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Let X and Y be real Banach spaces with a projectionally complete scheme 
P={X,,P,,;Y,,,Qn}andletT:X + Y be an asymptotically linear mapping 
which is A-proper with respect to P and whose asymptotic derivative 
T, EL(X, Y) is also A-proper with respect to P. Necessary and sufficient 
conditions are given in order that the equation T(x) = f be solvable for a 
given f in Y. Under certain additional conditions it is shown that solutions can 
be constructed as strong limits of finite dimensional Galerkin type approximates 
X,EX,. Theorems 1 and 2 include as special cases the recent results of 
Kachurovskii, Hess, NeEas, and the author. The abstract results for A-proper 
mappings are then applied to the (constructive) solvability of boundary value 
problems for quasilinear elliptic equations of order 2m with asymptotically 
linear terms of order 2m - 1. 

INTRODUCTION 

Let (X, Y) be a pair of real Banach spaces with a projectionally 
complete system r = {X, , Y, , P, , Q3, X* and Y* the adjoints of 
X and Y, respectively, and (u, x) the value of u E X* at x E X. For a 
bounded linear operator T: X +- Y let N(T) C X and R(T) C Y denote 
the null space and the range of T, respectively, and let T*: Y* + X* 
denote the adjoint of T. We introduce the usual notation: 

N(T)I = (24 E X* 1 (24, x) = 0 for x EN(T)}, 

N( T*)’ = {y E Y 1 (w, y) = 0 for w E N( T*). 

* Supported in part by the National Science Foundation Grant GP-20228. 
+ The results contained in this paper were first presented by the author at the 
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If C: X-t X is a compact linear operator, then the classical 
Fredholm alternative asserts that 

dim N(I - C) = dim N(1- C*) < CO 

and the equation x - Cx = f is solvable if and only ;ff E N(I - C*)J-. 
In [20, 211 the writer obtained a constructuve generalization of the 
above alternative which we state here in the following form to be used 
below. 

THEOREM A. (a) Suppose T: X -+ Y is bounded, linear, and A- 
proper with respect to I’. Then either the equation TX = y is uniquely 
approximation-solvable for each y in Y, or N(T) # {O}. In the latter case, 
T is Fredholm of index i(T) >, 0 and TX = y is solvable if and only if 
y E N(T*)l. 

(b) If one assumes additionally that the adjoint system I’* is 
projectionally complete for the pair (Y*, X*), then i(T) = 0 if and only 
if T* is A-proper with respect to P.l 

In [lo] Kachurovskii extended (without proof) the classical 
Fredholm alternative to nonlinear equations in X of the form 
x - Fx = y, where F is compact and asymptotically linear, and gave 
applications to nonlinear integral and ordinary differential equations. 
In [25] the writer extended the results of [lo] to the case when F is 
asymptotically linear and K-ball-contractive with k < 1, and used it to 
obtain the existence of classical solutions for nonlinear elliptic bound- 
ary-value problems. An alternative, which is analogous to [lo], has 
been established by Hess [9] for the case when X is reflexive and 
T: X -+ X* is a bounded, demicontinuous, and asymptotically linear 
map of type (S) with an asymptotic derivative which is also of type 
(S). In [16, 171 N eEas studied the surjectivity of the map T: X -+ X* 
of type (5’) and of the form T = A + N, where N is asymptotically 
zero and A is of type (5’) and positively homogeneous with either A 
or T odd. Applications to the existence of weak solutions for Dirichlet 
elliptic boundary-value problems has been given in [9, 16, 171. 

The purpose of this paper is twofold. In Section 1, we extend 
Theorem A to equations T(x) = y involving nonlinear A-proper 
mappings T: X---f Y which are either asymptotically linear (Theor. 1) 
or of the form T = A + N with A an A-proper map and N asymp- 
totically zero (Theor. 2). Since the above class of nonlinear A-proper 

1 In its present form Theorem A and other perturbation results were presented by 
the author at the Scientific Congress in 1973 in New York commemorating the one- 
hundredth Anniversary of the Shevchenko Scientific Society. 
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mappings includes the mappings studied by the abovementioned au- 
thors, the alternatives in [9, 10, 251 are deduced here as corollaries of 
our Theorem 1 while those in [16,17] as corollaries of Theorem 2. We 
add, that unlike the results in [9, 10,25, 16, 171, our Theorems 1 and 2 
are essentially constructive. Indeed, if T is injective, then Theorems 1 
and 2 assert that for each y in Y the solution x E X of equation 
TX = y is obtained as the strong limit of solutions x, E X, of finite- 
dimensional equations QnT(xn) = Q%(y), i.e., the Galerkin type 
method converges. In case one is only interested in the existence of 
solutions, then Theorems 1 and 2 admit generalizations to pseudo-A- 
proper mappings (Theorem 2’). 

In Section 2 we apply the results of Section 1 to the approximation- 
solvability and/or solvability of Dirichlet boundary-value problems for 
nonlinear elliptic equations involving differential operators T of the 
form T = A + N, where A is linear or nonlinear elliptic operator 
and N is nonlinear and asymptotically linear. Such elliptic operators 
have been recently treated either by the application of the theory of 
the operators of monotone type [9, 11, 16, 171 or the theory of K-ball- 
contractions [25, $1. 

We add in passing that in recent years the abstract theory of 
operators of monotone type has been thoroughly developed and widely 
applied by Browder, Brezis, Dubinskii, Hess, Leray, Lions, NeEas, 
Pohodjayev, and many others (see [I, 2, 9, 14, 271 for further refer- 
ences) to obtain existence results for various classes of nonlinear 
elliptic and parabolic boundary-value problems. Although the abstract 
theory of A-proper mappings has also been developed recently to a 
considerable degree (see [23] for the survey of these results) the 
applicative aspect of this theory is only beginning to attract attention 
of the researchers working in the field of differential equations and 
other applications. In Section 2 of this paper we indicate how the 
theory of A-proper mappings can be used to obtain approximation- 
solvability and/or solvability results for partial differential equations. 

1. FREDHOLM ALTERNATIVE 

In what follows we assume that (X, Y) is a pair of real separable 
Banach spaces with a projectionally complete scheme 

r=G‘G>Y,,P,,Q,h 
where {X,> C X and {Y,} C Y are sequences of monotonically increas- 
ing finite dimensional subspaces with dim X, = dim Y, and (P,} and 
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(Qn} are linear projections with P,(X) = X, and QJY) = Y, such 
that P,x -+ x and Qn y -+yasn-+ coforeachxinXandyinY.Itis 
obvious that (X, Y) has a projectionally complete scheme P if X and 
Y have Schauder bases. We use the symbols “--+” and “-” to denote 
strong and weak convergence, respectively. 

In trying to characterize the class of not necessarily linear mappings 
T: X -+ Y for which a solution x E X of the equation 

T(x) = y, YEY, (1) 

can be obtained as a strong limit of solutions x, E X, of finite- 
dimensional Galerkin type approximate equations 

T&n) = Qn(Y), T, = QJ Ix, > (2) 

the writer has been led to the notion of an A-proper mapping (i.e., 
mapping satisfying condition H [19, 221) which is defined as follows. 

DEFINITION 1. T : + Y is Approximation-proper (A-proper) with 
respect to I’ if T,: X, -+ Y, is continuous for each n and if 

hz, I %a, E XTLJ 

is any bounded sequence such that Tn,(x,,) +g as j + co for some 
g in Y, then there exists an x E X such that 

(9 T(x) = g, 
(ii) x E cl(x,S, where cl{x,J denotes the closure of {x,J in X. 

It turned out that in addition to the mappings T: X -+ X of the 
form T = I - S - C, where C is a not necessarily linear compact 
mapping and S is Lipschitzian with constant 1 E [0, l), the class of 
A-proper mapping includes also the following general classes of 
mappings whose finitions will be given below. 

