · (1,0,0,0, . . . ,0)=
√
x2

1 + · · · + x2
d cosθ, (12)

x2
1 = (

x2
1 + · · · + x2

d

)
cos2 θ. (13)

Represent the pointp via the parametert :

p = (α1 + β1t, . . . , αd + βdt). (14)

Substitution of this into Eq. (13) yields a quadratic equation int , which has at most two roots.
We now examine the degenerate solutions. Because we assumed thatθ �= π/2, cosθ �= 0. Thus the

right hand side of Eq. (13) can only be zero whenx2
1 + · · · + x2

d = 0, i.e., whenp = (0,0, . . . ,0) is the
apexa. This corresponds to a line througha, excluded by our assumptions.✷
Lemma 15. In 4D, if (v2 − v0) · (v1 − v0) �= 0 and (v2 − v0) · (v1 − v2) �= 0, then a single segment s
contributes at most four points to Ob(v1).
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Proof. Moving v1 sweeps out two finite cones, which are truncations of the infinite conesC(v0, v2, θ0)

andC(v2, v0, θ2), with

(v2 − v0) · (v1 − v0) = |v2 − v0||v1 − v0|cosθ0, (15)

(v2 − v0) · (v1 − v2) = |v2 − v0||v1 − v2|cosθ2. (16)

By the preconditions of the lemma, we haveθj �= π/2, j = 0,2, so we may assumeθj ∈ [0, π/2) by the
reflection maneuver suggested previously. Consider two cases:
1. The line containings does not pass through either cone apex,v0 or v2. The conditions of Lemma 14

are satisfied, establishing thats intersects the two cones in at most four points. Each of these points
fixes a position ofv1 corresponding to an obstruction, and so contributes this point to Ob(v1).

2. The lineH containings passes throughv0 (the case throughv2 is exactly analogous and will not be
treated separately). Then it may be thats ∩ C(v0, v2, θ0) is a subsegment ofs. This is because the
vectorp− v0 makes the same angle withv2 − v0 for all p ∈ s (cf. Eq. (10)). In this case,s obstructs
the unique position ofv1 that places it onH, and so contributes just one point to Ob(v1). Together
with the at most two points from the other cone,s generates at most three points of Ob(v1). ✷
The case excluded by the precondition of Lemma 15 refers to the situation in which one cone is

degenerately flat, as previously illustrated in Fig. 12. We now analyze this situation in detail.

Lemma 16. If (v2 − v0) · (v1 − v0)= 0, then Ob(v1) is a finite set of points and arcs on S1 (the 2-sphere
of v1 positions).

Proof. In this caseθ0 = π/2 from Eq. (15), and the infinite coneC(v0, v2, π/2) degenerates to the 3-flat
orthogonal to the axisv0v2 and including the apexv0. The finite cone swept out by the links0 = v0v1 is a
ballB0 of radius�0 centered atv0. In the 3D situation,B0 is a disk (cf. Fig. 12); in 4D, it is a solid sphere
whose boundary is a 2-sphereS1 representing the possible positions forv1.

The obstructed positions onS1 are those for whichs0 intersects some segmentsi . Consider two
possibilities:
1. si does not lie in the same 3-flat ofR

4 asS1. Thensi intersectsB0 in at most one pointp (because
it can intersect the flat in at most one point), and then only whens0 passes throughp do we have an
obstruction. Thussi contributes one point to Ob(v1).

2. si is in the same 3-flat asS1. Now we have a situation exactly analogous to that shown in Fig. 6: the
obstruction is the intersection of the triangle cone0∆i with S1. Lemma 3 then establishes thats adds
at most two arcs or points to Ob(v1). ✷

Lemma 17. The condition (v2 − v0) · (v1 − v0)= 0 can hold at most one value of t ∈ [0,1] during the
movement of v2 along L.

Proof. This follows immediately from our choice ofL, which guarantees that the distance|v0v2|
increases, and so the angle atv1 opens. This angle can therefore pass throughπ/2 at most once. See
Fig. 14. ✷
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Fig. 14. The special condition(v2 − v0) · (v1 − v0)= 0 holds at most once.

