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Abstract

We prove that, in all dimension&> 4, every simple open polygonal chain and every tree may be straightened,
and every simple closed polygonal chain may be convexified. These reconfigurations can be achieved by algorithms
that use polynomial time in the number of vertices, and result in a polynomial number of “moves”. These results
contrast to those known fak= 2, where trees can “lock”, and far= 3, where open and closed chains can lock.
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1. Introduction
1.1. Summary

A polygonal chain P = (v, v1, ..., v,) iS @ sequence of consecutively joined segmentsv; v; 1 of
fixed lengthse; = |s;|, embedded in space. A chaindksed if the line segments are joined in cyclic
fashion, i.e., ifv, = vo; otherwise, it isopen. A polygonal treeis a collection of segments joined into a
tree structure. A chain or treessnpleif only adjacent edges intersect, and only then at the endpoint they
share. We study reconfigurations of simple polygonal chains and trees, continuous motions that preserve
the lengths of all edges while maintaining simplicity. One basic goal is to determine if an open chain
can bestraightened—stretched out in a straight line, and whether a closed chain caorivexified—
reconfigured to a planar convex polygon. For trees, straightening permits noncrossing violations of
simplicity to allow the segments to align along a common straight line. If an open chain or tree cannot be
straightened, or a closed chain convexified, it is calteked. This terminology is borrowed from [3,4].
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1 straightening for trees is never defined in [4]. Instead they rely on mutually unreachable simple configurations.
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Table 1
Dimension Chains Trees
2 Cannot lock Lockable
3 Lockable Lockable
d=4 Cannot lock Cannot lock

Most of the work in this area was fueled by the longstanding open problem of determining whether
every open (or closed) chain in 2D can be straightened (or convexified). This was recently settled [8] in
the affirmative: 2D chains cannot lock. In contrast it was earlier established that trees in 2D [4], and both
open and closed chains in 3D [3,5] can lock. In this paper we prove that, for all dimedsioasneither
chains (open or closed) nor trees can lock. We partition our results into four main theorems:

Theorem 1. Every simple open chain in 4D may be straightened, by an algorithm that runs in O(n?)
time and O(n) space, and which accomplishes the straightening in O(n) moves.

Here “move” is used in the sense defined in f3fssentially each move is a simple monotonic rotation
of a few joints. We have implemented this algorithm for the case when the vertices are in general position,
when it is straightforward.

Nearly the same algorithm proves the same result for trees, within the same bounds:

Theorem 2. Every simple tree in 4D may be straightened, by an algorithm that runs in O(»?) time and
O(n) space, and which accomplishes the straightening in O(r) moves.

Closed chains require more effort:

Theorem 3. Every simple closed chain in 4D may be convexified, by an algorithm that runs in
O(n®logn) time, and which accomplishes the straightening in O(n°) moves.

All these results easily extend to higher dimensions.

Theorem 4. Theorems 1-3 hold for all dimensions d > 4, i.e,, neither polygonal chains nor trees can
lock in dimensions greater than three.

We summarize our results in the context of earlier work in Table 1.
1.2. Background

Before commencing with our technical arguments, we start with some background, with the intent of
providing intuition to support our results.

2“During each move, a (small) constant number of individual joint moves occur, where for each awygrierotates
monotonically about an axis through joint, with the axis of rotation fixed in a reference frame attached to some edges.”
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Fig. 1. The “knitting needles” example, based on Fig. 1 in [3] (by permission).

No knotsin 4D. In [3,5], the same example of a locked open chain in 3D is provided. The version in the
latter paper is shown in Fig. 1.

One proof (used in [3]) that this chaik is locked depends on closing the chain by connectintp
vs to form K’, and then arguing tha& can be straightened iff the corresponding trefoil kkdtcan be
unknotted, which of course it cannot. Thus there is a close connection in 3D between unknotted, locked
chains and knots. However, the following theorem is well known:

Theorem 5. No 1D closed, tame, 3 non-self-intersecting curve C is knotted in R*,

See, e.g., [1, pp. 270-271] for an informal proof. Because proofs of this theorem employ topological
deformations, it seems they are not easily modified to help settle our questions about chains in 4D.
The rigidity of the links prevents any easy translation of the knot proof technique to polygonal chains.
However, it does suggest that it would be difficult to construct a locked chain by extending the methods
used in 3D.

No cages in 4D. A second consideration lends support to the intuition behind our main claim. This is
the inability to confine one segment in a “cage” composed of other segments in 4D. Consider segment
so = vovy in Fig. 1. It is surrounded by other segments in the sense that it cannot be rotated freely about
one endpoint (sayyp) without colliding with the other segments. L&tbe the 2-sphere iR® of radius
£y centered abg. Each point onS is a possible location fop;. Segmentsg is confined in the sense
that there are points of that cannot be reached frosg’s initial position without collision with the
other segments. This can be seen by centrally projecting the segmentsdframo S, producing an
“obstruction diagram”. It should be clear that is confined to a cell of this diagram. Although this by
no means implies that the chain in Fig. 1 is locked, it is at least part of the reason that the chain might be
locked.

We now argue informally that such confinement is not possible in 4D. Agaisy letvgv; be fixed
atvg, and letS be the 3-sphere i®* of radius¢, centered ony that represents the possible locations
for v1. Again we project the other segments ostproducing an obstruction diagram. As in the lower
dimensional case, this diagram is composed of 1D curves, being the projection of 1D segments. But in
the 3-spheres, v, has three degrees of freedom, and cannot be confined by a (finite) set of 1D curves.
Our next task is to make this intuitive argument more precise.

3 A curve istameif it is topologically equivalent to a polygonal curve [9, p. 5]. Any curve that is continuously differentiable,
i.e., in clasxCl, is tame.
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2. Straightening open chainsin 4D

Let P be a simple, open polygonal chain in 4D with> 2 vertices. Each vertey; is also called a
joint of the chain. The segment = v;v; 1 we sometimes call ink of the chain. We say a joini; is
straightened if (v;_1, v;, v;1) are collinear and form a simple chain; in this case, the anglgiatr.

We prove Theorem 1 by straightening the first jaipt“freezing” it, and repeating the process until the
entire chain has been straightened. This is a procedure which, of course, could not be carried out in 3D.
But there is much more room for maneuvering in 4D. We have two different algorithms for accomplishing
this task. The first (Algorithm 1a) is easier to understand, but only establishes a bouiia*pH@ the
number of moves, and requireg/dlogn) time. The second (Algorithm 1b) is a bit more intricate but
achieves @) moves in Qn?) time. Both follow the rough outline just sketched. We provide full details
for Algorithm 1a, but only sketch Algorithm 1b.

Define thegoal position vy for vy (andsy = vgv; the goal position fosg) as the unique position that
represents straightening of joint. Call the goal positionntersected if sq Ns; # ¥ for somei > 2; and
otherwise call iffree.

2.1. Algorithm la
A high-level view of the algorithm is as follows.

Algorithm la. Open chains
repeat until chain straightenedo
1.if 54 is free then
Construct obstruction diagram Ql3) on 3-sphere.
Apply motion planning to moveg to vy.
2. else sg is intersected
Construct obstruction diagram QR) on 2-sphere.
Move v; so that the goal position is not intersected.