(a) Bounded demicontinuous mappings T of a reflexive space 
X into X* which are of type (S) and, in particular, of 
strongly montone type (see [2, 221). 

(b) Pi-compact mappings T: X+ X and, in particular, 
mappings of the form T = I -F, where F is k-ball- 
contractive with R < 1 (see [23, 301). 

For other examples of A-proper mappings see [23, 51. To state our 
results precisely and to indicate the intimate relationship of A- 
properness of T to the constructive solvability of Eq. (1) via the 
Galerkin type method we will need the following definition. 

580/18/3-6 
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DEFINITION 2. (a) Equation (1) is uniquely approximation-solvable 
with respect to F if Eq. (2) h as a unique solution x, E X, for each 
large n such that x, + x and x is the unique solution of Eq. (1). 

(b) Equation (1) is strongly (respectively feebly) approximation- 
solvable with respect to r if Eq. (2) has a solution x, E X, for each 
large n such that x, + x (respectively, x,~ 4 x for some subsequence 
(xn,> of {xn}) and T(x) = y. 

We call the reader’s attention to the difference between the 
solvability (i.e., the existence of solutions) of Eq. (1) and the approx- 
imation-solvability of Eq. (1) (i.e., the constructive solvability of 

wl. (1)). 
Following Krasnoselskii [ 121 we call a nonlinear map T: X + Y 

asymptotically linear if there exists a bounded linear map (i.e., 
T, EL(X, Y)), called the asymptotic derivative of T, such that for 
all x in X 

T(x) = T,(x) + w4 with II WWII x II - 0 as II x II ---f ~0. (3) 

It was shown in [12] that if T is asymptotically linear and compact, 
then T, is also compact and this fact was then used in the study of 
the existence of nontrivial solutions, bifurcation theory, and in 
other applications. Kachurovskii also utilized this fact in [lo]. 

Our first basic result in this paper is the following alternative 
extending Theorem A to nonlinear maps, which in a sense provides a 
constructive generalization and the unification of the results in 
[9, 10, 251. 

THEOREM 1. Let T: X -+ Y be an asymptotically linear A-proper 
mapping with an A-proper asymptotic derivative T, E L(X, Y). Then 
either Eq. (1) is feebly app roximation-solvable for each y in Y (and 
strongly approximation-solvable ;f T is also one-to-one), or N( T,) # {O}. 
In the latter case, assuming additionally that dim N( T,) = codim R( T,) 
and that 

JqN) c N(Tu3*)L (= qTcJ), (4) 

or equivalently that 

WV c VaJ, (4’) 

Eq. (1) is soZvabZe ;f and only if y E N( T,*)l (=R( T,)); in case of 
solvability, a solution x of Eq. (1) is obtained as a limit point of a 
constructable sequence {xn 1 x, E X,}. 
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Proof. The proof of Theorem 1 is based upon Theorem A, the 
finite dimensional Brouwer degree theory, and the following propo- 
sition which includes Proproposition 1 in [9]. 

PROPOSITION 1. Let T: X 4 Y be A-proper with the A-proper 
asymptotic derivative T, . If N( T,) = {0), then Eq. (1) is feebly 
approximation-solvable for each y in Y. If we additionally assume that T 
is-one-to-one, then Eq. (1) is strongly approximation-solvable for each y 
in Y. 

Since Proposition 1 will be deduced as a special case of Theorem 2 
below we omit its proof. 

To continue with the proof of Theorem 1, we note that, in view of 
Proposition 1, we need only consider the case when N(T,) # (0). It 

follows from Theorem A that 01 = dim N(T,) < co, R(T,) is closed, 
/3 = codim R( T,) < co with 01 3 /3 and, by our hypothesis, 01 = ,i3. 
Hence there exists a closed subspace Xi of X and a subspace Ni of Y 
with dim Nr = a! such that X = N( T,) @ Xl , T,(X,) = R( T,), T, 
is injective on Xi , and Y = Yr @ Ni with Yi = R(T,). Let fl be 
an isomorphism of N( T,) onto Ni , let P be a bounded linear projec- 
tion of X onto N(T,), and let U be a linear mapping of X into Y 
defined by U = T, + C, where C = IIP. Since C is compact, U is 
A-proper. Moreover, U is one-to-one. Indeed, if 

U(x) = T,(x) + C(x) = 0, 

then T,(x) = -C( x and since R(T,) n N1 = {0} it follows that ) 
T,(x) = 0 and C(x) = 0. H ence I7P(x) = 0, i.e., Px = 0 since II is 
one-to-one. Consequently, x E Xi with T,(x) = 0. Thus x = 0 since 
T, is one-to-one on X1 , i.e., U is injective and, in fact, bijective by 
Theorem A. 

It is now easy to see that, under the additional condition (4), the 
Eq. (1) is solvable if and only if y E N(T,*)l. Indeed, suppose first 
that y E N(T,*)I, i.e., y E R(T,) since R( T,) = N(T,*)l for an 
A-proper mapping T, . Let U = T, + C with C = LlP and note 
U is a one-to-one bounded linear A-proper mapping which is the 
asymptotic derivative of the A-proper mapping Tl = U + N. Hence, 
by Proposition 1, the equation T,(x) = y is feebly approximation 
solvable, i.e., we can construct a sequence {xn 1 x, E XJ and x E cl(x,) 
such that T,(X) = T,(Z) + C(X) + N(%) = y. Since y E R(T,) and 
N(X) E R(T,) by hypothesis (4), it follows that 

C(x) = y - T&q - iv(%) E R(T,). 
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But C(X) also lies in N1 and li(Z’,,,) n Nl = (0); therefore, C(Z) = 0 
and thus T,(Z) + N(a) = y, i.e., Eq. (1) is solvable with x obtained 
as a limit point of a constructable sequence (xn 1 x, E X,}. 

To prove the converse, suppose that y in Y is such that T(x) = y 
for some x in X. Since, by (4), T(x) - T,(x) E N(T,*)l = R(T,), it 
follows that y = (T(x) - T,(x)) + T,(x) E R(T,) = N(T,*)J-. It is 
obvious that (4) is equivalent to (4’). Q.E.D. 

Remark 1. In connection with the second part of Theorem 1, it 
should be noted that when N( T,) and N(T,*) are known and 
dim N( 57,) = dim N( T,*), then one can construct an operator C so 
that a solution x, of the equation QnT1(xn) = Qny can be constructed 
by the first part of Theorem 1 and thus a solution of Eq. (1) can be 
obtained as a strong limit point of the known sequence {x, j x, E XJ 
even when N(T,) # (0). 

Remark 2. To solve Eq. (1) constructively for a given y in 
R( T,) = Yl when N( T,) $; (0) an d condition (4) holds, it is probably 
worth noting that for certain specific pairs (X, Y) and/or A-proper 
maps T: X -+ Y one may be able to construct a projectionally complete 
scheme r, for the pair (X1, Y1), verify the A-properness of T: 
X, + Yr with respect to r, , and apply the approximation-solvability 
results to Eq. (1) in (X1 , Yr) in which the linear part is one-to-one. 
This approach, for example, always works when T: X-P X* is of the 
form T = T, + N with N compact and T, = L + C, where 
(Lx, 4 3 c II x II2 v x E X and C linear and compact. 

Remark 3. If we are only interested in the existence of solutions 
of Eq. (I), then under somewhat stronger assumption on T, namely 
that T be of the form T = T, + N with T, A-proper and N compact, 
it can be shown by different arguments that the second assertion of 
Theorem 1 in the form “Eq. (1) is solvable if and only if y E N( T,*)J-” 
is valid without the assumption that 01 = /3. This will be deduced from 
a more general result which will be published elsewhere. 

Special Cases 

We now deduce the Fredholm Alternatives obtained in [9,10,25] as 
corollaries of our Theorem 1 under the assumption that X has a 
projectionally complete scheme r, = {Xm , P,}. In this case Y, = X, , 
Qn. = P, and T, = P,T jx, . 

