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Abstract

Terfenol-D rods, as a kind of giant magnetostrictive materials, are often used as active elements of device for anti-
vibration application due to its superior material properties. Their magneto-mechanical responses exhibited in many
experiments are nonlinear and coupled. In order to have a good understanding on their coupling characters for accurate
control, the numerical simulation on dynamic behavior of a Terfenol-D rod is conducted based on a nonlinear and cou-
pling constitutive model proposed in this paper. The results show that the constitutive model can effectively describe
some intrinsic coupling phenomena observed by experiments involving the maximum magnetostrictive strain of a Ter-
fenol-D rod changing with pre-stresses and the corresponding dynamic responses show that the frequency and the
amplification of the Terfenol-D rod change with magnetic bias field and pre-stresses, which are also consistent with
experimental data and cannot be captured by previous constitutive model.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Terfenol-D; Constitutive relations; DE effect; Resonance frequency; Numerical simulation
1. Introduction

With the application of sensors and actuators, more and more researches focus on the dynamic behavior
of smart materials and structures (Zhou and Miya, 1999; Zhou and Tzou, 2000; Pelinescu and Balachan-
dran, 2001; Mahapatra et al., 2001). As an important actuator to control vibration, Terfenol-D actuator
has many advantages in performance such as large displacement, fast response, simple driving, wide fre-
quency range, good low frequency character and so on. Moreover, the large strain of Terfenol-D rods
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can be transformed to linear displacement or vibration easily. So, Terfenol-D rods based devices have often
been used in active control, noise control and high precision micro-positioning devices etc. (Rodtlett et al.,
2001). Jenner et al. (1994) studied a vibration control case of Terfenol-D actuator by two kinds of control
strategy. Engdahl and Svensson (1988) suggested a dynamic simulation model and gave the results under
the variation magnetic field by SANDYS. Kvarnsjö and Engdahl (1991a) gave a nonlinear 2-D transient
model of Terfenol-D rods and then they Kvarnsjö and Engdahl (1991b) improved the transient model,
which took the influence of eddy currents.

For the Terfenol-D actuator, it is important to study the coupled mechanics-magneto properties fully
and exactly in operation, since the expectant operating range is generally obtained by applying a magnetic
bias field and a mechanical pre-stress. However, the experimental results have exhibited that the couple
behavior is notable and complicated for the magnetostrictive materials. Fig. 1 shows the experimental
curves of magnetostrictive strain versus magnetic field for Terfenol-D rods under different compressive
pre-stress (Butler, 1988). As seen in Fig. 1, the magnetostrictive strain increases with an increasing magnetic
field for a given pre-stress. Also it can be found that magnetostrictive strain decreases with increasing
compressive pre-stress under low or moderate field, however, it will increase with increasing compressive
pre-stress under high field, i.e., the larger the compressive pre-stress, the larger is the maximum magneto-
strictive strain which is called the reversal phenomenon in this paper. It can be explained that there is a hard
direction of magnetization along the axis of a Terfenol-D rod when it is subjected to an axial compressive
pre-stress. When applied field is low or moderate field, the magnetostrictive strain is smaller under larger
compressive pre-stress since the corresponding field is too small to overcome stress anisotropy at the time.
However, the saturation magnetostrictive strain of a Terfenol-D rod will increase with increasing compres-
sive pre-stress under high field since stress anisotropy is entirely overcome when the applied magnetic field
approaches saturation one.

The coupled mechanics-magneto properties are also exhibited in the response of magnetostrictive device.
Fig. 2 shows the experimental curves of resonance frequency versus magnetic bias field for Terfenol-D actu-
ator (Savage et al., 1975). As shown in Fig. 2, resonance frequency increases with increasing bias field,
which is due to the DE effect, i.e., Young�s modulus of a Terfenol-D rod changes nonlinearly with the stress
and the magnetic field. The DE effect can mirror the achievable changes in resonant frequency since it is
proportional to resonance frequency squared.
Fig. 1. The experimental curves of magnetostrictive strain versus magnetic field (Butler, 1988).