2.1.1. Sep 1. sqisfree
Our argument depends on some basic intersection facts, which we formul&teima series of
lemmas before specializing to thle= 3 andd = 4 cases we need.

Geometric intersections in R?. Let the coordinates dR“ be x1, x5, ..., x4. A k-flat is the translate of a
subspace spanned hyinearly independent vectors. Flats foe= 0, 1, 2 are also called points, lines and
planes. Ak-sphere is the set of points in(a + 1)-flat at a fixed radius from a point (itenter) in that
flat. A O-sphere is a set of two points, a circle is a 1-sphere, and the surface of alb&lkia 2-sphere.
When emphasizing the topology okasphere, we will use the symbst.

Lemma 1. Theintersection of a 2-flat H (i.e., a plane) with a (d — 1)-sphere S in R isa circle, a point
or empty.

Proof. Translate and rotate the sphere and plane so that the sphere is centered on the origin, and th
plane is parallel to the; x,-plane. The equations of the sphefand the planeéd are then:
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S: X244 x=r2 ()
H: x3=a3 xa=as, ..., Xg=ay, 2

where thes; are constants. Let? = S°%_;4?. Then

SNH: x24x3+A%2=r? (3)
xf+x22:r2 — A2 4)

If r? < A?, the intersection is empty. i#f = A2, the intersection is the poii®, 0, as, . .., ay). If r? > A2,
the intersection is a circle i with radius+/r2 — A2 and centex0, 0, a3, ...,a;). O

Lemma 2. Theintersection of a (1D) line, ray or segment with a (d — 1)-sphere S in R¢ is at most two
points, i.e., it either contains one or two points or isthe empty set.

Proof. Lets =ab be a segment, and let the sphere center. het H be the 2D plane determined by the
three pointsz, b, ¢, i.e., H is the affine span ofa, b, c}. Because C H, we must have =s N H. So

sNS=GNH)NS ©))
=sN(HNS). (6)

By Lemma 1,H N S is a circle, and the claim for segments follows because a segment intersects a circle
in at most two points. Rays and lines yield the same result by selectimglb sufficiently large. O

Leta, b andc be three distinct points iR¢, such that does not lie on the segmemb. Call the set of
points that lie on rays that start and pass through a point eb atriangle cone A.(a, b). If (a, b, ¢)
are collinear, the triangle cone degenerates to a ray.

Lemma 3. Theintersection of atriangle cone A.(a, b) witha (d — 1)-sphere S in R consists of at most
two connected components—and, if ¢ is the center of S, of at most one component—each of which isa
circular arc or a point.

Proof. Let A = A.(a, b), and letH be the 2D plane containing. BecauseA ¢ H, A= AN H. So
ANS=AN(HNS). By Lemma 1,H N S is a circleC in the plane containingl. So the problem
reduces to the intersection of a triangle cone with a circle. As illustrated in Fig. 2(a), this intersection
is at most one arc if the cone’s apexs at the center of th€' (A, in the figure), and at most two arcs
otherwise @A, in the figure). Any of the arcs illustrated could degenerate to points if the cone is a ray.
(Whenc is not the center of, the arc could be the whole circte.) O

We will need a slight extension of this lemma. Definguadrilateral cone Q.(a, b) to be the closure
of A.(a, b)\t, wherer is the triangle determined b, b, ¢). Thus Q.(a, b) is all the points on the
rays fromc at or beyondib. The next lemma says that the conclusion of the previous lemma holds for
guadrilateral cones as well.

Lemma4. Theintersection of a quadrilateral cone Q.(a, b) witha (d — 1)-sphere S inIR? consists of at
most two connected components—and, if ¢ is the center of S, of at most one component—each of which
isacircular arc or a point.
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(b)

Fig. 2. (a) Intersections of triangle conds = A, (a1, b1) and Az = A, (a2, b2) with a circleC centered at;.
(b) Intersections of quadrilateral con@s and Q2 with C.

Proof. As Fig. 2(b) makes clearQ.(a, b) is just A.(a, b) intersected with a closed halfplane i
containingab. Intersecting the components from Lemma 3 with a halfplane cannot increase their number,
and so the claim follows. O

Obstruction diagram Ob(vg). Let Cqy be theconfiguration space for vertexvy whenv; is fixed: the set of
all possible positions forg that preserve the length ofvg. Cg is a 3-spheres in R* centered at; with
radius{g. Let Fy be thefree space for vertexvg with all other vertices; of the chain fixed: the subset of
Co for which the chain is simple, i.e., for whicl does not interseact, i > 1, andsg intersects; only at
v1. We define thebstruction diagram Ob(vg) for vy as the set such thdfy = Co\Ob(vg). Our goal is to
describe, and ultimately construct, @F).

To ease notation, lgtA; = A, (v;, vi11) be the triangle cone with apex determined by segment
and defing Q; € ; A; as the similar quadrilateral cone.

Lemma5. The set of points Ob(vg) C Cp in the 3-sphere S consists of at most n — 1 components, each
of which isa circular arc of a circle or a point.

Proof. Ob(vg) is the union of the obstructions contributed by each segmient > 1, plus the single
point disallowing overlap with. If 5o intersectss;, thenuy lies in the set Q; in R?, for theny lies on
a ray fromv; alongsp, beyond the crossing with. (For example, in Fig. 2(b), we have = v, a; = v;
andb; = v;1.) Thus1Q; N S is precisely the locus of positions of for which sq intersectss;. By
Lemma 4, this intersection is a circular arc or a point. Unioning overalll establishes the claim.O

The following lemma is now immediate.
Lemma6. If vy’s goal position vy is free, then v, may be straightened.

Proof. Becausey is free,vg ¢ Ob(vg). Because the given chain is assumed simple, the initial position
vo ¢ Ob(vg). The locus of possibleg positions forms the 3-sphet® The obstacles Qlpg) are a finite
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set of circular arcs and points. The removal of( @b from S cannot disconneat, from vg. This follows
from the fact thafR? cannot be separated by a subset of dimension of less than or eqiial 20[13,
Theorem 3-61, p. 148]. Neither then csthbe so disconnected. For supposeXelisconnects two points
p andq of S?. Then stereographically projegt to R?, from a center not irk or at the two points. This
produces a seX’ that disconnectg’ from ¢’ in R¢, contradicting the quoted theorem.

Therefore there is a path iRy = S\Ob(vg) from vg to vy, which represents a continuous motions@f
that straightens;. O

It is this lemma which justifies the claim made in Section 1.2 that there can be no cages in 4D. We will
defer to Section 2.1.3 construction of the path guaranteed by this lemma.

2.1.2. Sep 2: 54 isintersected

If s4 is intersected, then rotating to the goal position necessarily violates simplicity at the goal
position. In this case, we slightly mowug, the joint betweeng ands,, so that the new goal positi
is no longer intersected. That we can “break” the degeneracy of an intersected goal is established by this
lemma:

Lemma7. v; may be moved to v; whilekeeping all other verticesfixed, so that the chain remains simple,
and the new goal s is not intersected.

Proof. Fix the positions obyg, vo, vs, ..., v,. The 2-sphere
S={zeR" |z—vol =¢o, |z —v2| =1}

represents all the possible positions fgrthat preserve the lengths of its incident links. Note tkiat

consists of the intersection of two 3-spheres. Because we may assume that the anaat already

straightened$ does not degenerate to a single point. THus a 2-sphere.