(a) k-ball-contraction zuith k < 1. In the discussion of (a), we 
assume that r,, is such that 11 P, jl = 1 for all n. We begin with some 
definitions. Following [13, 61, f or any bounded set D C X, we define 
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x(D), the ball-measure of noncompactness of D, to be inf{r > 0 1 D 
can be covered by a finite number of balls with centers in X and 
radius r>. The above terminology is justified by the fact that x(D) = 0 
if D is compact. For the various properties of x and the companion 
notion of a set-measure of noncompactness y(D) see [28, 18, 261. 
Closely associated with x is the notion of a “K-ball-contraction” 
defined to be a continuous bounded mapping F :X + X such that 

x(W) G kx(D>> f or any bounded set D in X and some constant 
k > 0. It follows immediately that C: X -+ X is compact iff C is 
0-ball-contractive. If S: X + X is such that /I Sx - Sy 11 < 
III x - y 11 for all x and y in X, then S is Z-ball contractive and 
F = 5’ + C is also Z-ball contractive. For some more complicated 
examples of k-ball contractions see [28, 261. 

As a first corollary of Theorem 1 we deduce the following feebly 
constructive version of the alternative in [25]. 

COROLLARY 1. Let F: X + X be k-ball-contractive with h E [0, 1) 
and with F, E L(X) as its asymptotic derivative. Then either the equation 

x-F(x) =y, YEX (5) 

is feebly approximation-solvable for each y in X (and strongly approxi- 
mation-solvable if T = I - F is also qne-to-one), OY N(I - F,) # (O}. 
In the latter case, assuming additionally that 

F(x) -F,(x) E iv((I - F,)*y JOY all x E X, (6) 

Eq. (5) is solvable if and only if y E N((I - F,)*)l. 

Proof. Since F: X -+ X is K-ball contracrive with k < 1 and 
11 P, // = 1 for all n, the result of Nussbaum and Webb implies that 
T = I - F is A-proper with respect to r,, . Since, by Proposition 1 
in [25], F, is also K-ball-contractive, the mapping T, = I -F, , 
which is the asymptotic derivative of T, is also A-proper with respect 
to r,, . Moreover, the results in [6, 181 imply that T, is Fredholm of 
index zero and, in particular, a( T,) = p( T,). Finally, (6) implies that 
T(x) - T,(x) E IV( T,*)’ f or x E X, i.e., (4) also holds. In view of the 
above discussion, the validity of Corollary 1 follows from Theorem 1. 

Q.E.D. 

We add in passing that since every compact map C: X--f X is 
K-ball contractive for k = 0, the alternative in [lo] also follows from 
Theorem 1 since it is a special case of Corollary 1 for k = 0. 
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(b) Mappings of type (S). Let X be a separable reflexive Banach 
space. Following Browder [2] we say that a map T: X -+ X* is of 
type (S) is for any sequence (x,} in X such that x, - x in X and 
(TX,- Tx,x,-xx) --+Oasn-+ coitfollowsthatx,-+xasn+ co. 
It was shown in [2] that if T: X -+ X* is a bounded, continuous, and 
of type (S) mapping, then T is A-proper with respect to an injective 
scheme. Similar results hold for projective schemes with continuity 
replaced by demicontinuity. Recall that T is said to be demicontinuous 
if T is continuous from the strong topology in X to the weak topology 
in X*. It is known [I, 9, 161 that the notion of a mapping of type (S) 
is very useful in obtaining the existence of weak solutions for elliptic 
boundary value problems. 

As another corollary of Theorem 1 we deduce the feebly constructive 
version of the alternative in [9]. 

COROLLARY 2. Suppose X is reJEexive and r, = (X, , Y, , P,, , Q,> 
is a projectionally complete system for (X, X*), where Y, = Qn(X*) and 
Qn = P,* for each n. Suppose T: X -+ X* is an asymptotically linear, 
bounded, demicontinuous, and of type (S) map with the asymptotic 
derivative T, E L(X, X*) which is also of type (S). Then either Eq. (1) 
is feebly approximation-solvable for each y in X* (and strongly approxi- 
mation-solvable ;f T is also injective), or iV( T,,,) # (0). In the latter case, 
assuming additionally that T(x) - T,(x) E N( T,*)l for x E X, Eq. (1) 
is solvable zy and only if y E N( T,*)l. 

Proof. It is easy to see that T is A-proper with respect to I’, . 
Indeed, T, = P,*T Ix, is continuous for each n since T is demi- 
continuous and the strong and weak convergence coincide in finite 
dimensional spaces; moreover, if {x,$ 1 x,, E X,$} is any bounded 
sequence such that P,,T(xn,) -+ g for some g in X*, then assuming 
without loss of generality that x,, - x0 in X we see that 

(TX,, - TX,, x,, - x0) = (P,*jTx,j - P$,Tx,, , xnj - P,,xo) 

+ P”xnj - TX, , P,,x,, - x0) + 0, 

since P$,T(x,,) - Pz,Tx, -+ g - TX, , x,, - P,,xO - 0, and 

(TX,, - TX, , P, jx0 - x,,) --t 0 

by the boundedness of {Tx,J. Thus, since T is of type (S), x,, + x0 
as j -+ co. Moreover, since Pzjf + f as j -+ cc for each f in X* and 
TX, - TX, in X* we see that for each f in X* we have 

k,f) = lijm(Pn,Txn, ,f> = liyVxnjy PZ,f) = (TX, ,f>- 
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Hence TX, = g, i.e., T is A-proper with respect to r, . By the same 
argument one shows that T, is also A-proper. 

Now, since X is reflexive, T,: X -+ X* is of type (S) if and only 
if Tad’: X-+ X* is of type (S). Hence T,* is also A-proper with 
respect to r, and, therefore, by the second part of Theorem A, T, is 
Fredholm of index zero, i.e., R(T,) is closed and dimensions of 
N(T,) and I?( T,*) are finite and equal. Consequently, Corollary 2 
follows from Theorem 1. 

Remark 4. Since, for a reflexive X, L E L(X, X*) is of type (S) if 
and only if L* is of type (S), Theorem 1 in Hess [9], which asserts 
that L is Fredholm of index zero, is a special case of the writer’s 
Theorem 5 in [20] (i.e., Theorem A above) at least when X has a 
Schauder basis since in that case there is a natural scheme r, which is 
projectionally complete for the pair (X, X*). 

Remark 5. Concerning the second part of Theorem A, it should 
be added that the adjoint scheme r* = {Qn*( Y*), P,*(X*), Qn*, P,*} 
is certainly projectionally complete for the pair (Y*, X*) if X and Y 
have shrinking Schauder bases (and, in particular, if X and Y are 
reflexive and have Schauder bases), where the latter is defined to be 
a Schauder basis, say (&} C X, such that for each f in X* and any 
c > 0 one has the relation a,(f) = sup{l(x - Pnx,f)l 1 I/ x [I < c} -+ 0 
as n + co. Thus, for example, the space c,, is not reflexive since 
c,,* = II but c0 has a shrinking basis and so the pair {c,, , c,,*} has a 
projectionally complete scheme. 

A-Properness in Terms of General Approximation Schemes 
To complete the proof of Theorem 1 we must establish the validity 

of Proposition 1. This we do by proving Theorem 2 below for A- 
proper mappings defined in terms of general approximation schemes 
used in [3, 221 and then show that it includes not only Proposition 1 
but also unites and extends the two alternatives of NeEas [16, 171. 
Theorem 2 also establishes the convergence of the Galerkin type 
methods for the class of nonlinear equations treated here. 