Fig. 2. The experimental curves of resonance frequency versus magnetic bias field (Savage et al., 1975).
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Based on the above analysis, it can be noticed that the coupled mechanics-magneto properties are
nonlinear for both material character and response of device. An accurate constitutive model of mag-
netostrictive materials should be suggested in order to increase control efficiency of Terfenol-D actua-
tors and improve their designs. There were many previous nonlinear constitutive models for
magnetostrictive materials, such as the standard square model, i.e., the SS model (Carman and Mitro-
vic, 1995), the hyperbolic tangent model, i.e., the HT model (Wan et al., 2003) and the model based on
density of domain switching, i.e., the DDS model (Wan et al., 2003) as well as the model derived by
Duenas et al. (1996) called the D–H model in the paper. By comparison with Moffet et al.�s (1991)
experimental results, it is found that there are obvious deficiencies for these previous models. For exam-
ple, the SS model can neither describe the saturation nor can it provide an accurate prediction for the
low pre-stresses. Both the HT model and the DDS model can predict the saturation yet there are much
errors in quantity, moreover, the two models cannot provide an accurate prediction for the high
pre-stresses through all the range of magnetic field. The D–H model is found to be able to accurately
predict magnetostrictive strain values in the region of the low and moderate magnetic fields for various
pre-stress levels and also the saturation but it cannot describe the reversal phenomena shown in Fig. 1.
(Detailed discussion is given later.)

In order to better describe the influence of magnetic bias field and pre-stress on magnetostrictive material
and corresponding device, a new model is suggested in this paper. It can describe nonlinearity and coupled
mechanics-magneto properties more effectively than the above model. The numerical results exhibit the fact
that magnetostrictive strain curves predicted by the model are in good agreement with the experimental
data given by Moffet et al. (1991) for various compressive pre-stresses and various magnetic field and it
can simulate the reversal phenomena shown in Fig. 1. Furthermore, the new model can effectively describe
the influence of the stress and the magnetic field on Young�s modulus, i.e., the DE effect. Thus, the reso-
nance frequency based on the model can be exhibited changing not only with pre-stress but also with
the magnetic field just like the experiment shown in Fig. 2. Additionally, the resonance amplitude is found
changing with the magnetic field too. Finally, the model can describe the ultraharmonic resonance phenom-
ena of Terfenol-D actuator. All of these benefit from the advantage of the new model in accurately describ-
ing the nonlinearity of magnetostrictive material under high field.

For all of the above previous nonlinear constitutive models, only the D–H model can describe the
coupled character preferably, in part 4 we will mostly give a comparison between the D–H model and
the model suggested in this paper.
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2. The establishment of constitutive model

The new model uses a Taylor series, expansion of the elastic Gibbs free energy function G(r,M) at the
reference point (r,M) = (0,0) and obtains a polynomial relation just like the D–H model, but remains more
nonlinearity terms of r and the magnetoelastic coupling terms concerning quadratic terms of M, i.e.,
Gðr;MÞ ¼ 1
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In the above Taylor series expansion of the function G(r,M), some terms, such as the constant term
G0 = G(0,0) and the partial derivatives oG

or and oG
oM are neglected since they do not make any contribution

to strain e and magnetic field H at the reference point (r,M) = (0,0). Moreover, all the odd order terms
of M are not listed in Eq. (1) because the magnetic field H is always an odd function of the magnetization
M. For the experimental results by Clark (1980), the terms which describe the magnetoelastic coupling
property hold only quadratic terms of M, i.e., rM2, r2M2 and so on.
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where the strain exhibited in Eq. (3a) can be divided into the elastic strain, which depends only on stress r,
and the magnetostrictive strain k(M,r), which depends on both stress r and magnetization M and also the
elastic strain can be divided into a linear part r

Es
, which is independent on the magnetic domain movement,

and a nonlinear part k0(r), which is dependent on the magnetic domain movement, where Es is called the
intrinsic (or saturation) Young�s modulus (i.e., the value of Young�s modulus when the magnetization ap-
proaches saturation). When the magnetization approaches to saturation the maximum magnetostrictive
strain kmax(r) under a given pre-stress r should be the difference between the saturation magnetostrictive
coefficient ks and the nonlinear elastic strain part k0(r), that is,
kmaxðrÞ ¼ ks � k0ðrÞ ð4Þ

Thus Eq. (3a) can be expressed in the following form:
e ¼ r
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The terms independent of stress in Eq. (3b) express the relation between magnetization M and magnetic
field H of a mechanically unloaded Terfenol-D rod, which is nonlinear and has a saturation trend. A
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nonlinear function f(x), i.e., M = msf(kH) is used to describe it. Then, considering the relation of coupled
terms in Eqs. (3b) and (3a), Eq. (3b) can be finally rewritten as
H ¼ 1

k
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where K0ðrÞ ¼
R r
0
k0ðrÞdr is the primary function of k0(r).