Now we construct an obstruction diagram @§ on S that is a superset of all those positionsvgf
for which (1) the goal positiong (of so) is intersected, or for which (2) the chaing, vy, vo) intersects
the remaining, fixed chaifw,, ..., v,). We construct a superset rather than the precise obstruction set
because the former is easier but equally effective computationally.

1. Intersected goal positiong. A goal segmenty lies on the ray fromv, throughwy, for it is exactly
thosesy that are straight at;. For sq to intersects;, vy must lie in,A;, the triangle cone with apex
at v, and delimited bys;. See Fig. 3. Not every; € »A; leads to intersection of; with s;: sg must
reachs;. The relevant subset gfA;, could be detailed, but because it has one curved edge, we content
ourselves with a supset of the obstructions by forbiddingnywhere inA;.

Applying Lemma 3 shows thaf N ,A; contributes at most two arcs or points to @p, for each

i ¢1{0,1}.

2. Intersections betwee ands; and the remainder of the chain. @b) also contains all the positions
of v; that cause the two adjacent links to intersect any of the other segments. Thevling clearly
covered by, A;. The linkvgu; can be handled by the analogous triangle cenewith apex atvg and
throughs;. Again these sets provide a superset of the obstructions, and Lemma 3 again applies.

Summing over ali yields the obstruction superset @p) composed of at most-B(n — 2) = O(n) arcs

or points onS. Thus Olgv;) is an arrangement of @) arcs on a 2-sphere, with the initial positionwaf

lying on at least one arc (because by hypothegiss intersected). Choosing any poirite S\Ob(vy)
interior to an arrangement cell on whose boundarijies suffices to establish the claimO
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Fig. 3. The triangle coneA; intersects the sphet®in at most two circular arcs.

Note that it is quite possible far, to be confined within a cell of the arrangement(@b, but that this
“cage” is no impediment. We do not need a path fronto an arbitrary point of5; rather we only need
a path to any unobstructed poiit Although we could construct the arrangement@bpin O(na(n))
time and Qn?) space [10,12], for our limited goal of constructing just one point, we can do better.

Lemma 8. A move of v, to the position guaranteed by Lemma 7 may be computed in O(n) time and
O(n) space.

Proof. Let Z ={as,...,a,} be the collection of arcs d¥ that containv,. Z may be found by a brute
force check of each of the @) arcs. Pick two arca; anda; angularly consecutive about . This can
be accomplished in @) time by fixingas, and lettinga; be the arc that makes the smallest angle with
ai1. Leta be acircular arc ray (i.e., a directed great circle starting and ending #iat bisects this angle;
or if Z only contains one arc, let be orthogonal to it; or ifZ only contains one point, let be any ray
from v,.

Intersecta with every arc and point of Qlo;), again in Qr) time. Leté be the distance fror, along
a to the closest intersection. Finally, choasgeas the point/2 alonga. This point is guaranteed to be
off Ob(v,), and therefore unobstructed.

Moving (in one move); to v; establishes a new gog that is not intersected. O

2.1.3. Motion planning

Now that we know we can perform Step 2 of Algorithm la im@time per iteration, we return to
finding a path througls® for vy, as guaranteed by Lemma 6. Motion planning between two points of the
3-sphereF may be achieved by any general motion planning algorithm [18, Section 40.1.1]. For example,
Canny’s Roadmap algorithm achieves a time and space complexitg:6f&@n), wheren is the number
of obstacles and the number of degrees of freedom in the robot’'s placements. In our/cas8, His
algorithm produces a piecewise algebraic path thro&ghof O(r*) pieces. Each piece constitutes a
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Fig. 4. The goal direction vectar defines the direction thatg should be rotated to reaehy. The shaded triangle
cone1A(vo, vg) is not crossed by any links of the chainifis unobstructed.

constant number of moves, with the constant depending on the algebraic degree of the curves, which
is bounded as a function &f Therefore each joint straightening can be accomplished(i?)noves.
Repeating the planning and straighteningmes leads to @:* moves in Qr*logn) time. In the next
section we reduce the(®®) moves per joint straightening to just 3 moves per straightening.

2.2. Algorithm 1b

We have now established Theorem 1, but with weaker complexity bounds than claimed. It is not
surprising that applying a general motion planning algorithm is wasteful in our relatively simple situation.
In fact a significant improvement over Algorithm 1a can be achieved by switching attention from the
absolute position afy, to the direction in whichyg rotates. Let the vector along be wg = vg — v1, and
similarly letwg = vg — v1. Let w be thegoal direction: a unit vector orthogonal teg that represents the
direction in whichwg should be rotated to move it to its goal position. See Fig. 4. Thisthe unique
unit vector pointing in the direction of the componentugf — wq orthogonal towg:

ajwg + brw = wyg — wo @)

for some reals;; > 0 andb; > 0. The space of possible directionsforms a 2-sphere rather than the
3-sphere we faced in Step 1 of Algorithm 1a. This permits replacing thél8gn) moves per step from
motion planning, with at most two moves. We now proceed to describe this. Because this represents a
computational improvement only, the proofs are only sketched. More detailed proofs are contained in [6].
Algorithm 1b distinguishes three possibilities.
1. The goal position igntersected by some other link of the chain (just as in Algorithm 1a).
2. The goal direction ibstructed in that rotation ofsp in the directionw might hit some link of
the chain along its direct rotation to the goal position. We again define a direction to be obstructed
conservatively, working with a superset of the true obstructians obstructed if the triangular cone
Ay, (vo, vg) = 1A (vo, vg) is intersected by any, i > 1.
3. The goal direction ifree: it is not obstructed (and so the goal position is not intersected).
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A high-level view of our second algorithm is as follows.

Algorithm 1b. Open chains
repeat until chain straightenedo
1.if w is free then
Rotatesy directly tosg.
2. else if w is obstructed then
Rotatesg to new position whose goal direction is free.
3. else if s4 is intersected then
Move v; so that the goal position is not intersected.

Step 3 is identical to Step 2 of Algorithm 1a, so we only discuss the first two steps.

221 Sepl: wisfree

By our definitions,so may be rotated directly te; without hitting any other segment of the chain.
Because the goal positiog is not intersected, the chain remains simple even after the rotation has been
completed. Therefore, the lindg can be straightened in one move.

Note that this is the generic situation, in that for a “random” chain, e.g., one whose vertex coordinates
are chosen randomly from a 4D box, each link can be straightened with Step 1 of the algorithm
with probability 1. Steps 2 and 3 handle “degenerate” cases. We exploit this in our implementation
(Section 2.3).

2.2.2. Step 2: w isobstructed (but sq is not intersected)
Detecting obstructions. Whenw is obstructed, we again rely on construction of an obstruction diagram.
First we describe the space in which the obstruction diagram is embedded.

Consider the space of possible directions from whiglmight approachsy. In 3D, this set of unit
vectors forms a 1-sphere, a circle, which can be viewed as orthogonrglaiod centered aty; see
Fig. 5(a). Similarly, in 4D, the set of possible approach directions towgfdrms a unit 2-spheres,
which again we center ony. Every point on this sphere represents a direction of approash wee
Fig. 5(b).