DEFINITION 3. Let {E,} and {F,) be two sequences of oriented 
finite dimensional spaces with dim E, = dim F, and let (VJ and 
{W,} be two sequences of continuous linear mappings with V, 
mapping E, into X and W, mapping Y onto F, such that {V%} and 
(W,J are uniformly bounded, dist(x, V,E,) -+ 0 as n --+ 00 for each x 
in X and for any given r > 0 the set 

V,-l(B(O, r)) = {x E E, 1 V,x E B(0, r)} 
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is bounded for each n. We call P, = {En , F, , V, , W,} an admissible 
approximation scheme for mappings T: X-t Y. 

For the sake of simplicity we use 11 /I to denote all norms 11 IIx, 
II IIY 9 II IlEn 2 II llFn in respective spaces X, Y, E, and F, . Note that 
Definition 3 does not require that En and F, be subspaces of X and 
Y, respectively, nor that V, and W, be linear projections. Conse- 
quently, in addition to projective scheme considered above, the 
schemes Pa given by Definition 3 include injective schemes as well as 
abstract finite difference schemes (see [3,22]). The following examples 
of Pa will illustrate the difference even when {En) are subspaces of X. 

Let {X,} be a monotonically increasing sequence of oriented 
finite-dimensional subspaces of X such that dist(x, X,) -+ 0 as n --+ co 
for each x in X and let V, be a linear injection of X, into X for each n. 

(i) If Y =X, Y, =X, and W,=P,,whereP,:X+X,is 
a linear projection such that P,x -+ x for each x in X, then 
rp = {K&, y, 9 v, > w,> is an admissible projection 
scheme for T: X --+ X. 

(ii) If Y = X*, Y, = P,*(X*) and W, = Pm*, then P,* = 
(X, , Y, , V, , W,} is an admissible projection scheme for 
T: X+X*. 

(iii) If Y = X*, Y, = Xn*, and W, = Vn*, then P, = 
(X, , Y, , V, , W,> is an admissible injection scheme for 
T: X+X*. 

We add in passing that the scheme (iii) is particularly useful (see 
e.g. [14]) in the approximate solvability of differential equations. 
Example (ii) shows that a projectional scheme could be admissible 
for T: X-t X* without being projectionally complete for the pair 
(X9 X”). 

DEFINITION 4. T: X -+ Y is said to be A-proper with respect 
to r, if T, = WnTVn: En -+ F, is continuous and if for any 
{xn, I x,, E En,} such that {Vn,xn,> is bounded in X and 

as j 4 CO for some y in Y, there exists {xR,(J and x in X such that 

v%mx%~k~ --+ x and T(x) = y. 
It is known that most (but not all) of the results obtained for 

A-proper maps given by Definition 1 carry over to maps given by 
Definition 4 (see also a series of papers by Grigorieff who studies 
A-proper maps in terms of general discrete schemes introduced by 
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Stummel (e.g. [7, 291)). In this paper we restrict ourselves to the 
following. 

THEOREM 2. Let (X, Y) be a pair of Banach spaces and let T: 
X -+ Y be A-proper with respect to an admissible scheme I’, given by 
Definition 3. Assume that T = A + N, where A is A-proper with 
respect to r3 and positively homogeneous of order 01 > 0 (i.e., A(tx) = 
tmA(x) for all x in X and t > 0) and N is such that 

I! ~(Nll x /ICI - 0 us 11 x 11 + co. (7) 

Suppose also that either A or T is odd and that x = 0 whenever Ax = 0. 
Then, in either case, the equation 

Ax+Nx=y (8) 

is feebly approximation-solvable with respect to r, for each y in Y. If T 
is also one-to-one, then Eq. (8) is strongly approximation-solvable for 
each y in Y (i.e., the Galerkin type method when applied to Eq. (8) is 
convergent). 

Proof. Note first that for each n the set Bp = V;l(B(O, r)) is an 
open bounded set in E, , Bar n aBp = 0 and V;l(B(O, r)) is a 
closed subset of E, containing B,“. Hence cl(B,“) C V;i(B(O, r)) and 
aB,* C V;‘( aB(O, Y)) for each 71. 

Suppose first that A is odd, i.e., A(-x) = -A(x) for x E X. Our 
conditions on A and N imply that for each given y in Y there exist 
a real number R, > 0 and an integer N, >, 1 such that for all t E [0, l] 
and n > N, we have 

W,,AVn(x) + (1 - t) W,(NV&) - y) f 0 for all x E aBiV . (9) 

Indeed, if (9) were not true for some y in Y, then there would exist 
sequences {nj}, {x,, 1 x,~ E X,J and {tj} C [0, l] such that nj + co, 
jl Vnjx,, /I --+ co as j -+ co and 

~n,AKg,j + (1 - ti) W,&Tz,xn, --Y) = 0 

for each j. Since {IV,} are linear and uniformly bounded, A is positively 
homogeneous of order 01 > 0, and 11 T/,,x,~ II+ co asj + co, it follows 
from the last equality and condition (7) that 

KjAK&z,) = (tj - 1) Wn,WK,xnj - r)/ll Kg,, Ila + 0 as j-co, 

where z,, = 11 Vn,x,, II-lx,, . Since {Vn,zn,) C X is bounded and 
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W,.A Vn,(xnj> - 0 as j - co, the A-properness of A with respect to 
r, implies the existence of a subsequence (Zig} and a z in X such 

that v?w%rc) + z in X and AZ = 0 with Ij x jl = 1, in contradiction 
to our condition on A. Thus, for each given y in Y, there exist R, > 0 
and N, > 1 such that (9) holds for n > N, . 

Now, for each n 3 N, , define the continuous homotopy Htn: 
KG, x [O, II- J’,, by H, n = A,(x) + (1 - t) Wn(NVn(x) - y). By 
(9), Htn # 0 for all x E aB:y and all t E [0, I]. Hence the Brouwer 
degree deg(H,“, Bz, , 0) is well defined for n 3 N, and is independent 
of t E [0, l] by the homotopy theorem. Since A, is odd for each n, the 
classical Borsuk theorem then implies that 

Thus, for each 1z 3 N, , there exists an x, E B;4, C En such that 
T,(x,) - WJy) = 0. s ince Vnxn E B(0, R2/) for each n and T is 
A-proper with respect to I’, there exists a subsequence {xn,> and an x 
in B(O, R,) such that Vm,x,, -+ x in X and T(x) = y, i.e., Eq. (8) is 
feebly approximation-solvable with respect to the admissible scheme 
F3 for each y in Y. 

Suppose now that instead of A it is assumed that T is odd. Then, 
as above, one shows that for each given y in Y there exist R, > 0 
and N, > 1 such that for all t E [0, l] and n > N, we have 

W,zAV,(x) + W,NV,z(x) - tW,y # 0 for xEaBG. (10) 

As above, it follows from (10) and the oddness of T, that 

deg(T, - W,Y, B,“, , 0) = deg(T, , B,“, , 0) f 0 for n > N. 

Hence, for each n > N, , there exists x, E Bz C En such that 

Tntxn> = W,(Y). Th e assertion that Eq. (8) is feebly approximation- 
solvable with respect to r, for each y in Y now follows as in the first 
case. 

To prove the last assertion of Theorem 2 we note that, by what 
has been proved above, for each y in Y there exists a sequence 
(xn 1 x, E E,) of soiutions of T,(x,) = W,y and a strong limit point 
x,, of {Vn~,J in X such that T(x,) = y. Since T is one-to-one and 
A-proper with respect to r, , x0 = Iim, Vmxn . Indeed, if not, then 
there would exist a subsequence {x%,} such that \I V7Ljx,j - x,, I/ 2 E 
for all j and some E > 0. But T,,(q,) = W,jy) for each j and 
therefore, by the A-properness of T with respect to F, , there exists 
a subsequence {x~,(,~> and x,,’ in X such that Vnj(,Jx,,(kj + x,,’ as 
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K --+ 00 and T(x,‘) = y with x0 # x,,‘. This, however, contradicts the 
one-to-one property of T. 

Q.E.D. 