The hyperbolic tangent function tanh(x) is employed to approach to the nonlinear strain k0(r) and the
function f(x) can be chosen as the Langevin function f(x) = coth(x) � 1/x. It can give a better simulation of
the magnetization curve than the function f(x) = tanh(x) chosen by the D–H model, since it is based on the
Boltzmann statistics and has a clear physical background. Thus, the constitutive relation shown in Eqs. (5a)
and (5b) can be expressed as
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where l0 = 4p · 10�7 H/m is the vacuum permeability, k = 3vm/Ms is the relaxation factor, vm is the mag-
netic susceptibility in the initial linear region, Ms is the saturation magnetization, rs is the stress value sat-
isfying k0(r) = ks if the function k0(r) is simplified as a straight line and rs can be got based on the
expression ks = rs(1/E0 � 1/Es) after the intrinsic (or saturation) Young�s modulus Es, the initial Young�s
modulus E0 and the saturation magnetostrictive coefficient ks have been measured. The one-dimensional
constitutive relation shown by Eq. (6) is coupled and nonlinear. It is suitable for either a compressive
pre-stress or a tensile one applied on the rod and the model can be used conveniently in practice since only
five parameters involved in Eqs. (6a) and (6b). Those are K, Es, Ms, ks, rs (or E0) and they are also easy to
be measured in experiments.

The D–H model (Duenas et al., 1996), which is still a coupled and nonlinear, is exhibited here for com-
paring with the new model
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where the relaxation factor is k = vm/Ms. It is obvious that Young�s modulus is a constant since the relation
between stress and strain is linear described by the D–H model when M = 0. However, the corresponding
relation in Eq. (6) is still nonlinear at the time and Young�s modulus should be variable with stress, i.e.,
the new model can describe the DE effect. Later, the numerical results show that the new model can also
describe the reversal phenomena of magnetostrictive curve under high field, which the D–Hmodel cannot do.
3. The numerical simulation of dynamic response on Terfenol-D rods

Terfenol-D rod, as the main element of actuator, generally works in the state of resonance for large dy-
namic strain in order to damp large amplitude. It is subjected to compress pre-stress, magnetic bias field
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and the exciting field along the axial direction and can be looked as a fixed–free elastic rod applied com-
pressive pre-stress P at the free end of rod. The harmonic magnetic field distributed uniformly along the
axial direction of rod is H = H0 + H1 sin (2pft), where H0 is the magnetic bias field, H1 is the amplitude
of excitation field and f is the frequency of excitation field. Then the governing equation of longitudinal
vibration on rod is expressed as
orx

ox
¼ q
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þ l
ou
ot

ð8Þ
where q is the density, l is the damping coefficient. The principle of virtual displacement is expressed as
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where dWext is the virtual work of external force, �u is the longitudinal displacement at the free end of rod, Pj

is the external applied load at the free end of rod, u and ex are respectively the longitudinal displacement
and longitudinal strain of rod, A is the cross-sectional area of the rod. Dividing the rod with 10 elements,
the element displacement u(x) can be expressed in the following form by the Lagrange interpolation poly-
nomial, i.e.,
u ¼ Nae ð10Þ

where ae is the displacement vector of element nodes. Substituting geometrical equation ex ¼ du

dx and the con-
stitutive relations, i.e., Eqs. (6a) and (6b) into Eq. (9), the finite element equation can be got
M€aðtÞ þ C _aðtÞ þ KaðtÞ ¼ QðtÞ ð11Þ

where €aðtÞ, _aðtÞ and a(t) are respectively the acceleration vector, velocity vector and displacement vector of
node, M, C, K and Q(t) are respectively the mass matrix, the damping matrix, the stiffness matrix and the
load array. The Rayleigh damping should be used where C is looked as linear combination of M and K and
M, K and Q(t) can be integrated, respectively, by cell matrix and cell array of them which are expressed as
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where ne is the node number at the free end of rod, E(rx) is defined as E(rx) = rx/e0, and e0 ¼ rx
Es
þ k0ðrxÞ is

the strain when magnetization is zero, i.e., the former two terms in Eq. (6a). Considering Eq. (6b), the term
ks�k0ðrxÞ

M2
s

M2, i.e., the last term in Eq. (6a) can be expressed as k(rx,H) which is the magnetostrictive strain
when magnetization is not zero.