4.3.3. Connected free space in 4D
Again letv1(t) represent the position ofv1 on its 2-sphereS1 of possible positions. We first describe

the free space for the motion of the 2-link chain(v0, v1, v2), avoiding the fixed linkss4, s5, . . . , sn. It is a
subset ofS2 × R[0,1). For eacht ∈ [0,1), we know from Lemma 15 that Ob(v1) is a set of points or arcs;
and from Lemma 17 we know Ob(v1) is a finite set of points, except for at most onet , at which it is a
set of points and arcs. Thus ifv1(t) avoids these obstructions, it avoids intersection with the remainder
of the chain.

But now it should be clear that it is easy forv1(t) to “run away” from the obstructions. Think of its
sphere of possible positions growing and shrinking with timet . v1(t)must avoid a set of points at any one
time, and once (cf. Lemma 17), a set of arcs. This is easily done: there is no way to “cage” inv1(t) with
these obstacles. Another view of this situation is that the configuration spaceS

2×R[0,1) is 3-dimensional,
and the obstructions Ob(v1(t)) for t ∈ [0,1) are 1- or 0-dimensional, and the removal of a 1D set cannot
disconnect a 3D set (cf. proof of Lemma 6).

The remainder of this subsection establishes this claim more formally. Apath in a topological spaceX
is a continuous functionγ : [0,1] →X. A space ispath-connected if any two of its points can be joined
by a path [2]. We first work with the spaceC′

1: the positions forv1, for t ∈ [0,1). Later we will add in
t = 1, and positions forv3.

Lemma 18. The free space F ′
1 ⊂ C′

1 for v1 in the configuration space C′
1 = S

2 ×R[0,1) is path-connected.

Proof. It will help to view our configuration space as follows. The 2-sphereS1 is represented by a flat
two-dimensional sheet, andR[0,1) is represented as a vertical axis. The result is a three-dimensional space,
analogous to Fig. 13, that could look as depicted in Fig. 15. The point obstacles Ob(v1) become paths
monotone with respect to the verticalt-axis. At onet = t1 we may have arc obstacles as well. We need
to show thatv1(0) is connected by a path tov1(t

′), for anyt ′ < 1. We proceed in two cases:
1. Ob(v1) contains only points for allt ∈ [0,1). LetN be the maximum number of points in Ob(v1) over

all t ; we knowN � 2n. A 2-sphere with a finite numberN points removed is path-connected. For each
t , removeN points from the correspondingS1(t): those in Ob(v1) at thatt , and extra distinct points
to “pad out” toN . Any two spheres with the same number of points removed are homeomorphic.
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Fig. 15. The free spaceF1 for v1 is path-connected.π1 (dark) connectsp1(0) to p1(1). Ob(v1) includes points at
a fixedt , forming curves (shaded) over time. The shaded subspace at timet = t1 includes arcs in Ob(v1).

ThereforeF ′
1 is homeomorphic toS1(0)×R[0,1). Because each of those spaces is path-connected, and

the product of two path-connected spaces is path-connected, we have established the claim.
2. Ob(v1) contains arcs att = t1. The main idea here is to choose a pointp1 = v1(t1) that is unobstructed

at timet = t1, and then connect fromv1(0) to p1, and fromp1 to v1(t
′). It is clear, as we have shown

in Case 1, that the spacesF− = C/t∈[0,t1) andF+ = F/t∈(t1,1) are path connected. We will prove that
there exist pointsp0 ∈F− andp2 ∈ F+ such thatp0 andp2 are connected by a path.
We will call a pointp free if it does not belong to any obstruction diagram. Letp1 ∈ S1(t1) be a free
point onS1 at t . It is clear that such a point exists, since the obstruction diagram is a finite set of arcs
and points. It is also clear that there exists a neighborhoodU ⊂ F ′

1 of p1 all of whose points are free.
Choosep0 ∈U , p0 ∈ S1(t0), t0 < t1 andp2 ∈U , p2 ∈ S1(t2), t1 < t2. See Fig. 15. Both points are free
and can be connected by a path inU to p1. But p0 ∈ F− andp2 ∈ F+, both path connected spaces.
Thus we may connectv1(0) to p0 to p1 to p2 to v1(t

′). ✷
We now address the endpointt = 1, extendingC ′

1 to C1 for t ∈ [0,1]. As v2 approachesq onL, one
of the spheres, that forv1 by our assumptions, shrinks to zero radius. Thus Fig. 15 is not an accurate
depiction neart = 1, for the configuration space narrows to a point here.

Lemma 19. The free space F1 for v1 in the full configuration space C1 is path-connected.