It is obvious that Proposition 1 follows from Theorem 2 for the 
case when A is odd with A = T, and we take E, = X, , F, = Y, , 
V,: X, -+ X a linear injection and W, = Qn . 

As a corollary of Theorem 2 we deduce the following feebly 
constructive versions of the alternatives of NeEas (see [16, Theor. 21 
and [17, Theor. 21). 

COROLLARY 3. Suppose that X is a separable reflexive Banach space 
with an injective scheme r, given by (iii) for T: X -+ X*. 

(a) Let A be an odd, bounded, and demicontinuous map of X into 
X* such that A is of type (S) and positively homogeneous of order 01 > 0. 
Suppose N: X ---f X* is compact and satisfies (7) of Theorem 2. If x = 0 
whenever Ax = 0, then Eq. (8) is feebly approximation-solvable with 
respect to r, for each y in Y. 

(b) Suppose T = A + N: X -+ X* is odd, bounded, and of type 
(S). Suppose further that A is demicontinuous, of type (S) and positively 
homogeneous of order 01 > 0, while N is demicontinuous and satisfies (7) 
of Theorem 2. If x = 0 whenever Ax = 0, then Eq. (8) is feebly approxi- 
mation-solvable with respect to r, . 

If T is also one-to-one, then in both cases Eq. (8) is strongly approxi- 
mation-solvable with respect to r, for each y in Y (i.e., the Galerkin 
method converges). 

Proof. It was shown by Browder [2] that if A: X ---f X* is a bounded 
continuous map of type (S), then A is A-proper with respect to r, . 
Similar argument shows that A is A-proper with respect to r, if the 
continuity of A is replaced by demicontinuity. For the sake of 
completeness we outline this argument. 

Let {xn, 1 xnj E X%, be any bounded sequence so that 

II wLjAxnj - Wn,Y II + 0 

as j --t co for some y in Y, where W, = V,*. Since {xn,} is bounded 
and X is reflexive we may assume that xmj - x in X. Let v E U, X,; 
then v E: X, for some n and therefore for sufficiently large j, 
x nj - v E Xnj . Hence 

wnj - Ya xnj - v)I = INw&A, - Wn,Y, xnj - 41 

f II wq4zj - wzjY II II %aj - v II + 0. 
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Since (JJ, xnj - V) + (y, x - w), the above relation implies that 
(kLj , %Lj - V) -+ (y, x - V) for each ‘u in (J, X, . In view of this 
and the fact that (J X, is dense in X and (Ax,,) is bounded in X, 
it follows that (Ax,, , xni - V) -+ (y, x - V) for each z, in X. In 
particular, (Ax, , x,~ - x) + (y, x - x) = 0. Consequently, 

(Ax, j - Ax, x, j - x) 4 (y - Ax, x - x) = 0 

from which, since A is of type (S), it follows that x,, -+ x as j + co. 
Hence Ax “, - Ax in X* by the demicontinuity of A and therefore, 
since xnj - ~1 -+ x - z, for each v in X, we see that 

(Axnj , xnj - w) -+ (Ax, x - ?I). 

Thus, (Ax, x - V) = (y, x - V) for each v in X. This implies that 
Ax = y and shows that A is A-proper with respect to the injective 
scheme r, . 

Now, since A is A-proper and N is compact, it follows easily that 
T = A + N is also A-proper with respect to r, . In view of this, 
Corollary 3 follows from Theorem 2. Q.E.D. 

We add in passing that the argument used in [16] to establish the 
solvability aspect of Corollary 3(b) is not applicable if instead of T 
one assumes only that A is odd. 

It was observed by the writer [24] that if one is only interested in 
the existence theorems for Eq. (I), then under certain conditions the 
requirement that T be A-proper can be replaced by the weaker 
hypothesis, namely, that T be pseudo-A-proper; the latter notion is 
obtained when in Definition 1 we drop the requirement (ii). It was 
shown in [24] that, in addition to A-proper maps, the class of pseudo- 
A-proper maps defined in terms of projectional schemes r contains 
monotone and pseudomonotone maps T: X -+ X*, K-monotone, 
weakly continuous maps and others (see [24]). In terms of the 
admissible schemes r, = {E, , F, , V, , W,) we say that T: X -+ Y is 
pseudo-A-proper with respect to ra if T, = En -+ Y, is continuous 
and if Ix,, I xnj E Enjl is any sequence such that {Vnj(xnj)} is bounded 
in X and II Tnj(xRj) - Wnjr II -+ 0 as i + co for some y in Y, then 
there exists an x in X such that TX = y. 

We note that a careful examination of the proof of Theorem 2 
reveals that if instead of the approximation-solvability of Eq. (8) we 
are only interested in the solvability of Eq. (8), then the first part of 
Theorem 2 admits the following generalization. 
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THEOREM 2’. Suppose that all the conditions of Theorem 2 are 
satisfied except for the requirement that T = A + N be A-proper with 
respect to I’, . Then Eq. (8) is solvable for each y in Y provided T is 
pseudo-A-proper with respect to r, . 

Finally, we remark that an analogous fact holds for Theorem 1, i.e., 
one obtains the corresponding solvability results if the A-properness 
of T with respect to r is replaced by the pseudo-A-properness with 
all other conditions on A and N remaining the same. 

2. APPROXIMATION-SOLVABILITY OF 
QUASILINEAR ELLIPTIC EQUATIONS 

In this section we apply the results of Section 1 to the approximation- 
solvability and/or solvability of generalized boundary value problems 
for quasilinear elliptic equations of order 2m with asymptotically 
linear terms of order 2m - 1. We shall indicate later the relation of 
our results to those obtained by other authors for similar type of 
equations. 

To define our problem we must first introduce some basic notation 
and definitions. Let Q be a bounded domain in Rn with smooth 
boundary aQ so that the Sobolev Imbedding Theorem holds on Q. 
For any fixed p with 1 < p < CO let LP 3 L,(Q) denote the usual 
Banach space of real-valued functions U(X) on Q with norm 11 u IjP . 
We use the standard notation for derivatives 

D" = (ajaq~ ... (a/ax,)d", 

where Q: = (01~ ,..., cy,) is a multiindex of nonnegative integers with 
the order of Da being written as j a: 1 = cyi + *.. + ollz . If m is a 
nonnegative integer, we denote by WPm E Wpm(Q) the real Sobolev 
space of all u in LP whose generalized derivatives Du, 1 01 1 < m, also 
lie in LP . IVpm is a separable uniformly convex Banach space with 
respect to the norm 

II uIlm.a = (, ; II D”u lli’)l’p. 
m ,111 

In case p = 2 we get the Hilbert space I&‘zm. Let Ccm(Q) be the family 
of infinitely differentiable functions with compact support in Q 
considered as a subset of WPm and let wPpllL be the closure in WPm of 
Ccw(Q). Let <u, v> = So uv dx denote the natural pairing between u in 
L,andvinL,withq=p(p- 1)-l, and let RSm denote the vector space 
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whose elements are &,, = {L I I 01 I < ml with I -L lk = ClorlGrn I t, Ix: 
for an integer k 3 0 and set &m(u) = (Dau 1 1 01 1 < m}. 

(a) Nonlinear Elliptic Equations with Asymptotically Zero Perturbation 

We first consider a quasilinear elliptic formal partial differential 
equation of the form 

where 
F(u) = Jqu) + J-(u) = f(x) (fE&), (11) 

and 

d(u) = 1 (-l)lWaA&, u ,..., Pu), WI 
Ial<” 

J-(u) = c (-l)~wws(x, u,..., Pu) 
lSl<m-1 

(13) 

with M(u) being asymptotically zero in a sense to be defined below. 
To define the “generalized boundary-value problem for Eq. (11)” let 
us suppose initially that A,(x, &(U)(X)) and N,(x, [,(u)(x)) are 
measurable functions of x on Q for each u in Wpm and lie in L, . Then 
it follows from Holder’s inequality that the generalized Dirichlet 
forms a(u, V) and n(u, V) associated with the formal differential 
operators L@‘(U) and M(U) are well defined on WPm by the equations 

and so the problem can formally be described by the following (see 
[1,141). 