Theobstruction diagram Ob(sy) is the set of vectors) representing obstructed goal directions for

Lemma 9. If the goal sq is not intersected, the obstruction diagram Ob(sy) consists of at most n arcs
ons.

Proof. Take an arbitrary segmest of the chain, and “project” it ta; in the 3-flat/T > S orthogonal

to sq; i.€.,s) = 1A; N I1. See Fig. 5(a) for the 3D analog. We first claim that the set of directions
obstructed by is identical to those obstructed by. Next we determine this set of directions. Every
vectorw determined by a point ofi and its centeryg, is orthogonal tay by our choice off7. So the set
of w obstructed by; is just thosew determined by the intersection giA (s/) with S. By Lemma 3, this

is at most one arc on the sphere. See Fig.®.

Detection of obstruction therefore reduces to deciding lies on one or more arcs of an arrangement
of circular arcs on a 2-sphefg which can be accomplished in(® time and space as in Lemma 8.



R. Cocan, J. O’ Rourke / Computational Geometry 20 (2001) 105-129 115

We

(@ vi (b)

Fig. 5. (a) Directions approaching the goal position in 3D.§i§ a 2-sphere ifR*.

Fig. 6. In 4D,s; projects tas! in the 3-flat containing, and produces an arc of the obstruction diagram determined
by the intersection of the triangle coge (s;) with S.

Skirting obstructions. Our next task is to movey whenw is obstructed so that its new goal direction
is free. This task is similar to that handled in Lemma 8—stepping off the arcs meeting-aith one
additional constraint: the move must maintain the simplicity of the chain. Note that)Qdoes not
record chain simplicity, but rather records free goal directions. So we need to findthat will move

w to be free, while simultaneously maintaining simplicity during the motiosyof

Lemma 10. If w isobstructed, so can be moved, maintaining simplicity throughout, so that its new goal
direction w’ = w + Aw isunobstructed. Aw may be computed in O(n) time and space.
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Proof. Because the chain is initially simple, there must exigt-a 0 such that rotation of, aboutv, by

an angle less thag leaves the chain simple. Thi can be computed by finding the smallest distance
d from sq to any other segment, and using the angle of a cone centesgdfatadiusd /2. Now Aw is
selected just as in Lemma 8, but subject to this angle constraimt.

Note that because we have based our analysis on asix@aoving s does not alter the obstruction
diagram, which records obstructed directions of approach. to

2.2.3. Algorithm 1b complexity

The algorithm straightens one joint in at most three moves: one to maeethe goal is not intersected
(Step 3), one to movey so that the goal is not obstructed (Step 2), and one to rotate directly to the goal
(Step 1). The total number of moves used by the algorithm is then at most@(n). For each of
the n iterations, Lemma 10 shows that the computations can be performed in linear time and space.
This then establishes the total time complexity af:€) claimed in Theorem 1. Because each move is
performed independently, the obstruction diagram arcs may be discarded after each iteration. Thus the
space requirements remain ag<.

2.3. Implementation

We have implemented Algorithm 1b for chains in “general position” a4 The program accepts
a chain as input, and first checks if it is simple. If it is, the straightening process starts; otherwise the
program exits. The program then straightens the chain link-by-link using Step 1, one move per link. It also
detects whether the goal is obstructed (Step 2) or intersected (Step 3) by solving sets of linear equations
but in those cases it simply halts; we have not implemented the obstruction diagrams, or avoiding
obstructions. For a chain whose vertex coordinates are chosen randomly, the program straightens it witt
probability 1, for then the degenerate cases handled by Steps 2 and 3 (when avpmint;, hits an

0 25 50 75 99

el

(b)

Fig. 7. Snapshots of the algorithm straightening a chain6f100 vertices, initially (0), and after 25, 50, 75 and

all 99 joints have been straightened (left to right). (a) Scale approx. 50:1; the entire chain is visible in each frame.
(b) Scale approx. 1:1; the straightened tail is “off-screen”. (The apparent link length changes are an artifact of the
orthographic projection of the 4D chain down to 2D.)
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arc on a 2-sphere, e.g., Fig. 6) are unlikely to occur. The output of the program is a set of Geomview
or Postscript files that animate the straightening process. Fig. 7 shows output for a chaimwhbde
vertices were chosen randomly and uniformlyOn1]*.

3. Straightening treesin 4D

It will come as no surprise that essentially the same algorithm as just described can straighten trees
in 4D. The reason is that each segment was considered a fixed obstruction in the chain straightening
algorithm, and whether those segments form a chain or a tree is largely irrelevant, as long as there is
a free end. There is one spot at which the difference between a chain and a tree does matter, howevei
freeing up an intersected goal position. We concentrate on this difference in the description below.

Algorithm 2. Trees
repeat until straightenedio
1. Identify a nodexr with chain descendants.
2. Straighten each chain @, forming C’.
3. if ry is intersectedhen
Construct obstruction diagram Qb on 2-sphere.
Move x so thatry not intersected.
4. Rotate each segmentri to rq and coalesce.

Algorithm 2 chooses a leafof the given treel’ as root, and then identifies some nodall of whose
descendant subtrees are chains (Step 1). Call th,s=e Fig. 8(a). Each chain hcan be straightened
one at a time via Algorithm 1, leaving a set of straightened chains, or segnigri&tep 2). Define the
goal ray to be the extension of the parent segmenncident tox; see Fig. 8(b). If is not intersected
by any segment of \C’, then each segment @' can be rotated tg,, each lying on top of one another
(Step 4). We can view them as coalesced into a single link, reducing the degrde &f The process
then repeats.

If, however,ry is intersected (Step 3), we need to mavso that the goal ray becomes free. There are
several ways to achieve this; we choose to parallel Step 2 of Algorithm 1dvd.et, ..., v,) be one
of the chains ofC’, with v,, adjacent toc. We distinguish this chain from the othersadr; call the set of
othersCj. Let the 2-link chain(vg, x, y) play the role of(vo, v1, v2) in Algorithm 1a. In that algorithm
we argued that Ofv,) is a set of arcs and points on a 2-sphere (Fig. 3). Here we will reach the same
conclusion for Olax) on the 2-spherd of positions forx.

The only difference is that in the current situation, $te& of segmentg’; is attached ta,, and we need
to augment Opx) to reflect its obstructions. We opt to translatpasx moves; this gives rise to two sets
of constraints: (1) those caused by a segmertijiintersecting a segment @f' = 7'\{C; U xy U xvp};

(2) those caused hyy or xvg intersecting a segment ifi;. For the first, the locus of positions efthat
cause some € C; to intersect some; € T’ is a parallelogram, congruent to the Minkowski Sk s; .
Analogous to Lemma 3, it is easy to see that this holds:

Lemma11. Theintersection of a parallelogram with a (d — 1)-sphere S in R consists of at most four
connected components, each of which isan arc or a point.
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‘

Fig. 8. (a) TreeTl rooted atz. (b) After straightening chain€ incident tox; C; is the set of straightened chains
excluding one distinguished chaimg, v1, ...).

Thus the constraints (1) add(® arcs or points to Ofx). Constraints (2) can be seen to consist of
O(n) points onS: translating the sta€’; to y determines the rays thay might align with to causey
to intersectCy; and similarly translatingC; to vy determines rays for intersection withvg. The two
placements o€’} therefore generate @) additional point obstructions.