Proof. We have chosenq andL in Lemma 12 so that thet = 1 endpoint is free in the sense that the
straightened chainv0v1v2 does not intersect the fixed portion of the chain. Thus there is a neighborhood
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U of t = 1 such thatC1 is devoid of all obstructions within that neighborhood. Chooset ′ ∈ U and apply
Lemma 18 to yield a path fromv1(0) to v1(t

′). Connect withinU from v1(t
′) to the endpointv1(1). ✷

Now we includev3 in the analysis.

Lemma 20. The free space F ⊂ C for both v1 and v3 in the configuration space C for t ∈ [0,1] is
path-connected.

Proof. The key here is the independence of the motions ofv1 andv3. Letπ1 be a path forv1(t) through
F1, whose existence is guaranteed by Lemmas 18 and 19. Now constructF3 as the possible positions
v3(t) for v3, avoiding at each time Ob(v3(t)), where this time the obstructions include not only the fixed
links s4, s5, . . . , sn, but also the two moving linkss0 ands1, determined byπ1. If v3(t) avoids Ob(v3(t))

for eacht , then all intersections are avoided: we do not need to include the moving links inF1, because
intersection is symmetric—if the linkss2 ands3 do not intersects0 ands1, thens0 ands1 do not intersect
s2 ands3.

For a fixedt , the obstacles are fixed segments, and Ob(v3) is again a finite set of points, or, for at most
one t , a set of arcs: Lemmas 15 and 17 apply unchanged. The independence of the motion ofv3 from
v1 permits us to treat the moving segmentss0 ands1 on par with the fixed segments: the only difference
is that their obstacle points move throughC3 differently. Therefore a pathπ3 for v3(t) may be found in
F3 ⊂ C3. The two pathsπ1 andπ3, together with the rayL for v2, constitute a path for moving the 4-link
chain(v0, v1, v2, v3, v4) throughC while maintaining simplicity. ✷

This finally completes the proof of Theorem 6.

4.4. Motion planning

We now know a path that avoids self-intersection exists, i.e., either the jointv1 or v3 can be
straightened. The next step is to compute such a path algorithmically. We rely on general motion planning
algorithms, as in Section 2.1.3.

Our “robot” consists of the four links(v0, v1, v2, v3, v4) moving in the 5-dimensional configuration
spaceC, Eq. (9). The subspaceC0 that avoids self-intersection between the four links is some
semialgebraic subset ofC, semialgebraic because the constraints on self-intersection may be written
in Tarski sentences (see, e.g., [15]). The free configuration spaceF is composed of the points ofC0

that avoid the obstacles, which is again a semialgebraic set. Canny’s Roadmap algorithm achieves a
time and space complexity of O(n5 logn), wheren is the number of obstacles, because in our case, the
configuration space hask = 5 dimensions. The algorithm produces a piecewise algebraic path through
F , of O(n5) pieces. Each piece constitutes a constant number of moves, and so each joint straightening
can be accomplished in O(n5) moves. Repeating the planning and straighteningn times leads to O(n6)

moves in O(n6 logn) time. Because choosingL times requires at most O(n4) time by Lemma 12, the time
complexity is dominated by the path planning, thereby establishing the bounds claimed in Theorem 3.

In the same way that Algorithm 1b improved on Algorithm 1a by avoiding motion planning, it is likely
Algorithm 3 could be improved by an ad hoc algorithm.
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5. Higher dimensions

We have already shown that every simple open chain or tree in 4D can be straightened, and every
closed chain convexified. Our final task is to prove that these results hold for higher dimensions, using
the results from 4D.

For an open chain, we straighten four links at a time and then repeat the procedure until the chain is
straight. If the chain or tree contains fewer than four links, then it spans at most ak-flat for k � 3, and
it can be included inR4. For a closed chain, our algorithm also moves four links at a time. Four links
determine at most ak-flatH for k � 4 which means that it can be included in a 4-flat inR

d, d � 4.
We have already shown that these four links, for both all types of chains, can be straightened in 4D;

therefore, they can be straightened in this 4-flatH ⊂ R
d . We only have to worry about the pieces of the

remainder of the chain that intersectH . But since we are dealing with segments, their intersection withH

is either a point or a segment. But these are the kind of obstructions we have proven that can be avoided
in R

4. Therefore, the straightening of these four links can be completed inH , and therefore inRd , while
maintaining rigidity and simplicity.

The complexity for the algorithms inRd, d � 4, is the same as for the algorithms in 4D, for all
computations are performed in 4-flats. This proves Theorem 4.
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