GENERALIZED BOUNDARY-VALUE PROBLEM. Let V be a closed sub- 
space of FVpm with @‘,,m C V, and let a(u, v) and n(u, v) be thegeneralized 
Dirichlet forms as de$ned in equations (14) and (15) above. Let f be a 
given element in L, . By the generalized boundary value problem for 
Eq. (11) corresponding to V we mean the problem of finding an element 
u in V, called the weak solution of Eq. (1 l), which satisfies the equation 

~(24, w) + n(u, 21) = (f, 2~) for all v in V. W-5) 

Remark 6. As was pointed out in [ 11, Eq. (16) together with the 
restriction that u lies in V has the force not only of requiring that u 
should satisfy Eq. (11) (at 1 eas in generalized sense) but also of t 
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imposing boundary conditions upon u. The requirement that zk lies in 
V may impose a boundary condition if I’ is significantly smaller than 
WPm (as in the homogeneous Dirichlet problem when I’ = tip”). 
Equation (16) imposes boundary conditions as soon as V is signifi- 
cantly larger than mPrn (see [l] for further discussion). 

Now, under suitable condtions on A,(x, f,(u)) and N,(x, f,,(u)), 
for each fixed u in V, a(u, v) and n(u, v) are continuous linear 
functionals of z, in I’ which we denote by A(u) and N(u), respectively, 
so that A(u) and N( u are elements of I’* and A and N are mappings ) 
of V into V* determined by 

a(u, v) = (Au, v) for all 0 in V, (17) 
n(u, v) = (Nu, v) for all v in V, (18) 

where (Au, 7.1) and (Nu, v) denote the value of the functionals A(u) 
and N(u) in V* at u in I’. Similarly, for each f in L, there exists a 
unique wf in V* such that (f, v) = (wf , v) for all ZI in V. Con- 
sequently, in view of (17) and (18), Eq. (16) is equivalent to the 
operator equation 

Tu = Au + Nu = wf (19) 
for a given wf in V* and the mapping T = A + N: V-+ V*. Thus 
the generalized boundary value problem for Eq. (11) corresponding 
to V is equivalent to the solvability of the operator Eq. (19). 

In order to apply Theorem 2 to Eq. (16) or Eq. (19) we have first 
to select an admissible approximation scheme r, for mappings 
T: V + V*. Since V is a separable reflexive Banach space we may 
find a sequence (+J C V which is linearly independent and complete 
in V and then construct an increasing sequence {X,} of finite- 
dimensional subspaces of V by taking X, = sp{+i ,..., 4,) so that 
IJ, X, is dense in V. For a given f in Lp (or any wf E V*), we associate 
with Eq. (16) a sequence of finite dimensional nonlinear algebraic 
equations 

4% > 6) + 4% 9 96) = (f, A> (1 < i < 4, (20) 

for the determination of an approximate solution u, = CT=, uin& E X, , 
i.e., we determine the unknowns {aIn,..., arm} from the Galerkin type 
system: 
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If for each n we let V, be the linear injection of X, into V and Vn*, 
its dual, the corresponding projection of V* onto Xn*, then Eq. (20) 
is equivalent to the operator equation 

T&n) = 4&n> + ~n(%J = Wn(%), (22) 

where A, and N, are maps of X, into Y, = X,* given by A, = 

WA Ix, , N, = W,N Ix and T, = A, + N, with W, = V,*. It 
was mentioned in Sectyon 1 that l-‘, = (X, , Y, , V, , W,) (i.e., 
r, = r,) forms an admissible approximation scheme for mappings 
from V to V* in the sense of Definition 3. The above discussion 
suggests the following definition concerning Eq. (11). 

DEFINITION 5. The generalized boundary value problem for 
Eq. (11) corresponding to a given closed subspace V of Wprn with 
I&pm C V is strongly (respectively, feebZy) approximation-solvable with 
respect to the admissible scheme r, for maps from V to V* if Eq. (20) 
has a solution {a,“,..., a,“} for each large n with U, = CT=, a& such 
that U, + u in V (respectively, u,~ -+ u in V) and u satisfies Eq. (16), 

( i.e., iff Eq. (19) is strongly (respectively, feebly) approximation- 
solvable with respect to l-‘, in the sense of Definition 2). 

Basic Analytic Problem 

The preceding discussion indicates that the basic problem in the 
approximation-solvability and/or solvability of the generalized 
boundary value problem for Eq. (11) corresponding to a given sub- 
space V via the theory of A-proper mappings lies in the following: 
What concrete analytic (and practically meaningful and verifiable) 
assumptions one should impose on the functions A,(x, 4,) and 
N,(x, &,J defining our nonlinear problem with respect to V so that 
the operators A, N: V -+ V* are well-defined by the corresponding 
generalized Dirichlet forms a(u, v) and n(u, v) and are such that A and 
T = A + N are A-proper with respect to I’, and either N is asymp- 
totically zero as in Theorem 2 or T is asymptotically linear as in 
Theorem 1. 

In what follows we consider some simple analytic hypotheses on 
AAx, L) and N&, 5,) h h w ic are sufficient for the mappings A, N 
and T to have the abovementioned properties. Our primary aim in 
this section is to show how the theory of A-proper mappings can be 
used in the approximation-solvability of generalized boundary value 
problems but not to strive for most general results. Nevertheless our 
hypotheses are general enough so as to include and strengthen some 
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(existence) results obtained earlier in [9, 11, 171 for asymptotically 
linear elliptic equations by different methods. The application of the 
general theory of A-proper mappings to more general elliptic and 
parabolic equations as well as the treatment of more concrete examples 
will be given elsewhere. 

We start with the following simple conditions on A, and N, . 

(A) A,(x, &J satisfies the Caratheodory conditions, i.e., A,(x, 5,) 
is measurable in x on Q for each &,, in Rsm and continuous in 
.$, for almost all x in Q. In addition, we assume that: 

(1) There exist a constant k, > 0 and a function h, in L, such 
that I A&, 5,)l < ho I 5, P-l + ho for I a I < m. 

(2) There exist constants c,, > 0 and c1 > 0 such that for each 
x EQ, each pair 5, and tm’ in RSm and some integer 
k < m - 1 we have 

- co (,y 5% - 5,‘I”). 
a 

(B) NB(x, &,J satisfies the Caratheodory conditions for each 
1 fi 1 < m - 1. In addition we assume that for 1 /I I < m - 1, 
we have 

(1) I Ne(x, (,)I < k, I & IP--l + h, for some k, > 0 and h, EL, . 

We are now in a position to state our first new approximation- 
solvability result concerning the generalized boundary value problem 
for a quasilinear elliptic equation with an asymptotically zero pertur- 
bation. 

THEOREM 3. Let d(u) and J(u) be the quasilinear formal doper- 
ential operators given by (12) and (13) for which assumptions (A) and 
(B) hold. Let V be a closed subspace of WDm with WPm C V such that 

(C) The linear imbedding of V into Wr-l is compact. Suppose also 
that the following additional hypotheses hold: 

(D) d(u) is odd and positively homogeneous, i.e., A,(x, -&J = 
--A&, 5,) and 4(x, t&J = tdA(x, LJ for all x, L, 
t > 0 and some d > 0. 
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(E) There exists a continuous function k: R+ + R+ with 
k(t) t-e -+ 0 as t --t co such that for u in V 

I %(x, i%4>I < WI u II,,,) for I B I < m - 1. 

09 l.f a(u, ~1 = Of or some u in V and all v in V, then u = 0. 