With Ob(x) again a set of @) arcs and points on a 2-sphere, Lemmas 7 and 8 hold, leading to the
same time complexities claimed for Algorithm 1, and establishing Theorem 2.

4. Convexifying closed chainsin 4D

Our algorithm for convexifying closed chains employs thme tracking motions introduced in [14].
Indeed our algorithm mimics theirs in that we repeatedly apply line tracking motions, each of which
straightens at least one joint, until a triangle is obtained (which is a planar convex polygon, as desired).
Although the overall design of our algorithm is identical, the details are quite different, for there is
a major difference with [14]: They permitted self-intersections of the chain, whereas we do not. This
greatly complicates our task.

Let (vo, v1, v2, U3, v4) be five consecutive vertices of a closed polygonal chain. We allpw vs.

A line tracking motion of v, movesv, along some lind. in space, while keeping botly andv, fixed.

As long as the angle at joints andvs (the elbows) are neitherr (straight) nor O (folded), such a motion

is possible. Neither angle can be 0 because that would violate the simplicity of the chain. Straightening
one joint is precisely our goal, so we assume that neither joint is straight; and therefore a line tracking
motion is possible.

We will chooseL and a direction along it so that the movement increases the distancefitorboth
vg andwv, simultaneously. This necessarily opens both elbow angles. The motion stops when one elbow
straightens. The only issue is whether this can be done while maintaining simplicity. Our aim is to prove
this theorem:

4 An alternative convexifying algorithm, again permitting self-intersections, is described in [16]. Sallee accomplishes the
same result by a different basic motion, involving four consecutive vertices rather than the five used in [14].
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Theorem 6. For asimple 4D chain (v, ..., vs), there exists a line tracking motion of v, that straightens
either vy or vz (or both) while maintaining simplicity of the chain throughout the motion.

A high-level view of the algorithm is as follows:

Algorithm 3. Closed chains

repeat until chain is a trianglelo
Compute a line. along which to move,.
Compute free paths; andxs for v, andvs.
Move v, along L, v, alongsy, andv, along,.
Freeze the straightened joint or vs.

4.1. Choosing L

To fix L, the ray along which,, moves, we choose a poigte R* different fromuv,, and letL be the
ray from v, that containa,g. We will chooseg so that it is itself the point where one of the two joints
v1 Or vz becomes straight while moving alongL.

Lemma12. Apoint ¢ determining an appropriate L may always be found, and in time and space O(n%).

Proof. We choosey so that it satisfies these conditions:

1. Movingv; alongL increases the distance from to vg and tovs.

2. Eitherv; or vz becomes straight, i.6gvg| = |vov1| + |v1v2| = ro, OF |qua| = |vavs| + |v3vs| = F4.

3. (a) If |gvg| = ro, thengvg does not intersect any other segment of the chain than those to which it is
incident.

(b) If |gua| = r4, thengv, does not intersect any other segment of the chain than those to which it is

incident.

4. vyq does not intersect a segmenti > 4.

Condition 3 ensures that our “goal” is not itself intersected, in the sense used in Section 2.

Let R; be the set of points (the “region”) &* that satisfy condition 1 aboveR; is the intersection
of two closed half-spaces containing, orthogonal tawgv, andwv,v,, respectively. Note that, € R;. If
vov2 anduvyvy lie on the same lineR; degenerates to a 3-flat orthogonal to that line; otherwise it is a
4-dimensional sef.See Fig. 9 for a lower dimensional analog of the situation.

The set of pointR, = Sy U S4 in 4D that satisfy condition 2 is the union of two 3-sphergsand S,
centered abg and v, and of radiusrg andr4, respectively. Becausegv,| < rg, v2 is inside the 4-ball
bounded bySy. Therefore,R; N So # @. Similarly, Ry NS4 # #. SO Ry N R, # #. The dimensionality
of this set depends on whether or g, v,, v4} are collinear: if they are, the 3-spheres are intersected
by a 3-flat producing 2-spheres; if they are not, the 3-spheres are intersected by a 4-dimensional wedge
producing 3-dimensional regions of the 3-spheres.

Consider condition 3(a); clearly 3(b) is analogous. We want all those ppisteh thaiyvg does not
intersect any other link of the chain. Clearly the points forbidden by segsndistin the triangle cone
0A; = Ay, (vi, vi11), just as in the proof of Lemma 7. Intersectigg; for all i with R, N R, marks the

5 Although we could remove this possible degeneracy by movinin a neighborhood (while preserving simplicity) to
break the collinearity, this is not necessary, as the proof goes through regardless.
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Fig. 9. Choosingy € L. R1 N R2 = R1 N (So U Sa).

set of points that must be avoided in our choicgoRs D R\ |, o4;. It is easiest to concentrate on the
intersection ofpA; with the spheres iR,. By Lemma 3, we know this intersection is at most two arcs
or points, independent of the dimension of the spheres. So whether @rohot, v4} are collinear, the
intersection produces @) arcs or points. Similarly, condition 4 leads®g D R*\ U, , 24, for vog can
intersects; only if ¢ liesin ,A;. Again, Qin) arcs or points need be avoidedRaN R,. No union of arcs
and points can cover the skt N R, which is either 2- or 3-dimensional. Th(s R; # . We need only
choose & in this set.

There are a variety of ways to choose suchalgorithmically. A naive method is to first construct an
arrangement of 2-flats iR* each containing a trianglgA; or »A;. This computation could be performed
in O(n*) time and space [11]. Intersecting this arrangement with the halfspaces deliRitiagd the
3-spheressy andS, leave us cells bound by algebraic surfaces infid&;. The centroid of any such cell
can be selected as O

4.2. Linetrackingin 3D

We start by thinking about the analogous situation in 3D. This will both set notation, and ground
intuition by showing why Theorem 6 does not hold in 3D.

4.2.1. Topology of configuration space in 3D
LetRq 1) be the interval0, 1) on the real line, open at 1. We will parameterize the locatiorn @llong
L byt €0, 1), with r = 0 the start, and = 1 whenv, reaches thg of Lemma 12, the first time at which
a joint, straightens. Let this joint be without loss of generality. Let’ be the configuration space of
the four-link system in isolation, permitting intersections between the links, the prime to remind us that
t = 1 has been excluded. We claim that

C' =S* x ST x Ryg.y). (8)

This can be seen as follows. Fix someao thatv, is fixed. Then each of; and vs is free to rotate
(independently) on a circle iR® centered on the axigv, andv,vy, respectively. As varies from 0to 1,
these circles move in space, and grow and shrink in radius; see Fig. 18- Athewv; circle shrinks to
a point.
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Vo

Fig. 10. In 3D, the circle on which; may lie moves in space as slides upL.

But forz € [0, 1), both circles retain a positive radius. Thus the configuration spdwees the topology
of St x St for eacht, and the claim follows.

4.2.2. Obstruction diagramin 3D

As in Section 2, we incorporate the obstacles representing the other links via an “obstruction diagram”.
We start by ignoring the four moving links as obstructions, and only consider the remaining, fixed links of
the polygonal chain as obstacles. We develop the obstruction diagram first for,feathat the relevant
configuration space i§! x S'. Because we are ignoring the moving links as obstructions, movement
on the two circles is independent, so it suffices to determine the obstruction diagram) Ob one
1-sphere/circles,, that forv;. The following lemma will be key in 4D.