Eq. (11) can be expressed in the following form based on Newmark method
M€atþDt þ C _atþDt þ KatþDt ¼ QtþDt ð13Þ

where
_atþDt ¼ _at þ ½ð1� dÞ€at þ d€atþDt�Dt ð14Þ

atþDt ¼ at þ _atDt þ
1

2
� a

� �
€at þ a€atþDt

� �
Dt2 ð15Þ
The following expression can be got by Eq. (15):
€atþDt ¼
1

aDt2
ðatþDt � atÞ �

1

aDt
_at �

1

2a
� 1

� �
€at ð16Þ



L. Sun, X. Zheng / International Journal of Solids and Structures 43 (2006) 1613–1623 1619
Substituting Eq. (16) into Eq. (14) and considering Eq. (16), Eq. (13) can finally be rewritten in the follow-
ing form:
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Thus, the at+Dt can be got based on at, _at, €at, where d = 0.5, a = 0.25(0.5 + d)2.
The relation between stress and strain of magnetostrictive material is nonlinear. Young�s modulus E(rx)

and the magnetostrictive strain k(rx,H) all relate to stress rx when the external magnetic field is given. The
iteration process should be used for calculating E(rx) and k(rx,H) in each time step and the flow of pro-
cedure is described as

(1) Input all the initial conditions such as the displacement a0, the velocity _a0, the acceleration €a0 and the
initial stress r0i at t = 0.

(2) The mass matrix M, the damping matrix C and the stiffness matrix K can be integrated based on Eq.
(12), where rx = r0i in the stiffness matrix K at the moment. The time step is chosen as Dt = 4 · 10�6.
The constants such as c0 ¼ 1

aDt2, c1 ¼ d
aDt, c2 ¼ 1

aDt, c3 ¼ 1
2a � 1, c4 ¼ d

a � 1, c5 ¼ Dt
2

d
a � 2
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, c6 = Dt(1 � d),
c7 = dDt are calculated.

(3) Calculate the effective stiffness matrix by bK ¼ K þ c0M þ c1C .
(4) The load array at the moment t + Dt, i.e., Qt+Dt can be integrated based on Eq. (12), and then the

effective load array at the moment can be calculated by bQ tþDt ¼ QtþDt þMðc0at þ c2 _at þ
c3€atÞ þ Cðc1at þ c4 _at þ c5€atÞ, where rx = r0i and H = Ht+Dt in the load array Qt+Dt at the moment.

(5) Calculate the displacement at the moment t + Dt, i.e., at+Dt by bKatþDt ¼ bQ tþDt, then the acceleration
€atþDt and the velocity _atþDt can be calculated, respectively, by expressions €atþDt ¼ c0ðatþDt � atÞ�
c2 _at � c3€at and _atþDt ¼ _at þ c6€at þ c7€atþDt. The iteration process should be used in calculating the stiff-
ness matrix K and the load array Qt+Dt for the stress rx. The strain at the moment t + Dt, i.e., et+Dt can
be calculated by ex ¼ du

dx when u is replaced by at+Dt, thus a modified stress r0(i+1) = Ei(r0i)e0(i+1) at the
moment can be calculated by the expression e0(i+1) = et+Dt � k(r0i,Ht+Dt). If the precision condition,
i.e., kDr0k < d (d = 1 · 10�6) cannot be satisfied, r0i should be replaced by r0(i+1) and the program
should go to step (2) until it satisfies the precision condition; otherwise r0(i+1) is the true stress of
the rod at the moment. Replacing r0i by r0(i+1), t by t + Dt and going to step (2), the next step is
going on.

Repeating the steps (2)–(4), the deflection of the rod at any moment are t reached.
4. Results analysis

First, a comparison about magnetostrictive strain versus magnetic field for Terfenol-D rod between the
D–H model and the new model is made which verifies the new model�s validity on describing the coupled
mechanics-magneto property of magnetostrictive material.

As shown in Fig. 3, the magnetostrictive strains predicted by the D–H model reach the same value in the
region of the high field. It means the D–H model fails to simulate the reversal phenomena shown in Fig. 1.
Fig. 4 is the curves of magnetostrictive strain versus magnetic field for Terfenol-D rod under different com-
pressive pre-stress based on the new model. It can be seen that the magnetostrictive strain increases with
increasing magnetic field for a given pre-stress and decreases with increasing compressive pre-stress for



Fig. 3. The curves of magnetostrictive strain versus magnetic field (hysteresis loops: experimental (Moffet et al., 1991); solid lines: the
D–H model).

Fig. 4. The curves of magnetostrictive strain versus magnetic field (the model in this paper).
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low or moderate magnetic field. When the applied magnetic field is high or near saturation, the magneto-
strictive strain of the rod will reach different saturation values for different pre-stresses. As shown in Fig. 4,
the maximum magnetostrictive strain of a Terfenol-D rod increases with increasing compressive pre-stres-
ses under high field, which describes the reversal phenomena mentioned in this paper. These results pre-
dicted by the new model are coincident with the experimental phenomena (Butler, 1988; Moffet et al.,
1991). It shows that the model is better than the D–H model to describe the coupled mechanics-magneto
property of magnetostrictive material under different compressive pre-stress and different external magnetic
field.