Under the above conditions the generalized boundary-value problem 
for Eq. (11) corresponding to V is feebly approximation-solvable with 
respect to I’, for each f in Le , and it is strongly approximation-solvable 
zf T = A + N is also injective. In particular, this includes the Dirichlet 
(V = Wpm) and the Neumann (V = Wpm) boundary value problem for 
Eq. (11). 

Proof. It follows from assumptions (Al) and (Bl) and the standard 
results about Nemytskii operators (e.g., [15, Chap. 2.21) that the 
generalized Dirichlet forms a(u, v) and n(u, v) are well defined on Wpm 
and that for a given closed subspace V of Wpm with l&Pm C V one 
can associate with a(u, v) and n(u, v) in a unique way bounded con- 
tinuous mappings A and N of V into V* such that (17) and (18) 
hold.Thus, to prove Theorem 3, it suffices to show that A, N and 
T = A + N satisfy all the hypotheses of Theorem 2. To verify this 
we first establish the following lemma. 

LEMMA 1. Under assumptions (A) and (B) and the hypothesis (C) of 
Theorem 3, the mappings A and T = A f N are A-proper with respect 
to the admissible scheme P, = {X, , Y, , V, , W,}. 

Proof of Lemma 1. We first show that A is A-proper with respect 
to I’, . Let u and v be any element of V. Then (A2) implies that for 
for some k < m - 1 

a(u, u - v) - a(v, u - v) 

= c <4(x, &n(u)) - A,@, L(v)), D”u - Dav> 
Id<” 

2 Cl (, ; 
OL m 

I D”u - D”v I:) - co (,&I LY’~J - Dav I;). 
[I 

Putting this in terms of A we find that for all u and v in V 

(Au - & u - v> > Cl(ll u - v IC.,) - co(ll 11 - v II:.,). (23) 

We claim that (23) implies the A-properness of A: V -+ V* with 
respect to r, . 
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Let (x,~ 1 x,, E X%,} be any bounded sequence such that 
11 WnjA(x,> - W,,y II-+ 0 for some y in V*. Since V is reflexive 
and {xn,] IS bounded we may assume that x,, - x0 in V for some 
x0 in V. 

Hence, since the sequence (Ax,,} is bounded in V*, the argument 
used in the proof of Corollary 3 shows that 

(Ax,j-yy,x,,-xo)+O as j-co. 

This implies that 

(A% j - Ax, 9 x, j - x0) 

= (Axnj -y, xnj -x0> + (Y - Ax0 > xnj - x0) + 0 

as j -+ co. Now, by the inequality (23), for all j we have the relation 

(kz, - Ax, , xnj -x~~+c~IIx,~-~~II~~.~~~~IIx,~-x~~~~,~. (24) 

Since, by the hypothesis (C), the imbedding of V into Wpk is compact 
for each K < 71t - 1 and x,~ - x,, in Wpm as j ---t GO, it follows that 

II xnj - x0 II%,, .+ 0 as j -+ 00. The above discussion and the inequality 
(24) imply that (/ x,~ - x0 Ilm,p -+ 0 as j -+ co. Hence, by the con- 
tinuity of A, Ax,, ---t Ax, in V*. This together with the above shows 
that for each ZI in V 

(y, x0 - v) = lim(Axnj , xnj - v) = (Ax, , x0 - v). 

Thus y = Ax, and so A is A-proper with respect to I’, . 
We next show that the map N: V-t V* given by (18) is compact. 

Indeed, let {un} be any bounded sequence in V. Since N is bounded 
and V* is reflexive, we may assume without loss of generality that 
Nu, converges weakly to some element w in V*. We claim that, in 
fact, Nu, + w in V* as n -+ co. Indeed, if this were not the case, 
then there would exist a sequence {vn} C V and a constant E > 0 such 
that (1 v, jlm,p = 1, v, - v. in V and (Nu, - w, vn) > E > 0 for each 
n. Since (Nu, - w, v,) = (Nu, - w, v, - vo) + (Nu, - w, vo) and 
(Nu, - w, vo) -+ 0 as n --+ 00, to arrive at the contradiction it suffices 
to show that (Nu, - w, v, - vo) + 0 as n --t co and that will be the 
case if we show that (Nu, , v, - v,)-+O as n-+ co. Now, by (15) 
and (18), (Nu,, v, - vo> = C,BI<~-I <NB(x, 5&n)> D5vn - D6vo). 
Since v, - v. in Wpm and, by condition (C), the imbedding of V into 
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W0-1 is compact, we see that v, -+ v,, in IVF-l as n-t co. It follows 
from this and assumption (Bl) or (E) that 

1 s A&(x, ~,(u,J)(D%, - Pwo) dx -+ 0 as 7t -+ co. 
IBI<m-1 0 

This contradiction shows that N is compact. 
Now, since A is A-proper and N is compact, it is easy to show that 

T = A + N is A-proper with respect to I’, . 

Proof of Theorem 3 completed. In view of Lemma 1, to complete 
the proof of Theorem 3, it remains to verify some further conditions 
which have to be satisfied by A and N for the abstract Theorem 2 to 
be applicable. Now the fact that A is odd and positively homogeneous 
follows immediately from condition (D). Moreover, condition (F) 
implies that if Au = 0 for some u in V, then u = 0. Finally, it follows 
from (15), (18) d an condition (E) that for all u and v in V 

for some constant M > 0. Since I/ Nu 11 “+< supvev j(Nu, v)]/jl v ]lrn,+, 
the preceding inequality and the property of k(t) imply that 

II Ah II/II u IliftI -+ 0 as IluIlm~,--+ 02 

Thus the operators A, N: V-t V* defined by the generalized 
Dirichlet forms a(u, v) in (14) and 1z(u, V) in (15) satisfy all the 
conditions of the abstract Theorem 2. Consequently the validity of 
Theorem 3 follow from Theorem 2. Q.E.D. 

The following Remarks concern various conditions imposed in 
Theorem 3. 

Remark 7. Using the full power of the Sobolev Imbedding 
Theorem one can prove the boundedness and at least the demi- 
continuity of A given by (14) and N given by (15) under conditions 
which are much weaker than (Al) and (Bl) used above (see, for 
example, Theorem 3.1 in [14] and Lemma 3 in [l]). 

Remark 8. Condition (A2) can sometimes be verified from the 
following concrete analytic assumptions on A, . Suppose A&(x, &J is 
differentiable with respect to & and set A,&x, &J = (aA,/&)(x, &J 
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for 1 /I \,I (Y 1 < m and ut = tzl + (1 - t)v. Then it is not hard to see that 

Consequently, the inequalities from below for 

4% 24 - v) - a(w, u - w) 

can be obtained from the inequalities from below for the form 
Clal. 151<m ((A&, 4 qo: , ~4). This approach has been USed by 
Browder, NeEas, and others. 

Remark 9. Instead of condition (A2) which involves the depen- 
dence properties of A,(x, 5,) on the lower-order derivatives and for 
1 01 1 < m one could, following the approaches of Leray-Lions [14] 
and of Browder (e.g. [l]), impose conditions which involve only the 
highest order terms. Thus, for example, instead of (A2) one can use 
Browder’s Assumption (B’) (see [l, p. 181) which guarantees that A, 
determined by (17), is of type (S) and therefore A-proper with respect 
to the scheme r, used here. Consequently the results of NeEas [17] 
for elliptic differential operators whose Dirichlet forms in V = @m,p 
give rise to mappings of type (S) follow from our Theorem 2. 

Remark 10. It was noted by Pohodjayev [27] that N(U) given by 
(13) induces a compact map N: l&Pm ---t ( mprn)* by means of (18) if 
NB(x, 6,) satisfies the Caratheodory conditions and the inequalities 
I Ndx, k,Jl < c{k(x) + &IG I E, lq5~)~ where 

for it > (m - 1 01 I)p and qBM arbitrary nonnegative numbers if 
fl<(m- lal)p. 