Lemma 13. In 3D, if (v2 — vg) - (v1 — vo) # 0 and (vy — vo) - (v — v2) # 0, then a single segment
contributes at most four points to Ob(v;). Otherwise, if either dot product is zero, a segment could
obstruct a finite-length arc of the S; circle for v;.

Proof. We only sketch a proof, leaving details for the 4D case considered below. Spinnaigng its

circle of freedom while maintaining, andv, fixed traces out a “spindle” shape, which can be viewed

as the union of two cones. A segmerthat does not lie along a line through eithgror v, can intersect

each cone in at most two points, and so intersect the spindle in at most four points. See Fig. 11. These
four segment-cone intersection points correspond one-to-one withif@asitions onS; at which there

is an intersection between the 2-link chain, v, vo) ands.

If the segments lies in the surface of the cone, then it contributes just one point to the diagram,
corresponding to the angle of spin that aligns one of the two links with the obstacle segment.

Finally, if either of the two linksvgv; Or v1v; is orthogonal to the axis of the spindle, i.e., either dot
product is zero, then a segment obstacle could obstruct the entire circle, for one of the cones is then
degenerately flat. As Fig. 12 illustrates, here a segment might obstruct a range of rotatigns f,
producing an arcin Qlvy). O

4.2.3. Disconnected free spacein 3D
Let v1(¢) represent the position af; on its circleS; at a particular time. The goal is for the links
(vo, v1, v2) to avoid all obstacles, which means thafs) should avoid points of the obstruction diagram.
If we ignore for now the orthogonality case, then we have the situation that a finite set of links produce
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Fig. 12. (v2 — vg) - (v1 — v2) = 0 and
segments (which lies in the plane of the
Fig. 11. One segment can contribute four circle) contributes an arc to the obstruction
points to Olgv1). diagram Olgvy).

vi(®

Fig. 13. Pointv1(¢) is “captured” by two obstacle points in configuration space, the tube-like surface.

an obstruction diagram consisting of a finite set of pointSorAs r moves, these points wander around

the circle, disappear, enter, join or split. The moving links, previously ignored, just add a few more points
to the obstruction diagram, moving in a different manner. The diagram for the configuration space for
v1 then looks like arcs on the tube-liex Ryq 1. It is clear that it is possible for the poimi () to be
“captured” between two points of the obstruction diagram which move together and squé¢aeto a
collision. See Fig. 13. In this case, the free space for the pgiigt not connected fronp,(0) to p1(1).

And indeed, it is easy to “cage in” the moving links by the fixed links so that no straightening is possible.
Our next task is to show that such caging-in is impossible in 4D.

4.3. Linetrackingin 4D

4.3.1. Topology of configuration space in 4D

Turning now to 4D, exactly analogous to the situation in 3D, an elbow at the join of two links has a
space of possible motions in 4D that is topologicalfy for it is the intersection of two 3-spheres. Thus
the configuration spaa& of our four-link chain forz € [0, 1), ignoring self-intersections, is

C' =8% x $? x Ryg.1). (9)

At r = 1 at least one of the 2-spheres shrinks to a point.
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4.3.2. Obstruction diagramin 4D

As in 3D, we analyze the obstruction diagram on one 2-spBgréhat for vy, at a fixed value of:
Ob(vy). Letvy(¢) represent the position of, on its spheres; at timez. We seek the set of points Qh)
for which the links(vg, v1, v) intersect some other segment of the chainss, ..., s,. Just as in 3D,
Ob(v,) is (in nondegenerate situations) a finite set of points. This claim relies on how a line may intersect
acone.

Define a(d — 1)-cone C(a, b, 0), for apex pointz, axis pointb and cone anglé < [0, 7 /2], to be the
set of pointsp € R¢ that form an anglé with respect to the axis, i.e., which satisfy

(p—a)-(b—a)=|p—allb—alcosy. (10)

For the extreme values @f, C(a, b, 0) is a ray froma throughb, andC(a, b, 7/2) is a (d — 1)-flat
containinga and orthogonal tab. Note that a 1-cone is not the triangle cone from Section 2.1.1; rather a
1-cone is the union of two rays from In 3D, C(a, b, 0) is the surface of a right circular cone whose axis

is the ray froma throughb, and which form the anglé with the axis au (cf. Fig. 11). Its intersection
with a plane orthogonal tab is a circle. In 4D,C(a, b, 6) is a “right spherical cone”, whose intersection
with a 3-flat orthogonal tab is a 2-sphere. Note that it is no restriction to insist that[0, /2], for we

can ensure this fat > /2 by selecting an axis poirit for the cone to be on the other side of the apex
a, on the line containingb, thereby “reflecting® tor — 6.

Lemma 14. Theintersection of the (d — 1)-cone C(a, b, 0), 0 # /2, with aline, ray or segment whose
containing line does not include the apex «, is at most two points: two points, one point or empty.

This claim can be seen intuitively as follows. l@be the cone anda segment ifiR¢. If s is contained
in a (d — 1)-flat IT orthogonal taub, then becausél N C is a sphere, the result follows from Lemma 2.
Otherwises is contained in a flat whose intersection withs an ellipsoid, and the result follows because
an ellipsoid is affinely equivalent to a sphere [17, p. 95].

Proof. Let |ab| = 1 without loss of generality. Translate and rotdteso thata = (0,0, ...,0) and
b=(1,0,0,0,...,0). For apointp = (x1, ..., x4), EQ. (10) reduces to

p-b=|plcoss, (11)
(X1,...,%4)-(1,0,0,0,...,0) = /x4 --- + x2 cosd, (12)
xf=(xZ 4.+ x3)cogb. (13)

Represent the point via the parameter.

p=(a1+ Bat, ..., o4+ Bat). (14)

Substitution of this into Eq. (13) yields a quadratic equation kvhich has at most two roots.

We now examine the degenerate solutions. Because we assumédAhat2, cos = 0. Thus the
right hand side of Eq. (13) can only be zero whént---- +x2 =0, i.e., whenp = (0,0, ..., 0) is the
apexa. This corresponds to a line throughexcluded by our assumptionsQ

Lemma 15. In 4D, if (v2 — vo) - (v1 — vg) # 0 and (v, — vg) - (v1 — v2) # 0, then a single segment s
contributes at most four pointsto Ob(vy).
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Proof. Moving v; sweeps out two finite cones, which are truncations of the infinite cones v,, 6p)
andC(Uz, Vg, 02), with

(v2 — o) - (v1 — Vo) = |v2 — vo||v1 — Vo| COSHp, (15)
(v2 — Vo) - (V1 — V2) = |v2 — Vo||vy — V2| COSHy. (16)

By the preconditions of the lemma, we have# /2, j =0, 2, so we may assun < [0, 7/2) by the

reflection maneuver suggested previously. Consider two cases:

1. The line containing does not pass through either cone apgxr v,. The conditions of Lemma 14
are satisfied, establishing thatntersects the two cones in at most four points. Each of these points
fixes a position ob; corresponding to an obstruction, and so contributes this point {o;0b

2. The lineH containings passes throughy (the case through, is exactly analogous and will not be
treated separately). Then it may be that C(vg, v2, 6p) is a subsegment of. This is because the
vector p — vg makes the same angle with — vg for all p € s (cf. Eg. (10)). In this case, obstructs
the unique position ob, that places it onH, and so contributes just one point to @Y. Together
with the at most two points from the other conggenerates at most three points of @b. O

The case excluded by the precondition of Lemma 15 refers to the situation in which one cone is
degenerately flat, as previously illustrated in Fig. 12. We now analyze this situation in detail.