Then, the numerical simulation of dynamic response on Terfenol-D actuator is made according to the
new model and the numerical procedure of the paper. The results are compared with those by the D–H
models. The length of the Terfenol-D rod is 114.5 mm, and the other physical parameters are, respectively,
taken as q = 9130 kg/m3, ks = 1300 ppm, l0Ms = 0.8 T, vm = 80, Es = 110 Gpa, rs = 200 Mpa. And the
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element number of the rod and the time step are, respectively, taken as 10 and Dt = 4 · 10�6 s in our cal-
culation. The numerical tests show that the element number of the rod and the time step are enough for
stability.

Fig. 5(a) shows the curves of resonance frequency versus the magnetic bias field for a given pre-stress
based on the D–H model and the new model, respectively. It can be seen that there is a notable difference
between different models under high field. The resonance frequency predicted by the D–H model is a con-
stant, which does not change with the external magnetic bias field. But the corresponding result predicted
by the new model is different. It shows that the resonance frequency increases nonlinearly with increasing
magnetic bias field, which is coincident with the experimental phenomena shown in Fig. 2. It means that the
model is also better than the D–H model to describe the law between resonance frequency and the magnetic
bias field under high field. Moreover, numerical results by the new model show that the resonance ampli-
tude decreases with increasing magnetic bias field under high field, which is shown in Fig. 5(b). It can be
explained that the magnetostrictive strain described by the new model approaches the saturation gradually
and the slope of the curves shown in Fig. 4 decreases gradually with increasing magnetic field under high
field, thus, the deformation induced by the exciting field H1 decreases with increasing magnetic bias field H0

at the time. The corresponding resonance amplitude prescribed by the D–H model is zero under high field,
which is also shown in Fig. 5(b). This is due to the fact that the maximum magnetostrictive strain described
by the D–H model is a constant and the slope of curves shown in Fig. 3 is zero at the time, thus, the defor-
mation induced by the exciting field H1 is zero under high magnetic bias field H0 and corresponding reso-
nance amplitude is zero at the time.

Fig. 6 is the curves of resonance frequency versus the compressive pre-stress for a given magnetic bias
field based on the D–H model and the new model, respectively. It can be seen that the resonance frequency
described by the new model increases nonlinearly with increasing compressive pre-stress when the magnetic
bias field and the exciting field are, respectively, 0 Oe and 100 Oe. However, the corresponding resonance
frequency described by the D–H model is a constant and does not change with the pre-stress. It because
that Young�s modulus prescribed by the D–H model is a constant, yet the relation between Young�s mod-
ulus and the stress prescribed by the new model is nonlinear at the time.

Fig. 7 is the response curves of amplitude versus time for the Terfenol-D rod prescribed by the new
model when external magnetic field approaches the saturation. The ultraharmonic resonance phenomenon
Fig. 5. (a) The curves of resonance frequency versus the magnetic bias filed. (b) The curves of resonance amplitude versus the magnetic
bias filed.



Fig. 7. The response curves of amplitude versus time.

Fig. 6. The curves of resonance frequency versus the compressive pre-stress.
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is shown in Fig. 7, which is the character of nonlinear vibration, where the resonance frequency is 4983 Hz.
However, the D–H model cannot prescribe the phenomena at all since constitutive relation prescribed by
the D–H model is linear at the time. As shown in Fig. 3, the magnetostrictive strain prescribed by the D–H
model is a constant when magnetic field and pre-stress are, respectively, 3.5 kOe and �65.4 MPa, i.e., the
constitutive relation is e r

E þ constant in Eq. (7a) at the time.
Based on above analysis, the new model is better than the D–H model to describe the magnetostrictive

strain in different compressive pre-stress and different magnetic field. Especially under the high field, it can
describe the reversal phenomena, which the D–H model cannot do. Furthermore, the new model can de-
scribe the DE effect more accurately, which makes it more accurately in describing the drift of resonance
hump of the Terfenol-D actuator. In practice the law of the drift is important for getting the expectant res-
onance frequency or resonance amplitude by changing the magnetic bias field and pre-stress and also the
model presented in this paper can describe the ultraharmonic resonance phenomena under high field, which
is the character of nonlinear vibration. All of the results are due to the intrinsic advantage of the new model
in describing the coupled mechanics-magneto property of Terfenol-D rod.
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