Remark 11. 
if V = tipm 

It is known (e.g. [15]) that condition (C) always holds 
or if V = Wpm and the boundary aQ has a “cone 

condition”. 
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(b) Asymptotically Linear Elliptic Equations 

If condition (F) or (E) of Theorem 3 fails to hold, then Theorem 3 
can no longer be used to assert anything about the solvability of the 
generalized boundary value problem for Eq. (11) although, as we 
know from Theorem 1, the equivalent Eq. (19) may still be solvable 
under certain additional conditions on f and the operators L&‘(U) and 
M(U) (i.e., A and N). In this section we apply Theorem 1 to the 
solvability of the generalized Dirichlet problem for Eq. (11) in the 
case when p = 2, V = tiSrn, S/(U) is also asymptotically linear, and 
M(U) is asymptotically linear but not necessarily asymptotically zero, 
i.e., we assume that in addition to assumptions (Al)-(A2) and (Bl) 
the following conditions hold. 

(A3) There exist functions a,,(x) = a,,(x) with aolB ELM for 
1~1 <mandlal <manda,,inC(~)for~ol~ =mand 
I/3 / = m, a constant d,, > 0, and a continuous function 
c: R+ 4 R+ with c(t)/t + 0 as t -+ co such that 

andfor each jixed 01 with j 01 1 < m we have 

(B2) There exist functions b&x) E La(&) for 1 fl / < m - 1 and 
1 y / < m and a continuous function d: R+ -+ R+ with 
d(t)/t+Oast-+cOsuch thatforeach/3with I/31 <m- 1 
we have 

Along with the generalized Dirichlet problem in wZrn for the 
asymptotically linear equation 

y(u) = 44 + J’-(u) = f(x) (x 6 Q), (f~-h), (28) 

where S?(U) and M(U) are formal differential operators given by (12) 
and (13), respectively, with A, and NO satisfying conditions (Al)-(A3) 
and (Bl)-(B2), we consider the generalized Dirichlet problem in 
wm2 for the linear equation 

9-(u) = Z(u) + S(u) = 0, (29) 
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where 

The conditions (A3) and (B2) imply that the bilinear forms 

G, 4 = c <h&4 D"h, D'W, (33) 
IEl$rn-l.lYl<m. 

associated with Z(U) and a(~), respectively, determine bounded 
linear mappings L, B: wzm -+ l&am such that 

Z(u, v) = (Lu, v), b(u, v) = (Bu, v) for all u, v E kVzm, (34) 

where ( , ) denotes the inner product in wsm. By (25) of (A3), a 
Girding inequality 

4% 4 3 a, II u ILL - a0 II ~lli.2 (a1 > 0, a0 z 0) (35) 

is satisfied for all u in mzm. Since the imbedding of ?@zm into L, is 
compact, in view of (34), it follows from (35) (see [23] or Lemma 1 
above) that the operator L: tizrn --+ pzrn is A-proper with respect to 
any given projectionally complete scheme I’, = (X, , P,) in tizm. 
The latter exist since I@zm is a separable Hilbert space. Now, the linear 
operator B: @2m--+ tizrn given by (34) is also compact. This follows 
from Lemma 1 or directly from an easily established inequality: 

I 44 4 < m, II 24 lIm,2 II * llm--1.2 for all u E LVzm and some m. > 0. 

Thus the operator T, = L + B: l@zm --+ @‘am, associated with the 
bilinear form t(u, V) = Z(u, V) + b(u, V) corresponding to Ya(u), is 
linear and A-proper with respect to r, . Note that the mapping 
T,* = L* + B*: wsrn -+ l@2m, which is the adjoint of T, , is also 
A-proper with respect to I’, since B* is compact and, in view of (34) 
and (35), the mapping L* also satisfies the inequality 

(u, L*4 3 a1 II ZJ IL - a0 II 24 Iii.2 for all u in lQzm. 

Consequently, by Theorem 5 in [20] (or Theorem A above), i( T,) = 0, 
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i.e., dim N(T,) = d co im R( T,) = dim N( T,*). Moreover, since 
Y(U) induces the bounded nonlinear continuous operator T: 
wp + l&m given by T = A + N, where A and N are determined 
by (17) and (18), respectively, it follows from (26) of condition (A3) 
and from condition (B2) that T is asymptotically linear with T, as its 
asymptotic derivative, i.e., 

II To4 - T&)llm,2/ll 24 llm.2 -+ 0 as II 11 IL2 + * CUE %9 (36) 

Indeed, since for all u and v in I@zrn we have 

+ ,,,;m-, w&c, &n(u)) - C b,dh D’+ (37) 
IH<m 

it follows from (37), the compactness of the imbedding of @srn into 
Wak for each K < m - 1, the condition (26) of (A3), and (B2) that 
there exist a constant K > 0 such that for all u and v in I#zm 

IP - Ta, 41 d W(ll u llm.J + 4 u Ilm.d> II v llm.2 . (38) 

Since c(t)/t -+ 0 and d(t)/t + 0 as t -+ co and 11 Tu - T,u 11 = 
SUP~~&,~ [(Tu - Tmu, v)[/lj v jlm,2 for each fixed u E tiZm, we obtain 
(36) from (38). 

We recall that, for a given f in L, , the generalized Dirichlet problem 
for Eq. (28) admits a weak solution if there exists a function u in I&‘.am 
such that 

t(u, v) 1= a(u, et) + n(u, v) = (f, v) for all zI in bVzm. (39) 

Equation (39) is equivalent to the operator equation 

T(u) E A(u) + N(u) = wr , (40) 

where wf is the element in wZrn corresponding to f by (f, v) = (w, , v) 
for all zI in WBm. 

In view of the above discussion and the A-properness of T: 
l&m -+ 7&m with respect to r, , the operators T and T, satisfy all 
the conditions of Theorem 1 and therefore the validity of the following 
new results for the generalized Dirichlet problem for Eq. (28) follow 
from Theorem 1. 
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THEOREM 4. Suppose (28) is an asymptotically linear elliptic 
equation for which conditions (Al)-(A3) and (Bl)--(B2) hold. 

(4 Lf N(TaJ = (01 ( i.e., if the generalized Dirichlet problem for 
linear Eq. (29) h as only null solutions in mSm), then the generalized 
Dirichlet problem for the nonlinear Eq. (28) is feebly approximation- 
solvable with respect to I’, for each f in L, , (and, in particular, it is 
solvable for each f E L,). 

If we assume additionally that the generalized Dirichlet problem for 
Eq. (28) has at most one weak solution in wzrn for a given f E L, , then it 
is strongly approximation-solvable with respect to r, (i.e., the Galerkin 
method converges in wSrn for asymptotically linear elliptic equations of 

trpe cw)* 
(b) If N(T,) # {0} and zf{vl ,..., vk} is a basis for N(T,*) C tiSm 

with k = dim N( T,), then under the additional condition 

C j- (A,(x,u ,..., IPu) + NJx, u ,..., Dmu))Dvjdx = 0, 1 <j < k, (41) 
l”l$” O 

where Na(xlu,..., Dmu) E 0 for ) 01 1 = m, the generalixed Dirichlet 
problem for Eq. (28) is solvable in mm for a given f in L, if and only rf 
Jo fvj dx = 0 for 1 <j < k. 

Remark 12. Theorem 4 includes the existence Theorems 6 and 7 
of Kacurovskii [ll] obtained by him by other methods for the case 
when d(u) = Z(u) and N, depends on x and Da with / 011 < m - 1 
but not DW with 1 CL 1 = m and where l(u, u) is assumed to be positive 
definite, i.e., l(u, u) 3 c1 11 u 11i,2 for all u E mzrn and some cr > 0. 
Theorem 4 also includes the existence Theorem 3 of Hess [9] obtained 
by him for the case when m = 1, d(u) = Y(u), and M(u) = 
No@, u, Du). 
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