Lemma16. If (v, — vo) - (v1 — vo) = 0, then Ob(vy) is afinite set of points and arcs on S; (the 2-sphere
of vy positions).

Proof. In this cas&, = /2 from Eq. (15), and the infinite cor@(vo, v,, 7/2) degenerates to the 3-flat
orthogonal to the axisguv, and including the ape,. The finite cone swept out by the link = vovy is a
ball By of radius¢, centered aty. In the 3D situation By is a disk (cf. Fig. 12); in 4D, it is a solid sphere
whose boundary is a 2-spheserepresenting the possible positions fgr

The obstructed positions ofy, are those for whichsg intersects some segmemnt Consider two
possibilities:

1. 5; does not lie in the same 3-flat &* asS;. Thens; intersectsB, in at most one poinp (because
it can intersect the flat in at most one point), and then only wigrasses througlp do we have an
obstruction. Thus; contributes one point to Gb,).

2. s; is in the same 3-flat a$;. Now we have a situation exactly analogous to that shown in Fig. 6: the
obstruction is the intersection of the triangle cqg® with §;. Lemma 3 then establishes thaadds
at most two arcs or points to Qly). O

Lemma 17. The condition (v, — vg) - (v1 — vg) = 0 can hold at most one value of ¢ € [0, 1] during the
movement of v, along L.

Proof. This follows immediately from our choice of., which guarantees that the distanagu;|
increases, and so the anglevatopens. This angle can therefore pass thromgR at most once. See
Fig. 14. O
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Fig. 14. The special conditiofv, — vp) - (v1 — vg) = 0 holds at most once.

4.3.3. Connected free spacein 4D

Again letv,(¢) represent the position af, on its 2-spheres; of possible positions. We first describe
the free space for the motion of the 2-link chain, v, v,), avoiding the fixed linksy, ss, ..., s,. Itisa
subset 082 x Rio,1). For eachr € [0, 1), we know from Lemma 15 that Qb) is a set of points or arcs;
and from Lemma 17 we know Qfy,) is a finite set of points, except for at most anat which it is a
set of points and arcs. Thusuf(¢) avoids these obstructions, it avoids intersection with the remainder
of the chain.

But now it should be clear that it is easy foy(¢) to “run away” from the obstructions. Think of its
sphere of possible positions growing and shrinking with time () must avoid a set of points at any one
time, and once (cf. Lemma 17), a set of arcs. This is easily done: there is no way to “cag@’ iwith
these obstacles. Another view of this situation is that the configuration Spacgg j, is 3-dimensional,
and the obstructions Qb (¢)) for ¢ € [0, 1) are 1- or O-dimensional, and the removal of a 1D set cannot
disconnect a 3D set (cf. proof of Lemma 6).

The remainder of this subsection establishes this claim more formatisthAn a topological spac&
is a continuous functiow : [0, 1] — X. A space igath-connected if any two of its points can be joined
by a path [2]. We first work with the spadk: the positions fors, for z € [0, 1). Later we will add in
t =1, and positions fops.

Lemma 18. Thefree space F; C C; for vy inthe configuration space C; = S? x Ryq 1) is path-connected.

Proof. It will help to view our configuration space as follows. The 2-sphgrés represented by a flat
two-dimensional sheet, aiRly 1, is represented as a vertical axis. The result is a three-dimensional space,
analogous to Fig. 13, that could look as depicted in Fig. 15. The point obstacles) ®bcome paths
monotone with respect to the verticabxis. At oner = 1, we may have arc obstacles as well. We need
to show thatv, (0) is connected by a path ig(¢'), for any?’ < 1. We proceed in two cases:
1. Ol(v;) contains only points for all € [0, 1). Let N be the maximum number of points in Q) over

all t; we knowN < 2n. A 2-sphere with a finite numbe¥ points removed is path-connected. For each

t, removeN points from the corresponding (¢): those in Olgv,) at thatz, and extra distinct points

to “pad out” to N. Any two spheres with the same number of points removed are homeomaorphic.
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Fig. 15. The free spacg; for v; is path-connectedr; (dark) connectg1(0) to p1(1). Ob(vy) includes points at
a fixedt, forming curves (shaded) over time. The shaded subspace at meincludes arcs in Otw1).

ThereforeF; is homeomorphic td1(0) x Ro 1). Because each of those spaces is path-connected, and
the product of two path-connected spaces is path-connected, we have established the claim.

2. Oh(v1) contains arcs at=t;. The main idea here is to choose a pgint= v, (#;) that is unobstructed
at timer = t,, and then connect frorm, (0) to p;, and fromp, to v, (#'). It is clear, as we have shown
in Case 1, that the spacé#s. = Cj;¢[0,y) andFy = Fie,,1) are path connected. We will prove that
there exist pointg € F_ and p, € F, such thatpg and p, are connected by a path.
We will call a pointp freeif it does not belong to any obstruction diagram. lpgte S1(#1) be a free
point onS; atz. It is clear that such a point exists, since the obstruction diagram is a finite set of arcs
and points. Itis also clear that there exists a neighborlioad F; of p; all of whose points are free.
Choosepg € U, pg € S1(tg), to < t1 andp, € U, po € S1(82), 11 < tp. See Fig. 15. Both points are free
and can be connected by a pathlinto p;. But po € F_ and p, € F,, both path connected spaces.
Thus we may conneat; (0) to pgto py to poto vy (r'). O

We now address the endpoint= 1, extendingC; to C; for ¢ € [0, 1]. As v, approacheg on L, one
of the spheres, that far; by our assumptions, shrinks to zero radius. Thus Fig. 15 is not an accurate
depiction near = 1, for the configuration space narrows to a point here.

Lemma 19. Thefree space F; for vy inthe full configuration space C; is path-connected.

Proof. We have chosep and L in Lemma 12 so that the= 1 endpoint is free in the sense that the
straightened chaingv;v, does not intersect the fixed portion of the chain. Thus there is a neighborhood
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U of r =1 such that’; is devoid of all obstructions within that neighborhood. ChodseU and apply
Lemma 18 to yield a path frorm (0) to v1(¢'). Connect withinZ from v, (') to the endpoinb1(1). O

Now we includevs in the analysis.

Lemma 20. The free space F c C for both v; and vs in the configuration space C for ¢ € [0, 1] is
path-connected.

Proof. The key here is the independence of the motions, @ndvs. Let 7, be a path fow,(¢) through
F1, whose existence is guaranteed by Lemmas 18 and 19. Now con&yas the possible positions
v3(t) for vs, avoiding at each time Qbs(7)), where this time the obstructions include not only the fixed
links sg4, 5, ..., s, but also the two moving links; ands;, determined byr;. If v3(z) avoids Olgvs(r))
for eachs, then all intersections are avoided: we do not need to include the moving litfks recause
intersection is symmetric—if the links andss do not intersecty andsq, thensg ands; do not intersect
s andss.

For a fixedr, the obstacles are fixed segments, anduv@lds again a finite set of points, or, for at most
onet, a set of arcs: Lemmas 15 and 17 apply unchanged. The independence of the motidroof
v1 permits us to treat the moving segmesgsands; on par with the fixed segments: the only difference
is that their obstacle points move throu@hdifferently. Therefore a paths for vs(r) may be found in
F3 C C3. The two pathsr; andrs, together with the ray. for v,, constitute a path for moving the 4-link
chain(vg, v1, v2, v3, v4) throughC while maintaining simplicity. O

This finally completes the proof of Theorem 6.
4.4, Motion planning

We now know a path that avoids self-intersection exists, i.e., either the ygirdr vz can be
straightened. The next step is to compute such a path algorithmically. We rely on general motion planning
algorithms, as in Section 2.1.3.

Our “robot” consists of the four linksuvg, vy, v2, v3, v4) Moving in the 5-dimensional configuration
spaceC, Eq. (9). The subspacé, that avoids self-intersection between the four links is some
semialgebraic subset @f, semialgebraic because the constraints on self-intersection may be written
in Tarski sentences (see, e.g., [15]). The free configuration spaisecomposed of the points @k
that avoid the obstacles, which is again a semialgebraic set. Canny’s Roadmap algorithm achieves ¢
time and space complexity of@°logn), wheren is the number of obstacles, because in our case, the
configuration space has= 5 dimensions. The algorithm produces a piecewise algebraic path through
F, of O(n®) pieces. Each piece constitutes a constant number of moves, and so each joint straightening
can be accomplished in(@°) moves. Repeating the planning and straightemirignes leads to ©:°)
moves in Qn®logn) time. Because choosingtimes requires at most@*) time by Lemma 12, the time
complexity is dominated by the path planning, thereby establishing the bounds claimed in Theorem 3.

In the same way that Algorithm 1b improved on Algorithm 1a by avoiding motion planning, itis likely
Algorithm 3 could be improved by an ad hoc algorithm.
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5. Higher dimensions

We have already shown that every simple open chain or tree in 4D can be straightened, and every
closed chain convexified. Our final task is to prove that these results hold for higher dimensions, using
the results from 4D.

For an open chain, we straighten four links at a time and then repeat the procedure until the chain is
straight. If the chain or tree contains fewer than four links, then it spans at nteflatafor k£ < 3, and
it can be included iR*. For a closed chain, our algorithm also moves four links at a time. Four links
determine at most &flat H for k < 4 which means that it can be included in a 4-flaRi d > 4.

We have already shown that these four links, for both all types of chains, can be straightened in 4D;
therefore, they can be straightened in this 4-flat R¢. We only have to worry about the pieces of the
remainder of the chain that intersg€t But since we are dealing with segments, their intersection &ith
is either a point or a segment. But these are the kind of obstructions we have proven that can be avoidec
in R*. Therefore, the straightening of these four links can be complet&t] and therefore ifR?, while
maintaining rigidity and simplicity.

The complexity for the algorithms iR, 4 > 4, is the same as for the algorithms in 4D, for all
computations are performed in 4-flats. This proves Theorem 4.

Acknowledgements

We thank Erik Demaine and Godfried Toussaint for helpful comments, and Lee Rudolph for help with
topology. We are grateful for the perceptive comments of the referees, which not only led to increased
clarity throughout, but also improved the complexities of Algorithms 1a and 1b.

References

[1] C.C. Adams, The Knot Book, W.H. Freeman, New York, 1994.

[2] M.A. Armstrong, Basic Topology, McGraw-Hill, London, 1979.

[3] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O'Rourke, M. Overmars, S. Robbins, I. Streinu,
G.T. Toussaint, S. Whitesides, Locked and unlocked polygonal chains in 3D, in: Proc. 10th ACM-SIAM
Sympos. Discrete Algorithms, January 1999, pp. 866—867; Full version: LANL arXive ¢s.CG/9910009.

[4] T. Biedl, E. Demaine, M. Demaine, A. Lubiw, J. O’'Rourke, M. Overmars, S. Robbins, I. Streinu,
G.T. Toussaint, S. Whitesides, On reconfiguring tree linkages: Trees can lock, in: Proc. 10th Canadian Conf.
Comput. Geom., 1998, pp. 4-5; Full version: LANL arXive ¢s.CG/9910024, to appear in Discrete Math.

[5] J. Cantarella, H. Johnston, Nontrivial embeddings of polygonal intervals and unknots in 3-space, J. Knot
Theory Ramifications 7 (8) (1998) 1027-1039.

[6] R. Cocan, Polygonal chains cannot lock in 4D, Undergraduate Thesis, Smith College, 1999.

[7] R. Cocan, J. O'Rourke, Polygonal chains cannot lock in 4D, in: Proc. 11th Canadian Conf. Comput. Geom.,
1999, pp. 5-8.

[8] R. Connelly, E.D. Demaine, G. Rote, Straightening polygonal arcs and convexifying polygonal cycles, in:
Proc. 41st Annu. IEEE Sympos. Found. Comput. Sci., IEEE, November 2000, pp. 432—-442.

[9] R.H. Crowell, R.H. Fox, Introduction to Knot Theory, Blaisdell Publishing Co., New York, NY, 1965.

[10] H. Edelsbrunner, L.J. Guibas, J. Pach, R. Pollack, R. Seidel, M. Sharir, Arrangements of curves in the plane:
Topology, combinatorics, and algorithms, Theoret. Comput. Sci. 92 (1992) 319-336.



R. Cocan, J. O’ Rourke / Computational Geometry 20 (2001) 105-129 129

[11] H. Edelsbrunner, R. Seidel, M. Sharir, On the zone theorem for hyperplane arrangements, SIAM J.
Comput. 22 (2) (1993) 418-429.

[12] D. Halperin, Arrangements, in: J.E. Goodman, J. O’'Rourke (Eds.), Handbook of Discrete and Computational
Geometry, CRC Press, Boca Raton, FL, 1997, Chapter 21, pp. 389-412.

[13] J.G. Hocking, G.S. Young, Topology, Addison-Wesley, Reading, MA, 1961.

[14] W.J. Lenhart, S.H. Whitesides, Reconfiguring closed polygonal chains in Euclidlespace, Discrete
Comput. Geom. 13 (1995) 123-140.

[15] B. Mishra, Computational real algebraic geometry, in: J.E. Goodman, J. O’'Rourke (Eds.), Handbook of
Discrete and Computational Geometry, CRC Press, Boca Raton, FL, 1997, Chapter 29, pp. 537-558.

[16] G.T. Sallee, Stretching chords of space curves, Geometriae Dedicata 2 (1973) 311-315.

[17] P. Samuel, Projective Geometry, Springer, New York, 1988.

[18] M. Sharir, Algorithmic motion planning, in: J.E. Goodman, J. O’'Rourke (Eds.), Handbook of Discrete and
Computational Geometry, CRC Press, Boca Raton, FL, 1997, Chapter 40, pp. 733-754.



